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Potassium ion (K+) channels are pore-forming transmembrane proteins that control the
transport of K+ ions. Medicinal plants are widely used as complementary therapies for
several disorders. Studies have shown that the modulation of K+ channels is most likely
involved in various pharmacological effects of medicinal plants. This review aimed to
evaluate the modulatory effects of medicinal plants and their active constituents on K+

channels under pathological conditions. This systematic review was prepared according
to the Preferred Reporting Items for the Systematic Reviews and Meta-analyses (PRISMA)
2020 guideline. Four databases, including PubMed, Web of Science, embase, and
Scopus, were searched. We identified 687 studies from these databases, from which
we selected 13 in vivo studies for the review by using the Population, Intervention,
Comparison, Outcomes, Study (PICOS) tool. The results of the 13 selected studies
showed a modulatory effect of medicinal plants or their active constituents on ATP-
sensitive potassium channels (KATP), and small (SKCa) and large (BKCa) conductance
calcium-activated K+ channels in several pathological conditions such as nociception,
brain ischemia, seizure, diabetes, gastric ulcer, myocardial ischemia-reperfusion, and
hypertension via possible involvement of the nitric oxide/cyclic GMP pathway and protein
kinase. K+ channels should be considered as significant therapeutic milestones in the
treatment of several diseases. We believe that understanding the mechanism behind the
interaction of medicinal plants with K+ channels can facilitate drug development for the
treatment of various K+ channel-related disorders.
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INTRODUCTION

Potassium-selective ion channels are pore-forming proteins that
allow the flow of potassium ions (K+) across the plasma
membrane. K+ channels regulate a cell’s excitability and
resting membrane potential and determine the shape of the
action potential waveform in cells such as neurons and
myocytes (Mathie et al., 2021). K+ channel families are
classified into four groups: voltage-gated K (Kv), calcium-
activated (KCa), inwardly rectifying K (Kir), and two-pore
domain potassium (K2P) channels (Taura et al., 2021).

Kv channels, the largest subset of K+ channels, assemble as
homo- or hetero-tetramers, and the monomers form the central
pore domain. Each monomer comprises six transmembrane
segments (S1-S6) (Tian et al., 2014). They are activated by
membrane depolarization and involved in many important
physiological functions, including nervous and cardiac cellular
excitability, regulation of hormone secretion such as the insulin
release pathway, and immune response. Kv channels are mutated
in some cardiac and nervous diseases, such as cardiac
arrhythmias, epilepsy, episodic ataxia, and congenital deafness
(Blunck and Batulan, 2012).

Calcium-activated K+ channels (KCa) are formed by α-subunit
tetramers (Kshatri et al., 2018). KCa channels have been
categorized into three classes based on single-channel
conductance: small conductance (SKCa), intermediate
conductance (IKCa), and large conductance (BKCa) calcium-
activated K+ channels. There are eight members in this family
of ion channels (Tian et al., 2014). KCa channels are expressed in a
wide range of cells, including central nervous system cells,
epithelial cells, blood cells, and arterial smooth muscle cells

(Kshatri et al., 2018). These channels control the vascular
tone, maintain K+ homeostasis, and regulate cellular
excitability (Tano and Gollasch, 2014; Kshatri et al., 2018).

The Kir family consists of 15 members categorized into four
functional groups. The most important subfamilies include the
classical Kir channels (strong inward-rectifier K+ channel/Kir2.x),
G-protein-activated Kir channels (GIRK, Kir3.x), ATP-sensitive
K+ channels (KATP, Kir6.x), and K+ transport channels (Kir1.x,
Kir4.x, Kir5.x, and Kir7.x) (Tian et al., 2014). Kir channels are
critical in the control of cellular excitability and K+ ion
homeostasis (Mathie et al., 2021).

K2P channels have two pore domains per α-subunit, and each α-
subunit contains four transmembrane (TM) segments (TM1-TM4)
(Tian et al., 2014). K2P channels are considered “leak channels” for
maintaining a negative membrane potential in various cells,
including skeletal and heart myocytes, neurons, glia, and different
types of epithelial cells (Enyedi and Czirják, 2010; Tian et al., 2014).

Several studies have documented the pathophysiological role of the
K+ channel in cardiac arrhythmia, hypertension, epilepsy, Alzheimer’s
disease, type 2 diabetes mellitus, and age-related hearing loss (Tian
et al., 2014; Burg and Attali, 2021; Singh et al., 2021). Figure 1
illustrates some disorders associated with K+ channel dysfunction.

Moreover, mitochondrial KATP channels are located in the
intracellular membrane of mitochondria and composed of pore-
forming (MITOK) and ATP-binding (MITOSUR) subunits.
These channels play a vital role in mitochondrial physiology
and are involved in the homeostatic control of cellular
metabolism during stress conditions (Paggio et al., 2019).

For many years, studying K+ channels has been challenging
due to the nonspecificity and other problems associated with
classical pharmacological tools. However, several methods are
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currently available for studying K+ channels. Among them,
manual voltage-clamp electrophysiology is considered the best
method for measuring individual K+ channel activity. Other
techniques include radioligand displacement, fluorescent
sensors, and thallium flux assays (Weaver and Denton, 2021).

Given that clinically used drugs target only 7% of ligand-ion
and 5% of voltage-gated channels, ion channels seem to be
underrepresented in the drug discovery program (Djokic and
Novakovic, 2020). This is because the chemical diversity
information of ion channels available in databases is low,
making drug designing against them all the more challenging
(Bedoya et al., 2019). Moreover, another limitation is the lack of
in vivo studies using specific ligands to determine the exact
mechanism of interaction of herbal medicine or its active
constituents with K+ channels. Although there are several
in vitro studies on the interaction of herbal medicines with
other channels or receptors, the lack of in vivo studies makes
it difficult to differentiate the effects of herbal medicines on K+

channels from the other channels or receptors.
Several in vitro and in vivo studies have shown that herbal

medicines and their active constituents have a variety of
pharmacological properties, including antinociceptive,
anxiolytic, antidepressant, antidiabetic, antiarrhythmic,
antiischemic, gastroprotective, and vasorelaxant effects due to
their selective targeting of K+ channels (Joseph et al., 2018;
Zakaria et al., 2014; Zambrana et al., 2018; da Rosa et al.,
2019; Imtiaz et al., 2019; Li et al., 2008; Li et al., 2019). Since
medicinal plants and their active components are critical for

modulating the K+ channels, in this review we focus on the
interaction of medicinal plants and their constituents with the K+

channels. We believe this review will help identify the possible
mechanisms of medicinal plants in various K+ channel-related
disorders, which may further accelerate the drug design against
these disorders.

