
Prioritizing human cancer microRNAs based
on genes’ functional consistency between
microRNA and cancer
Xia Li1,*, Qianghu Wang1, Yan Zheng1, Sali Lv1, Shangwei Ning1, Jie Sun1,

Teng Huang1, Qifan Zheng2, Huan Ren2, Jin Xu2, Xishan Wang3 and Yixue Li1,4,*

1College of Bioinformatics Science and Technology, 2School of Fundamental Medical Sciences,
3Department of Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin, 150081 and
4Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences, Shanghai, 200031 China

Received May 8, 2011; Revised July 25, 2011; Accepted September 4, 2011

ABSTRACT

The identification of human cancer-related
microRNAs (miRNAs) is important for cancer
biology research. Although several identification
methods have achieved remarkable success, they
have overlooked the functional information
associated with miRNAs. We present a computa-
tional framework that can be used to prioritize
human cancer miRNAs by measuring the associ-
ation between cancer and miRNAs based on the
functional consistency score (FCS) of the miRNA
target genes and the cancer-related genes. This
approach proved successful in identifying the
validated cancer miRNAs for 11 common human
cancers with area under ROC curve (AUC) ranging
from 71.15% to 96.36%. The FCS method had a sig-
nificant advantage over miRNA differential expres-
sion analysis when identifying cancer-related
miRNAs with a fine regulatory mechanism, such as
miR-27a in colorectal cancer. Furthermore, a case
study examining thyroid cancer showed that the
FCS method can uncover novel cancer-related
miRNAs such as miR-27a/b, which were showed
significantly upregulated in thyroid cancer samples
by qRT-PCR analysis. Our method can be used on a
web-based server, CMP (cancer miRNA prioritiza-
tion) and is freely accessible at http://bioinfo.
hrbmu.edu.cn/CMP. This time- and cost-effective
computational framework can be a valuable com-
plement to experimental studies and can assist

with future studies of miRNA involvement in the
pathogenesis of cancers.

INTRODUCTION

MicroRNAs (MiRNAs) are small, non-coding RNA
molecules encoded in the genomes of animals. They are
important regulators of cell differentiation, proliferation/
growth, mobility and apoptosis in diverse cancer-related
biological processes (1–4). Accumulating evidence suggests
that the over-expression of several miRNAs increases
tumor formation; however, other miRNAs are consistent-
ly detected at very low levels in tumors and may have
tumor-suppressive effects (5–8). The identification of
miRNAs linked to cancer susceptibility is useful for
cancer diagnosis, prognosis, treatment and drug target dis-
covery (9–11).
Experimental methods have been used to identify the

relationship between cancers and miRNAs; methods
such as microarray profiling and qRT-PCR have
achieved remarkable success. Microarray profiling is a
high-throughput technique that can be used to systemat-
ically detect the differential expression of miRNAs in
cancer and control samples (12–15). However, the differ-
ent melting temperatures of short-length miRNAs and the
high sequence consistency between miRNA family
members can lead to false positive microarray results; in
addition, the probe design increases the cost of this tech-
nique (16–18). Therefore, the development of computa-
tional methods that use the abundant ‘omics’ data sets
of miRNAs to assess their relationship with specific
cancers is a valuable complement to experimental studies.
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Following the recognition of the crucial regulatory
functions of miRNAs, computational methods of identify-
ing cancer-related miRNAs have been widely applied to
cancer research as a powerful supplement to experimental
methods. Computational methods are mostly based on the
expression pattern of miRNAs in cancer (19,20) or on the
regulatory effects of miRNAs on cancer susceptibility
genes or protein products through pathways or functional
modules (21–23). However, factors such as false positive
miRNA targets, imperfect cancer miRNA profiles and
miRNA interaction or coregulation cascades may reduce
the efficiency of miRNA analysis. These studies suggest
that it is useful to systematically prioritize potentially
cancer-related miRNAs during experimental research.
Genes associated with the same or similar disorders will

share common cellular and functional characteristics
(24,25). The annotations in Gene Ontology (GO) reveal
this functional similarity. Likewise, if miRNAs are
associated with a similar regulatory pattern in the same
type of cancer, their target genes may share common func-
tional characteristics (26). Therefore, if miRNAs are
associated with a cancer, the miRNA targets must have
the same or a similar function as the cancer-related genes.
We present a novel method for quantifying and
prioritizing miRNAs related to specific cancers by using
the functional consistency between miRNA target genes
and cancer-related genes. This method is based on the
functional consistency score (FCS), which is calculated
by the semantic similarity measurement in the context of
functional categories. Various applications of semantic
similarity have been used for biomedical ontology
(27,28) such as GO (29), Disease Ontology (DO) (30)
and Human Phenotype Ontology (HPO) (31). These
have been demonstrated to be powerful tools for
validating biomedical results and for exploring the
molecular mechanisms of human disease (32), including
gene classification, gene function prediction, disease gene
inference and phenotype analysis of human disease. In this
article, a higher FCS revealed a high functional consist-
ency or closer relationship between the miRNA and the
cancer. We applied our method to 11 common human
cancers and ranked all of the candidate miRNAs accord-
ing to FCS. Our method had a significant advantage over
miRNA differential expression analysis in the identifica-
tion of cancer-related miRNAs with fine regulatory mech-
anisms. This method can be a valuable complement to
experimental studies used in future studies of miRNA in-
volvement in the pathogenesis of cancer.

