
Report
Use of machine learning to
 identify a T cell response
to SARS-CoV-2
Graphical Abstract
Highlights
d Machine learning can classify patient samples using their

T cell receptor sequences

d T cell receptor sequence analysis accurately identifies

recovered COVID-19 patients

d B cell receptor sequence analysis cannot identify recovered

COVID-19 patients

d This method may detect T cell responses acquired through

infection or vaccination
Shoukat et al., 2021, Cell Reports Medicine 2, 100192
February 16, 2021 ª 2021 The Authors.
https://doi.org/10.1016/j.xcrm.2021.100192
Authors

M. Saad Shoukat, Andrew D. Foers,

Stephen Woodmansey, Shelley C. Evans,

Anna Fowler, Elizabeth J. Soilleux

Correspondence
ejs17@cam.ac.uk

In Brief

To understand T cell responses to SARS-

CoV-2, Shoukat et al. analyze TCR beta

repertoire data from recovered COVID-19

patients and SARS-CoV-2 infection-naı̈ve

controls. Their machine learning

approach can classify samples with up to

96.4% training accuracy and 92.9%

testing accuracy. This method may

detect T-cell responses acquired through

natural infection or vaccination.
ll

mailto:ejs17@cam.ac.uk
https://doi.org/10.1016/j.xcrm.2021.100192
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2021.100192&domain=pdf


OPEN ACCESS

ll
Report

Use of machine learning to identify
a T cell response to SARS-CoV-2
M. Saad Shoukat,1,3 Andrew D. Foers,1,3 Stephen Woodmansey,1 Shelley C. Evans,1 Anna Fowler,2,4

and Elizabeth J. Soilleux1,4,5,*
1Department of Pathology, University of Cambridge, Cambridge, UK
2Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
3These authors contributed equally
4These authors contributed equally
5Lead contact

*Correspondence: ejs17@cam.ac.uk

https://doi.org/10.1016/j.xcrm.2021.100192
SUMMARY
The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell
responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered
patients who had low-severity disease (n = 17) and SARS-CoV-2 infection-naive (control) individuals (n =
39). Applying amachine learning approach to TCR beta (TRB) repertoire data, we can classify patient/control
samples with a training sensitivity, specificity, and accuracy of 88.2%, 100%, and 96.4% and a testing sensi-
tivity, specificity, and accuracy of 82.4%, 97.4%, and 92.9%, respectively. Interestingly, the same machine
learning approach cannot separate SARS-CoV-2 recovered from SARS-CoV-2 infection-naive individual
samples on the basis of B cell receptor (immunoglobulin heavy chain; IGH) repertoire data, suggesting
that the T cell response to SARS-CoV-2 may be more stereotyped and longer lived. Following validation in
larger cohorts, our methodmay be useful in detecting protective immunity acquired through natural infection
or in determining the longevity of vaccine-induced immunity.
INTRODUCTION

The identification of public SARS-CoV-2-specific T cell receptor

(TCR) sequences, that is those TCR sequences shared between

individuals who have recovered from the infection, is critical for

understanding T cell responses to SARS-CoV-2. A recent study

of T and B cell receptor (BCR) repertoires from coronavirus dis-

ease 2019 (COVID-19) patients demonstrated an association be-

tween TCR and BCR repertoire data and severity of disease.1

Datasets from this study provide opportunities to look for a

TCR/BCR signature of a SARS-CoV-2 adaptive immune

response in patients who have recovered, comparing their sam-

ples with those from SARS-CoV-2 infection-naive (control)

individuals as a first step toward identifying a signal that might

indicate that an individual has protective immunity to SARS-

CoV-2. Detection of such a signal could be useful in indicating

that an individual has developed protective immunity through

natural infection or in post-vaccination follow-up when consid-

ering the longevity of vaccine-induced immunity.