METHODS

This systematic review was conducted as a guide for the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 statement consisting of a 27-item checklist,
the PRISMA abstract checklist, and a flow diagram (Page
et al., 2021).

Search Strategy
Search terms used in the four databases—Scopus, PubMed,
Embase, and Web of Science—on April 27, 2021, were
“Medicinal plants,” “Herbal medicine,” “Botany,” “Herb,”
“Phytotherapy,” “Chinese Herbal Medicine,” “Herbal
Preparations,” “Phytochemical,” “Ethnomedicine,’’ and “K+

channel’’ or “potassium channel.” The complete search
strategy for all databases, including filters, is shown in
Table 1. All titles and abstracts from each database were
imported to the reference management software EndNote™
X9, in which duplicate references were excluded. Subsequently,
all remaining studies were screened.

FIGURE 1 | Some disorders are associated with K+ channels dysfunction.
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Inclusion/Exclusion Criteria
We designed a systematic search strategy by using the Population,
Intervention, Comparison, Outcomes, and Study (PICOS) search
tool (Methley et al., 2014; Bramer et al., 2018) and selected the
articles that follow the PICOS design. The population included all
animal models (male and female, of all ages). The intervention
included the effect of medicinal plants or their active constituents
on K+ channels under pathological conditions, including
nociceptive, cerebral ischemia/reperfusion, seizure, diabetes,
gastric ulcer, myocardial ischemia/reperfusion models,
intestinal motility, and blood pressure. The comparison was
between the control group and the group which was treated
with the plant extract or its active components. The outcome was
the effect of medicinal plants or their active constituents on
nociception and writhing, cerebral ischemia, seizure, diabetes,
gastric ulcer, intestinal motility, myocardial ischemia-
reperfusion, and blood pressure. The study included all in vivo
studies related to the effect of medicinal plants or their active
constituents specifically on K+ channels and their possible
mechanisms, except one study having both in vivo and in vitro
experiments, from which only the in vivo experimental data was
considered.

The exclusion criteria included review articles, books,
editorials, conference abstracts, and letters; studies with no
abstract or free full-text access; studies not written in
English; studies that did not focus on the interaction of
medicinal plants or their active constituents on K+ channels,
in vivo; and studies on the role of K+ channels in plant
physiology. Further, studies on mixed herbal components
with a brand name or in combination with other drugs such
as non-steroidal anti-inflammatory drugs, studies with
unknown extraction methods, and in silico, ex vivo, and
molecular docking studies were removed.

Data Collection and Management
One author (MNA) evaluated the titles and abstracts of the
electronic databases with the inclusion criteria. If a title and
abstract met the inclusion criteria, the full text of that article was
retrieved for further investigation. Two authors (MNA and FB)
independently collected data from each full-text paper using the
PICOS design and analyzed them. A third researcher (HH)
confirmed the data from the study investigators. Data were
stored in a file.

Assessment Risk of Bias
The risk of bias (RoB) was assessed independently by two authors
(MNA and FB), and disagreements were resolved by a third
author (HH). The RoB tool was provided by the SYstematic
Review Center for Laboratory animal Experimentation
(SYRCLE) for animal intervention studies to assess the risk of
bias, which contains 10 criteria (Hooijmans et al., 2014). This tool
was adapted from the Cochrane Collaboration RoB tool used in
clinical studies (Higgins et al., 2011). The RoB contains 1)
sequence generation, 2) baseline characteristics, 3) allocation
concealment, 4) random housing, 5) blinding caregivers and/
or investigators, 6) random outcome assessment, 7) blinding
outcome, 8) incomplete outcome data, 9) selective reporting of
outcomes, and (10) other sources of bias (Hooijmans et al., 2014).
These items were scored with ‘+’ low risk of bias, ‘−’ high risk of
bias, and ‘?’ unclear risk of bias (Su et al., 2021).

RESULTS

Selection of Articles
A total of 687 articles were identified from all the
databases—PubMed (72), Scopus (491), Embase (55), and
Web of Science (69). Duplicate records were removed using
EndNote (n = 173). Subsequently, 514 articles were left.
Following the inclusion criteria, another 102 records were
excluded, as described in Figure 2. From the remaining 412
studies, 406 were assessed for eligibility, and 13 studies were
included in the review. More details are shown in the PRISMA
flowchart diagram in Figure 2.

Characteristics of the Included Studies
In all the selected studies, the effects of medicinal plants and their
active constituents on K+ channels have been described. A
summary of the selected studies is shown in Table 2. There
were six studies on the effect of medicinal plants or their active
constituents on KATP channels in the peripheral nervous system.
Adeyemi et al. (2018) reported that the hydroethanolic leaf
extract of Tetracera alnifolia (HeTA; 50, 100, 200, and
400 mg/kg, p.o.) might have antinociceptive effects on acetic
acid-induced writhing in mice. Pretreatment of animals with
naloxone, L-arginine (L-Arg; precursor of nitric oxide (NO)
synthase), or glibenclamide (a KATP channel inhibitor)

TABLE 1 | Search terms used in Scopus, PubMed, Embase, and Web of science.

database Search item

Scopus TITLE-ABS-KEY (“potassium channels” OR “K channels”) AND (“medicinal plants” OR “herbal medicine” OR “herb” OR
“phytochemicals” OR “Ethnomedicine” OR “Chinese Herbal Medicine” OR “phytotherapy”)

PubMed (“potassium channels" [Title/Abstract] or “K channels" [Title/Abstract]) AND (“medicinal plants" [Title/Abstract] or “herbal
medicine" [Title/Abstract] or “herb" [Title/Abstract] or “phytochemicals" [Title/Abstract] or “Ethnomedicine" [Title/Abstract] or
“Chinese Herbal Medicine" [Title/Abstract] or “phytotherapy" [Title/Abstract])

Embase (‘potassium channels’:ti,ab, kw OR ′k channels’:ti,ab,kw) AND (‘herbal medicine’:ti,ab, kw OR ′medicinal plants’:ti,ab, kw
OR ‘ethnomedicine’:ti,ab, kw OR ‘botany’:ti,ab, kw OR ‘phytochemicals’:ti,ab, kw OR ‘herb’:ti,ab, kw OR ′chinese herbal
medicine’:ti,ab,kw) AND [1966–2021]/py

Web of Science Title, abstract, keywords: (“potassium channels” OR K channels) AND (“herbal medicine” OR “medicinal plants” or
“phytochemicals” OR “botany” OR “Chinese herbal medicine” OR “ethnomedicine")
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prevented the antinociceptive effects; however, L-nitro-arginine
could not reverse this effect. Hence, the antinociceptive effect of
T. alnifolia may occur through the opioid/L-Arg-NO/KATP

pathways (Adeyemi et al., 2018).
Brandão et al. (2013) investigated the antinociceptive effect of

the ethereal fraction of Lecythis pisonis leaves (LPEF; 50 and
100 mg/kg, p.o.) on the glutamate-evoked nociceptive response in
mice. LPEF reduced nociception, and pretreatment with
naloxone, L-Arg, or glibenclamide antagonized this effect.
Hence, it seems that LPEF exerts its antinociception effect via
the opioid/KATP/L-Arg-NO pathways (Brandão et al., 2013).

Ferdous et al. (2020) investigated the antinociceptive effects of
the methanol extract of Bougainvillea spectabilis leaves (MEBS;
50, 100, and 200 mg/kg, p.o.) on acetic acid-induced writhing in
mice. MEBS reduced the number of writhing episodes and pain.
Pretreatment of animals with methylene blue (as an inhibitor of
the cGMP pathway) synergized the antinociceptive effect of
MEBS; in contrast, pretreatment with glibenclamide reversed
the antinociceptive effect. These results suggest that MEBS
have antinociceptive effects, possibly through the modulation
of KATP channels and cGMP (Ferdous et al., 2020).

Islam et al. (2016) found that the methanol extract of Celosia
cristata (MECC; 50, 100, 200, and 400 mg/kg, p.o.) has
antinociceptive effects on the acetic acid-induced writhing in
mice. For the mechanistic evaluation of the antinociceptive
activity of MECC, they pretreated the animals with various
compounds. Pretreatment with glibenclamide reversed the
antinociceptive effect of MECC, whereas co-administration of
methylene blue with MECC (400 mg/kg) amplified the

antinociceptive activity. These results indicate that the
antinociceptive effect of MECC may be partly related to the
cGMP and KATP channels. However, the antinociceptive effects of
MECC on central and peripheral nervous systems have been
shown in several nociception tests including formalin and
glutamate-induced paw licking and edema, immersion test,
and hot plate test. From these tests, the possible role of the
opioid system was indicated. However, in this review, we
considered only the part of the study that evaluated the role of
K+ channels in antinociception (Islam et al., 2016).

Khalid et al. (2011) found that the essential oil of Zingiber
zerumbet (EOZZ; 50, 100, 200, and 300 mg/kg, i.p.) has an
antinociceptive effect in acetic acid-induced writhing in mice.
The initial results showed that the i.p. route of EOZZ
administration was more potent than the p.o. route.
Pretreatment of animals with L-Arg and glibenclamide
reversed the antinociceptive effect of EOZZ (200 mg/kg), while
pretreatment with methylene blue enhanced the antinociceptive
activity. It seems that EOZZ acts via the KATP channels and
modulates the L-Arg/NO/cGMP pathway, apart from its possible
involvement in the inhibition of the glutamatergic system and
transient receptor potential vanilloid 1 (TRPV4) receptors
(Khalid et al., 2011).

Shajib et al. (2018) reported that polymethoxyflavones (PMFs;
four compounds), the active constituents of the methanol extract
of Nicotiana. plumbaginifolia leaves (12.5 and 25 mg/kg, p.o.),
have antinociceptive effects in writhing tests in mice. However,
pretreatment of animals using glibenclamide decreased the
protective effects of these PMFs. For more details, see Table 2.

FIGURE 2 | PRISMA flowchart diagram.
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TABLE 2 | The effects of medicinal plants and their active constituents on potassium channels.

N Botanical
drug

(s)/Active
constituents/Phytochemicals

Identified
name/Family

Study
design

Species/
Strains/

Gender

Number
of

animals

Experimental
models

Assay Dose
(route)

Results Main
conclusion

References

1 Hydroethanolic leaf extract of

Tetracera alnifolia (HeTA)

Tetracera alnifolia Willd/

Dilleniaceae

In vivo Mice/

albino/

male

6 Acetic acid-induced writhing

(0.6% v/v, 10 ml/kg, i.p.)

Number of writhing

(contraction of the

abdominal musculature and

extension of the hind limbs)

alone or in the presence of

naloxone, L-Arg, L-nitro-

arginine, or glibenclamide

50, 100, 200, and

400 mg/kg, p.o

Reduced mean number of

writhes

Antinociceptive property

through opioid/L-Arg-NO/

KATP pathways

Adeyemi et al.

(2018)

2 Ethereal fraction from Lecythis

pisonis leaves (LPEF)

Lecythis pisonis

Cambess./Lecythidaceae)

In vivo Mice/

Swiss/

male

6–11 Glutamate-evoked

nociceptive response

(20 µmol/paw)

Licking time alone or in the

presence of naloxone,

L-Arg, or glibenclamide

50 and 100 mg/kg, p.o Reduced glutamate-

induced nociception

Antinociceptive property

through the opioid pathway,

K+
ATP. channels and negative

modulation of L-Arg-NO

Brandão et al.

(2013)

3 Methanol extract of the leaves of

Bougainvillea spectabilis (MEBS)

Bougainvillea spectabilis

Willd/Nyctaginaceae

In vivo Mice/

Swiss/

male

5 Acetic acid-induced

nociception (0.6% v/v,

10 ml/kg, i,p.)

Number of abdominal

writhing, and percentages of

pain inhibition alone or in the

presence of methylene blue,

or glibenclamide

MEBS (50, 100, or

200 mg/kg, p.o.

Reduced the number of

writhing episodes and pain

Involvement of NO/cGMP/

KATP pathways for

antinociceptive effects

Ferdous et al.

(2020)

4 Methanol extract ofCelosia cristata L.

(MECC)

Celosia argentea L./

Amaranthaceae

In vivo Mice/

Swiss

albino/

male

5 Acetic acid-induced writhing

(0.6% v/v, 10 ml/kg, i.p.)