Until a safe and effective vaccine becomes widely available,

determining likely protective immunity to SARS-CoV-2 at an in-

dividual level is paramount2 both for healthcare personnel and

to enable wider society to return to a level of normality, with

attendant economic recovery. Immune status may be assessed

by testing for SARS-CoV-2-specific antibodies, although it re-

mains unclear whether the presence of antibodies confers
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robust SARS-CoV-2 protective immunity,3 and studies of other

human coronaviruses have demonstrated re-infection despite

the presence of virus-specific antibodies.4 Antibody decay, a

recognized phenomenon in response to other human coronavi-

ruses,5 occurs in post-COVID-19 patients.2,6 This is more com-

mon in individuals who experienced mild/asymptomatic infec-

tion and had low antibody titers in the early convalescent

period.7 Complete absence of a detectable antibody response

is also described in some individuals following mild/asymptom-

atic infection.8 Transient or absent humoral responses to

SARS-CoV-2 may be due to dysregulated induction of B cell re-

sponses, likely correlating with observations of ineffective dif-

ferentiation of T follicular helper cells and a reduction in

Bcl6+ germinal center B cell levels.9 Despite these poor humor-

al responses, recent studies reveal that seronegative individ-

uals with mild or no symptoms and seronegative but exposed

family members can produce a SARS-CoV-2-specific T cell

response.10,11 Longitudinal studies in other human coronavi-

ruses suggest virus-specific T cell responses are more

enduring than antibodies, persisting for at least 11 years.5,12

T cell analysis may therefore represent a longer lasting and

more sensitive means of evaluating immunity and might be

particularly important in individuals experiencing mild/asymp-

tomatic infection, who are less likely to have undergone RNA-

based testing for active viral infection2 and may have no

detectable antibodies to SARS-CoV-2.7,8
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Figure 1. Clustering method for sample classification on the basis of T or B cell receptor repertoires

(A) The nucleic acid sequence is first translated to amino acid sequences, and functional CDR3 regions are definedwithMiXCR. To take account of similar, but not

clonotypically identical, TCR sequences, the entire CDR3 sequence of each TCR is split into short overlapping segments of length k, designated kmers, where k =

3–9 amino acids. Because the same kmer occurring at substantially different positions within the CDR3 is likely to differ in its effect on antigen binding, we

positionally annotated kmers (start/middle/end) in the functional CDR3s. For example, the kmer sequence CARDR occurring toward the N terminus of a CDR3

sequence is regarded as distinct from the kmer sequence CARDR located toward the C terminus. In each patient sample, kmer frequencies are normalized and

the 1,000most frequent kmers are selected. Individual patient data are thenmerged into a single frequencymatrix. Principal-component analysis (PCA) is used to

reduce dimensionality while retaining major sources of variation, simplifying downstream computational steps. To classify samples, hierarchical clustering is

applied to a subset of the principal components (PCs); this iteratively groups together samples forming a dendrogram. Samples for which the true underlying

disease status is known are used to select optimal parameter sets, consisting of the value of k and the subsets of PCs, by means of a machine learning approach

(i.e., to train the model). Selection of the value of k and the subsets of PCs essentially constitutes the machine learning component. The optimal parameters

generate separate clusters for each immune state (i.e., SARS-CoV-2 recovered versus SARS-CoV-2 naive). For each kmer length, the first 10 PCs are considered

in all possible combinations. To test the model, a leave-one-out-cross-validation approach is used, where each sample is iteratively removed and reintroduced.

Upon reintroduction, the sample is blindly assessed as either a healthy or post-SARS-CoV-2 sample, based on which cluster it falls into.

(B) Analyzing the TRB data, a kmer length of 5 achieved greatest accuracy, with a top accuracy score of 96.4% (54/56 samples classified correctly). Here, 2 PC

combinations gave 96.4% accuracy, with PC subset 2, 3, 4, 7, and 8 giving the greatest separation between diagnostic groups, with the greatest vertical distance

(mutual reachability distance) between branches on the cluster plot. A range of other PC combinations also gave training classification accuracies >90% (not

shown), indicating the robustness of our approach.

(C) Bar chart for TRB data, demonstrating training accuracy, sensitivity, and specificity compared with testing accuracy, sensitivity, and specificity, produced

using the leave-one-out-cross-validation approach.

(D) Accuracy of best performing cluster analyses for TRB kmers of length 5 for 100 randomly labeled permutations of the patient data, giving amean best score of

40.6/56 or 72.5(±4.11 SD)% training accuracy across all permutations, compared to 54/56 (96.4%) for the training dataset (p = 0.01 using a permutation test).

(E) Analyzing the BCR (IGH) data, a kmer length of 3 achieved a maximum training accuracy of 41/55 (74.5%). Here, 2 PC combinations gave 74.5% accuracy,

with PC subset 7, 8, and 10 showing the greatest mutual reachability distance between diagnostic groups.

(legend continued on next page)
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A small number of studies have analyzed relatedness of TCR/

BCR repertoires to classify samples into groups correlating with

diagnosis,13 with machine learning approaches showing prom-

ise in this area.14 For example, Beshnova et al.15 demonstrated

that a deep-learning model applied to peripheral TCR repertoire

data can identify multiple cancer types with accuracies R95%.

Similarly, we recently demonstrated that machine-learning-

based analysis of TCR repertoires from duodenal gamma/delta

T cells can separate patients with celiac disease from controls

with R91% accuracy.16 We chose to investigate whether a

similar approach could identify individuals who had recovered

from SARS-CoV-2 infection.

RESULTS

To investigate whether TCR/BCR analysis can identify patients

with evidence of adaptive responses to SARS-CoV-2, we

passed repertoire data from Schultheiß et al.1 through our

TCR/BCR classification algorithm and compared samples from

SARS-CoV-2-recovered patients who had had low-severity dis-

ease (n = 17) with the SARS-CoV-2 infection-naive (control)

cohort (n = 39). Our classification approach is based on the hy-

pothesis that there are multiple related TCR/BCR sequences

with similar specificities capable of binding SARS-CoV-2 anti-

gens, permitting training of a machine learning algorithm to clus-

ter these samples together by analyzing the amino acid

sequence of the hypervariable part of the TCR/BCR complemen-

tarity determining region 3 (CDR3) (Figure 1A).17 To take account

of closely related sequences, we break the CDR3 sequences

into overlapping kmers (amino acid sequences of length k, range

3–9), label the kmers with their position within the CDR3

sequence (start/middle/end), and compile a matrix detailing fre-

quency of each kmer in each sample (Figure 1A). To focus on

kmers most likely involved in immune responses, only the

1,000 most frequent kmers in each sample were analyzed. To

decrease dimensionality of the data, we take principal compo-

nents (PCs) and perform hierarchical clustering on the basis of

these PCs, selecting the kmer length and PC combination that

gives the greatest clustering accuracy.

Applying our bioinformatic algorithm16 to Schultheiß’s TCR

beta (TRB) repertoire dataset, samples were classified with a

training sensitivity, specificity, and overall accuracy of 88.2%,

100%, and 96.4%, respectively (Figures 1B and 1C). Due to

the relatively small sizes of the cohorts (low-severity infection:

n = 17; uninfected: n = 39), wewere unable to use a fully indepen-

dent test cohort. We therefore undertook a leave-one-out-cross-

validation (LOOCV) approach, achieving a testing sensitivity,

specificity, and overall accuracy of 82.4%, 97.4%, and 92.9%,

respectively (Figure 1C).

We noted from the publication by Schultheiß et al.1 that the

samples could not be reliably separated by TRB clonality, Shan-

non diversity, or richness score. To further assess the robustness

of our result, we performed a permutation test in which we
(F) Bar chart for BCR data, demonstrating training accuracy, sensitivity, and spec

the leave-one-out-cross-validation approach.

(G) Accuracy of best performing cluster analyses for BCR kmers of length 3 for 100

42.0/55 (76.3 ± 3.14 SD%) training accuracy across all permutations, compared
randomly permuted the sample labels and attempted to sepa-

rate the random groups using our methodology, testing the

same range of parameters as we did for the true labels. In

each of the 100 random groups, we considered all combinations

of the first 10 PCs and recorded the maximum accuracy

achieved for each random group. This gave a mean maximum

accuracy score across all 100 permutations of 40.6/56 (72.5%;

range = 63.3%–82.1%), compared with 54/56 (96.4%) for the

training dataset (p < 0.01; permutation test; Figure 1D). We

applied the same methodology to the B cell repertoire (IGH) da-

tasets (Figures 1E–1G) and were not able to separate the two

groups by this means.