Number of writhing alone or

in the presence of methylene

blue, or glibenclamide

50,100,200,400 mg/kg,

p.o

Reduced the number of

writhing

Association between the

antinociceptive activity with

cGMP pathway, and KATP
+

channel

Islam et al.

(2016)

5 Essential oil of Zingiber zerumbet

(EOZZ)

Zingiber zerumbet (L.)

Roscoe ex Sm/

Zingiberaceae

In vivo Mice/ICR/

male

10 Acetic acid-induced

abdominal writhing test

(0.6% v/v, 10 ml/kg, i.p.)

Number of writhing alone or

in the presence of L-Arg,

methylene blue, or

glibenclamide

50, 100, 200,

300 mg/kg, i.p

Reduced the number of

writhing, and increase the

percent of inhibition

The participation of L- Arg/

NO/cGMP/KATP pathway for

antinociceptive activity

Khalid et al.,

2011

6 3,3′,5,6,7,8-hexamothoxy-4′,5′-
methylenedioxyflavone,

3,3′,4′,5′,5,6,7,. 8-
octamethoxyflavone (exoticin),

6,7,4′,5′-dimethylenedioxy-3,5,3′-
trimethoxyflavone, and 3,3′,4′,5,5′,8-
hexamethoxy-6,7-

methylenedioxyflavone,. active

constituents of methanol extract of N.

plumbaginifolia leaves

Nicotiana plumbaginifolia

Viv./Solanaceae

In vivo Mice/

Swiss

albino/

male

6 Acetic acid-induced writhing

test (1% w/v, 10 ml/kg, i.p.)

The onset of writhing, and

the number of writing

episodes alone or in the

presence of glibenclamide

12.5, 25 mg/kg, p.o Increased writhing onset

time and decreased the

writhing episodes

Involvement of KATP channel

for antinociceptive effect

Shajib et al.

(2018)

7 Total flavone of Rhododendron (TFR) Rhododendron simsii

Planch/Ericaceae

In vivo Rats/

Sprague-

Dawley/

male

4 Cerebral brain ischemia/

reperfusion model (Ischemia

for 20 min followed by 2 h

reperfusion)

1) Morphological changes

(Nissl staining) alone or in the

presence of apamin, TRAM-

34, or HC-067047. 2)

Protein expression (Western

blot) alone or in the presence

of apamin, TRAM-34, or HC-

067047. 3) The Ca2+

fluorescence intensity (Laser

scanning confocal

experiment) alone or in the

presence of apamin, TRAM-

34, or HC-067047

100 mg/kg, i.v 1) Improved the

pathological injury of the

cerebral cortex. 2)

Increased protein

expression of SKCa, IKCa,

and TRPV4 channels in the

endothelial cells from CBA.

3) Reduced the mean

fluorescence intensity of

Ca2 in the smooth muscle

cells of CBA

The involvement of BKCa

channels for anticerebral

ischemia-reperfusion injury

Han et al.

(2018)

8 Pseudospondias microcarpa (A.

Rich) Engl. hydroethanolic leaf

extract (PME)

Pseudospondias

microcarpa (A.Rich.)

Engl./Anacardiaceae

In vivo Male/ICR/

mice

10 4-AP-induced seizures

(12 mg/kg, i.p.)

Latencies for the onset of

convulsive episodes (clonic

or tonic), and death. Clonic

seizures (appearance of

facial myoclonus, forepaw

myoclonus, and forelimb

clonus), tonic seizures

(explosive clonic seizures.

with wild running and tonic

forelimb and hind limb

30, 100 or

300 mg/kg, p.o

Delayed the latency of both

clonic and tonic seizures.

Protected against clonic

and tonic seizures

The involvement of activation

of K+ channel in

anticonvulsant effects

Adongo et al.

(2017)

(Continued on following page)
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TABLE 2 | (Continued) The effects of medicinal plants and their active constituents on potassium channels.

N Botanical

drug
(s)/Active

constituents/Phytochemicals

Identified

name/Family

Study

design

Species/

Strains/
Gender

Number

of
animals

Experimental

models

Assay Dose

(route)

Results Main

conclusion

References

extension) alone or in the

presence of 4-AP

9 Belamcanda chinensis water leaf

extract (BCL)

Belamcanda chinensis (L.)

DC./Iridaceae. Synonym

of Iris domestica (L.)

Goldblatt & Mabb/

Iridaceae

In vivo Rats/

Wistar/

male

6 1) Normal rats. 2) STZ-

induced diabetic rats

(50 mg/kg, i.p.)

1) Fasting blood glucose,

serum insulin levels alone or

in the presence of nicorandil

or nifedipine. 2) Oral glucose

tolerance

400, 800,

1600 mg/kg, p.o

1) Lowered fasting blood

glucose levels, oral glucose

tolerance, and increased

serum insulin concentration

in normal rats. 2) Lowered

fasting blood glucose levels

and improved oral glucose

tolerance in diabetic rats

The involvement of closing

KATP and opening Ca2+

channels for antidiabetic

effect

Wu et al.

(2011)

10 Hydroethanolic extract of

Cochlospermum regium (Mart. ex

Schrank) Pilg. (HECr)

Cochlospermum regium

(Schrank) Pilg./Bixaceae

In vivo Mice/

Swiss/

female

6 Ethanol-induced gastric

ulcer (0.3 M HCl/70%

ethanol, p.o.)

Measured ulcerated area by

a percentage of the total

area of the gastric stomach

(mm2) alone or in the

presence of indomethacin,

L-NAME, glibenclamide, or

yohimbine

25, 100, 400 mg/kg, p.o Reduced percent of the

ulcered area

The gastroprotective effect

through non-specific

complexes, including

activation of KATP channels,

α2-adrenergic receptors, and

stimulation of PGs and NO

Arunachalam

et al. (2019)

11 Ethanol extract of Maytenus

Erythroxylon (ME)

Maytenus erythroxylon

Reissek/Celastraceae

In vivo Mice/

Swiss/

male

7 Alterations in normal

intestinal transit, a model that

induced after 60 min of the

pretreatment (10 ml/kg,

p.o.) black marker (5%

charcoal suspension in 5%

Arabic gum)

Measured percent of

intestinal transit = Length

traveled by charcoal meal/

Total intestinal length × 100

alone or in the presence of

glibenclamide, L-NAME, or

propranolol

62.5, 125, 250 and

500 mg/kg, p.o.

Reduced the percentage of

intestinal transit

Involvement of the NO/

cGMP/KATP pathway, and

tissue adrenergic receptors

modulation for antimotility

Formiga et al.

(2017)

12 Polydatin - In vivo Rats/

Sprague

Dawley/

male

10 Myocardial ischemia/

reperfusion

1) Monitored heart rate via

subcutaneous stainless-

steel electrodes alone or in

the presence of 5HD,

chelerythrine, or GF 2)

Measures area at risk, CPK,

and LDH

20 μg/kg, IV 1) Reduced heart rate, and

infarct size 2) Decreased the

release of CPK and LDH

from the damaged

myocardium

The involvement of PKC-KATP

dependent signaling for

antiischemic/reperfusion

injury

Miao et al.

(2011)

13 Ethanol soluble fraction from

Acanthospermum hispidum (ESAH)

Acanthospermum

hispidum DC./

Compositae

In vivo Rats/

Wistar/

male

5 Normotensive rats Monitored mean arterial

pressure, and systolic blood

pressure by left carotid

artery that was cannulated

and connected to a pressure

transducer alone or in the

presence of L-NAME,

methylene blue, or TEA

30, 100, 300 mg/kg,

intraduodenal

Induced acute hypotensive

effect

The involvement of the NO/

cGMP/K+ channels in the

hypotensive response

Tirloni et al.

(2017)
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Moreover, the antinociceptive effect of 6,7,4′,5′-
dimethylenedioxy-3,5,3′-trimethoxyflavone was greater than
that of the other PMFs. Opioid receptors have also been
implied in the antinociceptive effect of these PMFs. Hence,
these results suggest that the antinociceptive effect of PMFs
may be related to the ATP-sensitive K+ channel opening and
the opioid system, apart from the possible suppression of
inflammatory mediators such as prostaglandins (PGs),
cyclooxygenase, lipoxygenase (Shajib et al., 2018).

Han et al. (2018) investigated the role of the total flavon of
Rhododendron (TFR) on K+ channels in cerebral brain ischemia/
reperfusion in rats. TFR (100 mg/kg, i.v.) improved the
pathological injury of the cerebral cortex. Moreover, it
increased the protein expression of TRPV4, IKCa, and SKCa

channels in the endothelial cells from the cerebral basal artery
(CBA), as well as reduced the mean fluorescence intensity of Ca2+

in the smooth muscle cells of CBA. These results suggest that the
activation of the TRPV4-dependent pathway has two
consequences. First, it opens the endothelial IKCa/SKCa

channels, which in turn leads to the hyperpolarization of the
endothelium and smooth muscle cell membranes. Second, it
activates the BKCa channel and reduces Ca2+ in smooth
muscle cells of CBA (Han et al., 2018).

The study by Adongo et al. (2017) investigated the effects of
Pseudospondias microcarpa hydroethanolic leaf extract (PME) on
the activation of K+ channels in the 4-aminopyridine (4-AP)-
induced seizures in mice. They reported that PME (30, 100,
300 mg/kg, p.o.) delayed the latency of both clonic and tonic
seizures and protected against 4-AP-induced seizures. It seems
that PME acts via the direct activation of the K+ channel and
membrane hyperpolarization or through the inhibition of the
glutamate signaling pathway. However, this study also found the
possible involvement of other systems in different seizure models
in animals (Adongo et al., 2017).

Wu et al. (2011) investigated the role of Belamcanda chinensis
leaf extract (BCL) on the KATP channel in normal and
streptozotocin (STZ)-induced diabetic rats. BCL (400, 800,
1,600 mg/kg, p.o.) lowered the fasting blood glucose levels and
oral glucose tolerance in both normal and diabetic animals.
Moreover, it increased serum insulin levels in normal rats.
However, this effect was reversed in the presence of nicorandil
(an ATP-sensitive K+ ion channel opener) and nifedipine (a Ca+2

ion channel blocker). These results indicate that BCL lowers
glucose levels and stimulates insulin secretion by closing K+

ATP

and opening Ca2+ channels (Wu et al., 2011).
Arunachalam et al. (2019) investigated the effect of the

hydroethanolic extract of Cochlospermum regium xylopodium
(HECr) on the K+

ATP channel in an acute gastric ulcer mouse
model. They demonstrated the gastroprotective effect of HECr (25,
100, 400 mg/kg, p.o.) in acidified ethanol-induced gastric ulcers in
mice. Pretreatment of animals with glibenclamide reduced the
antiulcer activity of HECr (100mg/kg). Furthermore, pretreatment
with indomethacin (an inhibitor of PGs), N-nitro-L-arginine
methyl ester (L-NAME, a non-selective nitric oxide synthase
inhibitor), or yohimbine (α2-adrenoreceptor antagonist) reversed
the gastroprotective effect of HECr. Hence, HECr seems to have a
gastroprotective effect non-specifically through the activation of

K+
ATP channels and α2-adrenergic receptors, and the stimulation of

PGs and NO (Arunachalam et al., 2019).
Formiga et al. (2017) investigated the role of Maytenus

erythroxylon (Me) extract on intestinal motility and the possible
involvement of the K+

ATP channel in mice. Me (62.5, 125, 250, and
500 mg/kg, p.o.) reduced the percentage of intestinal transit in
mice, which was reversed by the pretreatment of animals with
glibenclamide, L-NAME, or propranolol. These results indicate
that the effect of ME extract on intestinal motility may involve the
NO/cGMP/KATP pathways, apart from the modulation of
adrenergic receptors (Formiga et al., 2017).

We also found two studies related to the effects of medicinal
plants and phytochemicals on the cardiovascular system. Miao
et al. (2011) showed that polydatin, a stilbene compound, has a
cardioprotective effect in a rat model of myocardial ischemia/
reperfusion. Polydatin reduced the heart rate and infarct size,
whereas this effect was reversed by 5-hydroxydecanoate (5-HD),
a selective blocker of mitochondrial KATP channels, and two
potent protein kinase C (PKC) inhibitors, chelerythrine or
GF109203X (GF). In addition, the decrease in the release of
creatine phosphokinase (CPK) and lactate dehydrogenase (LDH)
by polydatin was abolished in the presence of 5-HD,
chelerythrine, or GF. These results suggest that the
cardioprotective effects of polydatin may be related to the
activation of PKC-K+

ATP signaling, apart from its free radical
scavenging activity that was indicated as a different mechanism
for the cardioprotective effect (Miao et al., 2011).