DISCUSSION

Here, we demonstrate successful application of a machine

learning method to the analysis of peripheral blood TCR

sequence data in order to separate a cohort on the basis of

whether or not individuals have previously had low-severity

SARS-CoV-2 infection. Our identification of a TCR/BCR signa-

ture of a SARS-CoV-2 adaptive immune response in patients

who have recovered, comparing their samples with those

from SARS-CoV-2 infection-naive (control) individuals, repre-

sents a first step toward identifying a signal that might indicate

that an individual has protective immunity to SARS-CoV-2. We

particularly focused on low severity, because it is individuals

who have recovered from asymptomatic or mildly symptomatic

SARS-CoV-2 infection who are least likely to undergo testing

for viral infection and thus least likely to know their immune

status.

Although our methodology was successful for the analysis of

TRB repertoire data (Figures 1A–1D), it could not separate the

cohort into SARS-CoV-2 recovered and SARS-CoV-2 infec-

tion-naive on the basis of BCR (IGH) repertoire data (Figures

1E–1G). This suggests a more stereotyped and possibly

longer-lived T cell response to SARS-CoV-2. This result is also

consistent with Schultheiß et al.’s observation of enriched

shared TCR compared with BCR motifs between SARS-CoV-2

recovered patients.1 Considering longevity of anti-coronavirus

T cell responses12 and anti-SARS-CoV-2 T cell, but not antibody

responses, in individuals with previous mild COVID-19,10 our

data indicate that analysis of TCR sequences, rather than sero-

logical assays, shows greater promise for identifying long-lived

SARS-CoV-2 adaptive immune responses. Although, in some

studies, T cell analysis in COVID-19 has been complicated by

cross-reactivity with T cell responses generated through expo-

sure to ‘‘common cold’’ coronaviruses,18,19 the ability of our

method to correctly classify SARS-CoV-2 infection-naive indi-

viduals suggests that any pre-existing T cell immunity to

endemic coronaviruses does not confound the SARS-CoV-2

specificity of our approach. Importantly, further studies of larger

cohorts are required to validate our findings and to investigate

the longevity of T cell immunity to SARS-CoV-2, as well as
ificity compared with test accuracy, sensitivity, and specificity, produced using

randomly labeled permutations of the patient data, giving amean best score of

to 41/55 (74.5%) for the training dataset (not significant.; permutation test).
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providing further insight into the relative importance of TCR and

antibody-mediated immunity to SARS-CoV-2.

In summary, we describe amachine learning approach to TCR

repertoire analysis that, when applied to a TRB dataset,1 can

accurately identify prior SARS-CoV-2 infection from long-lasting

TRB profiles. The Biomed-2 primer sets used for TCR amplifica-

tion in this study1 are already in clinical use for the diagnosis of

lymphoma and leukemia. Therefore, this method is amenable

to existing diagnostic pathways in fully accredited clinical labo-

ratories and could be rapidly scaled up, permitting the introduc-

tion of a novel test for immunity to SARS-CoV-2.

Limitations of study
This is a small and preliminary study, utilizing an analytical

approach that we have previously successfully applied to the

diagnosis of celiac disease using duodenal biopsy samples.16 A

larger dataset with separate training and test sets is required to

corroborate our findings. Such a dataset will ideally need to

have been generated using the same TCR/BCR repertoire

sequencing methodology, preferably in one or more separate

laboratories, to investigate the effect of laboratory-to-laboratory

variation in sequencing methodology. A subsequent study to

corroborate our findings using datasets produced with different

TCR/BCR repertoire sequencing methods is ideally required to

provide broader corroboration of the bioinformatic method. The

methodology also requires validation on additional datasets

drawn from different racial groups and/or individuals with

different HLA types, as these may confound the analysis. Finally,

the current study does not provide proof that the signal we iden-

tify is indicative ofprotective immunity, and individualswith aTCR

signal indicative of a T cell immune response to SARS-CoV-2, as

identified by our method, would need to be followed up to deter-

mine whether they can still become infected with SARS-CoV-2.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw sequence data Schultheiß et al.1 https://www.ebi.ac.uk/ena/browser/view/

PRJEB38339

Software and algorithms

MiXCR Bolotin et al.17 https://github.com/milaboratory/mixcr

In-house software written in R Statistical

Software (4.0.2)

Foers et al.16 https://doi.org/10.5281/zenodo.3964131;

27th July 2020
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Elizabeth

Soilleux (ejs17@cam.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This study did not generate any unique datasets. Raw FASTQ sequencing files, corresponding to the TRB and IGH genetic loci,

amplified by multiplexed PCR reactions (using BIOMED2-FR1 (IGH) or –TRB-A/ B primer pools), were obtained from the European

Nucleotide Archive (accession number: PRJEB38339; https://www.ebi.ac.uk/ena/browser/view/PRJEB38339) from a previous

study1. The source code, written in R Statistical Software (4.0.2), supporting the current study is available for research purposes,

upon request, from Zenodo (https://doi.org/10.5281/zenodo.3964131; 27th July 2020) without restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used publicly available T/ B cell receptor repertoire data, acquired from next-generation sequencing of blood sample-derived

DNA, from 17 recovered COVID-19 patients, who were described as having had mild disease courses, not requiring hospitalisation,

with 1 patient having been asymptomatic, (Schultheiß’s cohort 1) and 39 non-infected controls from this study1. The recovered pa-

tient cohort comprised 10males and 7 females and had amedian age of 34, but individual ages are not available to us. 1male patient,

in the 20-29 year age range had hypertension, but no other patients had health conditions known to increase individual risk from

SARS-CoV-2 infection. All available details regarding these cohorts can be found in the supplemental material associated with

the original publication of the datasets1.

METHOD DETAILS

ProductiveCDR3sequences, corresponding to themost variablepart of eachTCR/BCRsequence,wereobtained fromFASTQfileswith

MiXCR software17 using the amplicon command and default parameters. Within each sample, normalized frequencies for each unique

CDR3 amino acid sequence were calculated by dividing the CDR3 count by the sum of all productive CDR3 counts for the sample.

EachCDR3 amino acid sequencewas broken into its constituent overlapping kmers (amino acid strings of length k), for a range of k

of 3 – 9 amino acids, with kmers being positionally annotated as start, middle or end, to indicate which third of the parent CDR3

sequence contained the largest component of the kmer. Kmers with identical sequences, but occurring in different thirds of the

CDR3 region, were treated as non-identical, as described previously16. Individual kmer frequencies were assigned as per the fre-

quency of the parent CDR3 sequence and a matrix of kmer sequences and their total frequencies in each sample was generated

for each sample. The 1000 most frequent kmers in each patient sample were then selected for sample classification.

Sample classification was performed as previously described16. Briefly, kmer matrix dimensionality was reduced by principal

component analysis (PCA). For each value of k (3-9), combinations of the first 10 principal components (PCs) were assessed by hi-

erarchical clustering, permitting determination of the value of k and the combination of PCs that could separate SARS-CoV-2-recov-

ered patients from uninfected controls with greatest accuracy.
e1 Cell Reports Medicine 2, 100192, February 16, 2021
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Using the optimal value of k and optimal combination of PCs, as determined above, a leave-one-out-cross-validation approach was

implemented to calculate test accuracy, sensitivity and specificity. For leave-one-out-cross-validation, each sample was iteratively

removed and reintroduced. Upon reintroduction, the sample was blindly assessed as being either from a SARS-CoV-2-recovered

patient or from a SARS-CoV-2 infection-naive individual, based on which cluster it fell into, permitting calculation of test accuracy,

sensitivity and specificity. Since classifications were decided according to the majority in each cluster, when there were 2 clusters,

the minimum achievable accuracy in the permutation test was 50%, although in a small number of cases, in which samples segre-

gated into more than 2 clusters, the minimum accuracy could potentially be slightly lower.
Cell Reports Medicine 2, 100192, February 16, 2021 e2
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