Tirloni et al. (2017) showed that ethanol-soluble fractions
fromAcanthospermum hispidum (ESAH; 30, 100, and 300 mg/kg,
intraduodenal) has a hypotensive effect in normotensive rats, and
pretreatment of animals with L-NAME, methylene blue, or
tetraethylammonium (TEA; a nonspecific K+ channel blocker)
prevented this effect. These results suggest the involvement of the
NO/cGMP/K+ channels in the hypotensive response of ESAH
(Tirloni et al., 2017).

DISCUSSION

Of the 13 studies discussed in this systematic review, six examined
the antinociceptive effects of medicinal plants and their possible
involvement with the K+

ATP channel. Two studies investigated the
neuroprotective effect of medicinal plants and their modulation
of the SKCa and IKCa channels. One study examined the anti-
diabetic effect of a medicinal plant that acts by closing the K+

ATP

channel. Two studies evaluated the therapeutic effects of
medicinal plants on gastric ulcers and intestinal motility,
possibly via modulating the K+

ATP channels. Finally, two
studies examined the cardioprotective effect of medicinal
plants through the possible involvement of K+ channels.

In all 13 studies, K+ channels were demonstrated as a possible
pharmacological target of medicinal plants or their active
constituents. Hence, in this systematic review, we will focus
on the molecular mechanism of the interaction between
medicinal plants and their active constituents with K+

channels to evaluate if it can be a novel drug target in the
treatment of various diseases.
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The Modulatory Effects of Medicinal Plants
or Their Active Constituents on K+ Channels
in the Nervous System
The Involvement of NO/cGMP/KATP Pathway for
Antinociceptive Effects
The antinociceptive effects of medicinal plants HeTA, LPEF,
MEBS, MECC, EOZZ, and polymethoxyflavones (active
constituents of the methanol extract of N. plumbaginifolia
leaves) are linked to the modulation of KATP channels in six
studies (Khalid et al., 2011; Brandão et al., 2013; Islam et al., 2016;
Adeyemi et al., 2018; Shajib et al., 2018; Ferdous et al., 2020).
KATP channels are widely distributed in both the central and
peripheral nervous systems. These channels have several
physiological functions, including the regulation of neuronal
excitability and suppression of hyperalgesia (Li et al., 2021).

Kir6.2, SUR1, and SUR2 are expressed in the dorsal root of the
ganglia (DRG) and are important for inhibiting hyperalgesia during
severing neurons (Zoga et al., 2010; Tinker et al., 2018). It has been
shown that intracellular calcium [Ca2+]i 57 or 610 nMactivates DRG
neuronal KATP channels via the Ca2+/Ca2+-calmodulin/CaM-
dependent kinase II (Ca2+/CaM/CaMKII) signaling pathway. This
in turn opens K+ channels, reduces excitability, and exerts possible
antihyperalgesic effects. It is suggested that the opening of KATP

channels can serve as a novel analgesic target in the treatment of
neuropathic pain (Kawano et al., 2009b). NO activated KATP

channels in large DRG neurons in the SUR1 subunit through
direct S-nitrosylation of cysteine residues (Kawano et al., 2009a).

Furthermore, the effect of medicinal plants or phytochemicals
on NO/cGMP signaling was demonstrated in five studies (Khalid

et al., 2011; Brandão et al., 2013; Islam et al., 2016; Adeyemi et al.,
2018; Ferdous et al., 2020). The studies indicated that the
antinociceptive effects of medicinal plants or phytochemicals
depend on the activation of ATP-dependent K+ channels due
to the modulation of the NO/cGMP signaling pathway.

However, NO has diverse roles in the modulation of analgesia.
It may have a nociceptive or antinociceptive effect depending on
the animal model, time, dose, and route of administration (Sousa
and Prado, 2001; Cury et al., 2011; Staurengo-Ferrari et al., 2014).
Several studies have shown the involvement of the L-arginine/
NO/cGMP/KATP channel pathway in antinociceptive action
(Ghorbanzadeh et al., 2019; Alizamani et al., 2021).

In this review, based on inclusion criteria, we only checked
whether cGMP or NO inhibitors could boost the antinociceptive
effect ofmedicinal plants or their active constituents; thesemedicinal
plants or phytochemicals act via modulating the NO/cGMP/KATP

channel pathway. Further studies on their role in pain treatment are
needed to evaluate their therapeutic potential by targeting the NO/
cGMP/KATP channel pathway. A possible mechanism of the
interaction of medicinal plants or phytochemicals with K+

channels in nociception is illustrated in Figure 3.

The Involvement of BKCa Channels for Anticerebral
Ischemia-Reperfusion Injury
Han et al. (2018) demonstrated the protective effect of TFR on
ischemic brain injury and determined the functions of TRPV4,
SKCa, IKCa, and BKCa channels in cerebral ischemia-reperfusion
(Han et al., 2018). There is a link between the activation of TRPV4
and the opening of BKCa channels in the smooth muscle cells that

FIGURE 3 | Possible mechanism of the interaction of medicinal plants or phytochemicals with K+ channels in nociception. The activation of ATP-dependent K+

channels and modulation of NO/cGMP signaling pathway is involved in antinociception. NOS, nitric oxide synthase; NO, nitric oxide; L-Arg, L-Arginine; GC, guanylate
cyclase; GTP, guanosine Triphosphate; cGMP, cyclic guanosine monophosphate; K+, potassium; KATP, ATP-sensitive potassium channel.
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cause dilation in the rat cerebral arteries, resulting in the
improvement of hypoperfusion in the infarcted area (Liu et al.,
2020b). This vasodilation occurs by the entry of Ca2+ through
TRPV4 channels that stimulate Ca2+ release from ryanodine
receptors in the sarcoplasmic reticulum. Subsequently, Ca2+

sparks are induced, activating the BKCa channels, thereby
leading to hyperpolarization and vasodilation (Liu et al., 2020a).
The possible mechanism of the interaction of medicinal plants or
phytochemicals with K+ channels in ischemia is summarized in
Figure 4. The neuroprotective effects of BKCa channels in cerebral
ischemic stroke have been reported (Liu et al., 2020b). Thus,
studying the role of TFR or a similar compound on BKCa

channels could lead to the development of a potential
therapeutic target in ischemia-reperfusion injury.

The Involvement of K+ Channel in Anticonvulsant
Effects
PME could have an anticonvulsant effect in the 4-AP-induced
seizure. 4-AP is an antagonist of Kv channels (Adongo et al., 2017).
It can be administered systemically or intracerebrally to animals to
study the anticonvulsant activity of drugs. 4-AP is also a stimulator
of voltage-gated Ca+2 channels and contributes to the release of
excitatory neurotransmitters such as glutamate (Brito et al., 2009).
Recently, the 4-AP model has been used to detect antiepileptic
effects in new-generation drugs and induce seizure-like events in
in vitro studies (Heuzeroth et al., 2019). Therefore, the activation of
K+ channels by medicinal plants like PME can be an important
drug target in the treatment of seizures. Further studies are needed
on the anticonvulsant activity of PME to investigate the type of Kv
channel involved in the protection against 4-AP.

The Involvement of KATP Channels for
Antidiabetic Effect
The study by Wu et al. (2011) indicates that BCL lowers glucose
levels and increases insulin secretion by closing KATP channels
and opening Ca2+ channels. Isoflavone glycosides may be
involved in the antidiabetic effect of BCL (Wu et al., 2011).
KATP channels are critical in the release of insulin from pancreatic
β cells (Tinker et al., 2018). The combination of the subunits of
Kir6.2/SUR1 of the KATP channel in pancreatic β-cells regulates
the release of insulin (Li et al., 2021). KATP channels provide a link
between adenine nucleotides and electrical activity following
changes in blood glucose levels in β cells (Rustenbeck et al.,
2021). High glucose levels block KATP channels in the cell
membrane, leading to depolarization of the membrane and an
increase in Ca2+ influx, resulting in exocytosis of insulin granules
and vice versa (Wei et al., 2019). Therefore, it seems that the
closure of KATP channels by BCL can be a therapeutic target in the
treatment of diabetes, and further studies should be conducted to
evaluate the hypoglycemic effects of herbal medicine on KATP

channels in the pancreas. A possible mechanism of the interaction
of BCL with K+ channels in diabetes is shown in Figure 5.

The Modulatory Effects of Medicinal Plants
on NO/cGMP/KATP Cascade in the
Gastrointestinal Tract
We found two studies related to the gastroprotective and
antimotility effects of medicinal plants in the gastrointestinal
tract, which summarize their possible molecular mechanisms.

FIGURE 4 | Possible mechanism of the interaction of TFR with K+ channels in ischemia. The activation of TRPV4 channels has two consequences: 1) Opening of
the endothelial IKCa IKCa/SKCa channels, which in turn leads to the hyperpolarization of the endothelium and smooth muscle cell membranes. 2) Stimulation of Ca++

release from ryanodine receptors in the sarcoplasmic reticulum and opening the BKCa channels, thereby leading to hyperpolarization and vasodilation in smooth muscle
cells of CBA. TRPV4, transient receptor potential vanilloid 4; Ca++, calcium; K+, potassium; IKCa, intermediate conductance calcium-activated K+ channels; SKCa,
small conductance calcium-activated K+ channels; BKCa, large conductance calcium-activated K+ channels; RyR, ryanodine receptors; SR, sarcoplasmic reticulum.
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The Involvement of NO/cGMP/KATP Pathway in
Gastroprotective Effects
HECr shows gastroprotective effects through non-specific
complexes, including activation of KATP channels, α2-
adrenergic receptors, and stimulation of PGs and NO
(Arunachalam et al., 2019). Recently, the efficacy of several
medicinal plants and possible mechanisms for the treatment of
peptic ulcer disease has been discussed (Ardalani et al., 2020).

One of the possible gastroprotective effects of medicinal plants
and their active constituents is via the NO/cGMP/KATP pathway
(Serafim et al., 2020). Endothelial nitric oxide synthase releases
NO. NO stimulates soluble guanylyl cyclase (sGC) and increases
cGMP in smooth muscle cells, opening the KATP channels (da
Silva Monteiro et al., 2019). The efflux of K+ blocks the voltage-
sensitive calcium channels, which relaxes the smooth muscle,
improves blood flow, and facilitates the healing process (Serafim

FIGURE 5 | Possible mechanism of the interaction of BCL with K+ channels in diabetes. Blockage of KATP channels in the cell membrane leads to depolarization of
the membrane and an increase in Ca2+ influx, resulting in exocytosis of insulin granules. ATP, adenosine Triphosphate; KATP, ATP-sensitive potassium channel; Ca++,
calcium; K+, potassium.

FIGURE 6 | Possible mechanism of the interaction of HECr with K+ channels in the gastrointestinal tract. The gastroprotective effect of HECr occurs non-specifically
through the activation of K+

ATP channels and α2-adrenergic receptors, and the stimulation of PGs and NO. The efflux of K+ blocks the voltage-sensitive calcium channels,
which relaxes the smooth muscle, improves blood flow, and facilitates the healing process. NO, nitric oxide; PGs, prostaglandins; K+, potassium; KATP, ATP-sensitive
potassium channel; α2-AR, alpha-2 adrenergic receptor.
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et al., 2020). PGs are another mediator that could activate the
KATP channels (Peskar et al., 2002).

Drugs that could open KATP channels can protect against
gastric and small intestine injury induced by ethanol or
indomethacin in animals (Akar et al., 1999; Peskar et al., 2002;
Menozzi et al., 2011). Since the activation of NO, KATP, and PGs,
apart from α2-adrenergic receptors, have gastroprotective effects
(Figure 6), it seems that the modulation of the NO/cGMP/KATP

signaling by medicinal plants should be considered as a novel
therapeutic target for the treatment of gastrointestinal ulcers.

The Involvement of the NO/cGMP/KATP Pathway for
Antimotility
Formiga et al. (2017) indicated that the NO/cGMP/KATP pathway
is involved in the inhibitory effect of ME on intestinal motility in
mice. However, the modulation of the adrenergic system by ME
should not be overlooked (Formiga et al., 2017). NO is an
inhibitory co-transmitter released from the enteric nervous
system. NO activates sGC, leading to the production of cGMP,
which in turn activates K+ channels (Matsuda and Miller, 2010;
Modzelewska et al., 2021). The expression of subunits Kir6.2/
SUR2B in KATP channels has been reported in the murine
colon (Koh et al., 1998; Currò, 2016). It has been shown that
the activation of KATP channels leads to resting membrane
potential in the colonic smooth muscle of some species (Currò,
2016). The important functional roles of the inwardly rectifying
type 6 K+ (Kir6) and KV1.2, 1.5, 2.2, 4.3, 7.4, and 11.1, and KCa1.1
and 2.3 channels were determined in the gastrointestinal smooth
muscle. Theoretically, activators of these channels may relax these
muscles, thereby promising a new therapeutic target for functional
gastrointestinal disorders (Currò, 2016). Hence, the activation of
the NO/cGMP/KATP pathway by medicinal plants could be

considered as a novel target for the treatment of motility
disorders in the gastrointestinal tract.

The Modulatory Effects of Medicinal Plants
or Their Active Constituents on K+ Channels
in the Cardiovascular System
We found two studies related to the cardioprotective and
hypotensive effects of polydatin and ESAH.

The Involvement of PKC-K+
ATP Signaling for

Antiischemic/Reperfusion Injury
The role of PKC-K+

ATP signaling was demonstrated by the finding
that 5-HD and two PK inhibitors reversed the cardioprotective
effect of polydatin in ischemia/reperfusion injury (Miao et al.,

FIGURE 7 | Possible mechanism of the interaction of polydatin with K+ channels in the cardiovascular system. PKC activates mitochondrial KATP channels possibly
leading to a partial depolarization of mitochondrial potential and reducing the mitochondrial calcium accumulation and inhibiting mitochondrial permeability transition.
PKC, protein kinase C; K+, potassium; Ca++, calcium; KATP, ATP-sensitive potassium channel; MPTP, mitochondrial permeability transition pore.

TABLE 3 | Assessment of risk of bias.

Study 1 2 3 4 5 6 7 8 9 10 Score

Adeyemi et al. (2018) ? + ? - ? ? ? + + + 4
Brandão et al. (2013) ? + ? - ? ? ? + + + 4
Ferdous et al. (2020) ? + ? - ? ? ? + + + 4
Islam et al. (2016) ? + ? + ? ? ? + + + 5
Khalid et al. (2011) ? + ? + + ? ? + + + 6
Shajib et al. (2018) ? + ? + ? ? ? + + + 5
Han et al. (2018) ? + ? + ? ? ? + + + 5
Adongo et al. (2017) ? + ? - ? ? ? + + + 4
Wu et al. (2011) ? - ? + ? ? ? + + + 4
Arunachalam et al. (2019) ? + ? - ? ? ? + + + 4
Formiga et al. (2017) ? + ? - ? ? ? + + + 4
Miao et al. (2011) ? - ? + ? ? ? + + + 4
Tirloni et al. (2017) ? + ? - ? ? ? + + + 4
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2011). The cardioprotective role of PKC has been reported in
ischemic preconditioning (Liu et al., 1996; Murata et al., 2001;
Perricone and Vander Heide, 2014; Foster and Coetzee, 2016).
PKC could activate mitochondrial KATP channels, possibly leading
to an increase in the resistance of mitochondria to mitochondrial
permeability transition (Perricone and Vander Heide, 2014). It has
been suggested that openingmitochondrial KATP channels partially
depolarizes the mitochondrial potential, leading to attenuation of
mitochondrial calcium accumulation in ischemia by decreasing the
overload of Ca2+ (Murata et al., 2001). A possible mechanism for
the interaction of polydatin with K+ channels in the cardiovascular
system is shown in Figure 7.

Involvement of NO/cGMP/K+ Channels for
Hypotensive Effects
Tirloni et al. (2017) showed that the hypotensive effect of ESAH is
linked to the involvement of NO/cGMP and K+ channels in
normotensive rats. The hypotensive effect of ESAH was
completely inhibited by L-NAME or methylene blue. Thus, it
seems that the NO/cGMP signaling also contributes to this effect.
However, it is not known how this extract increased endothelial NO
activity, which increased cGMP and, in turn, opened K+ channels.
Therefore, the trigger for NO release needs to be investigated.
However, it seems that the NO/cGMP/K channels could be a
new target in the treatment of hypertension (Tirloni et al., 2017).

Methodological Quality/Risk of Bias
The assessment of risk bias is shown in Table 3. Most studies
scored 4–6 in our validation. All papers have a low risk of bias for
the three domains of “incomplete outcome data,” “selective
outcome reporting,” and “other sources of bias.” “Baseline
characteristic” is observed with a low risk of bias in 11
publications (84.61%). “Random housing” was reported by six
publications (46.15%). However, we found that one study (7.69%)
had a low risk of bias in “blinding caregivers and/or
investigators”. Furthermore, RoB was unclear for “random
sequence generation,” “allocation concealment,” “random
outcome assessment,” and “blinding outcome” for 13 papers.

LIMITATIONS

This study represents the first systematic evaluation of preclinical
in vivo studies related to the effects of medicinal plants or
phytochemicals on different K+ channels. Among the screened
databases, only 13 studies met the inclusion criteria. We excluded

all in vitro or both in vivo and in vitro studies to measure the RoB
as the guideline of SYRCLE for animal intervention studies.
Another limitation is the lack of clinical studies on the
therapeutic role of herbal medicines in K+ channel-related
diseases. Furthermore, the interaction of herbal medicines and
their active constituents with several K+ channels was determined
in various organs with different functions. Hence, a meta-analysis
is not feasible because of the heterogeneity among these studies.

CONCLUSION

Dysregulation of K+ channels has been implicated in the
pathophysiology of cardiovascular, gastrointestinal,
neurological, and metabolic disorders. This is the first
systematic review to show the various biological effects of
medicinal plants and their constituents on hypotensive,
antiischemic, antidiarrheal, antispasmodic, anti-inflammatory,
antinociceptive, and hypoglycemic effects. These effects have
been linked to the modulation of the activity of KATP, SKCa,
BKCa, and K

+ channels via possible involvement of the NO/cGMP
pathway and PKC. Hence, K+ channels should be considered as
significant therapeutic milestones in the treatment of several
diseases. Future studies should focus on new technologies to
study phytochemicals or their active constituents that interact
with K+ channels to develop novel antinociceptive,
anticonvulsant, cardioprotective, gastroprotective, and anti-
ischemic therapeutics. We believe that this review will be a
reliable guide for the target development and drug design for
K+ channel-related disorders.
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