MATERIALS AND METHODS

GOterm enrichment analysis

A gene product annotated on GO might be associated
with or located in one or more cellular compartments
(components). It is active in one or more biological
processes, during which it performs one or more molecu-
lar functions. Mutant phenotypes often reflect disruptions
in biological processes. Fisher’s exact test was used for
statistical and enrichment analysis of the GO biological
process categories. The miRNA target genes and cancer

genes were significantly annotated and the threshold of
Fisher’s P-value was selected to be 0.05. The GO annota-
tion definitions were imported from the January 2010
monthly release (http://archive.geneontology.org/full/
2010-01-01/). We implemented our analysis procedure in
the Biological Process categories with all annotations
(including IEA annotations).

MiRNA target gene sets and human cancer gene set

To minimize the false positives resulting from the compu-
tational prediction of miRNA targets and to build a
high-confidence resource for miRNA target analysis, the
strategy of integrate several miRNA target prediction
programs has been widely used (33–35). We chose
miRNA targets from the widely used target prediction
programs miRanda, PicTar4 and TargetScan. Only
target genes predicted by at least two of the programs
were accepted. This miRNA target integrating method
had been used before (36). We obtained a compiled
miRNA–mRNA data set containing 244 miRNAs and
43 558 miRNA target pairs. All of the integrated
miRNA target gene sets (MFCs) and the human
common cancer-related miRNA database can be down-
loaded from the ‘Supplementary Data’ or from http://
bioinfo.hrbmu.edu.cn/CMP.

The specific human cancer genes were downloaded from
the National Cancer Institute (NCI) with a unique disease
EVS ID. In this article, we only selected cancer genes with
evidence ID of EV-EXP-IDA, which means they have
been investigated and validated by direct experiments.
These data sets can be downloaded from the
‘Supplementary Data’ or from http://bioinfo.hrbmu.edu
.cn/CMP.

Calculating the FCS between miRNA and cancer

To calculate the FCS between a miRNA and cancer, we
measured the semantic similarity between the MFC G1

and the cancer gene set (CFC) G2 based on their signifi-
cantly enriched functional categories.

ICðtÞ ¼ � log pðtÞ ð1Þ

where pðtÞ is the number of genes annotated in category t
and its direct or indirect offspring is divided by the
number of annotations in the GO domain.

MICAðt1,t2Þ ¼ max
t2aðt1,t2Þ

ðICðtÞÞ ð2Þ

where aðt1,t2Þ represents the set of most informative
common ancestor categories of t1 and t2.

Sij ¼ simðti,tjÞ ¼
2MICAðti,tjÞ

ICðtiÞ+ICðtjÞ
, ti 2 T1, tj 2 T2 ð3Þ

where T1 and T2 indicate the significantly enriched
category sets of gene set G1 and gene set G2, respectively.

simðG1,G2Þ ¼

1=N
PN

i¼1

max
1�j�M

Sij+1=M
PM

j¼1

max
1�i�N

Sij

2
ð4Þ
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The first equation describes how to measure the infor-
mation content of a category. The second and third equa-
tions describe how to calculate the semantic similarity
between two categories. The fourth equation describes
the strategy for integrating the similarity between
categories to quantify the functional consistency of two
gene sets by the best-match average method. The
semantic similarity score between two gene sets is the
average of the best-fit column score and the best-fit row
score (37).

Our new approach took advantage of the term meas-
urement of Lin’s (38), and a detailed procedure chart is
shown in Figure 1. We chose Lin’s method because of its

superiority in its normalized outputs. We used Lin’s
semantic similarity measurement to calculate the function-
al consistency between miRNAs and cancer. The final
FCS scores are distributed from 0 to 1 (FCS 2 ½0,1�).
These normalized outputs facilitate users to identify and
prioritize the direct association between a candidate
miRNA and cancer. Furthermore, we cited other
semantic similarity measurements of SimGIC (39),
Resnik’s and Jiang’s, which had already proven to be ef-
fective in GO, and compare the efficiency of these meas-
urements. We calculated FCSs between miRNA targets
and colorectal cancer genes using SimGIC, Lin’s,
Resnik’s and Jiang’s, respectively. The performance of

Figure 1. If an miRNA is involved in a specific cancer, the miRNA target genes and the cancer-related genes would be associated with the same or
similar functions. The FCS can be used to quantify the association between miRNAs and a specific cancer. In the first step (STEP 1), cancer-related
genes are obtained from several cancer databases or experimental results. Next, functional enrichment analyses based on GO are performed on a
CFC and an MFC, and the significantly enriched functional categories of the CFC and MFC are obtained. In the second step (STEP 2), for the ith
miRNA, an FCS is calculated between MFCi and CFC using a semantic similarity measurement. FCSs can be determined for all the candidate
miRNAs. Higher FCS values reflect a closer relationship with the cancer.
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recalling known cancer miRNAs and correlation with dif-
ferential expression analysis are summarized in Sheet 1 of
Supplementary Table S3, more detailed information is
also listed in other sheets of Supplementary Table S3.

A compendium of validated cancer-related miRNAs

Rigorous evaluation of a prediction method requires a
‘gold standard’. In this study, we used a set of validated
miRNAs with known functions related to a certain can-
cer type. For each cancer type, the cancer-related miRNAs
were drawn from the mir2Disease database (http://www
.miR2Disease.org), which contains a compilation of
disease-related miRNAs identified by experiment-based
studies (40).

Evaluation of miRNA expression patterns

The corresponding miRNA expression profile GSE10259
with 281 human miRNAs was downloaded from GEO.
This profile contained 66 samples from 49 colorectal
cancer patients and one normal control; 59 of these 66
samples were cancer samples and 7 were normal
samples. A Student’s t-test was used to identify the differ-
entially expressed miRNAs between the cancer and
control samples in the microarray (10,15), and then each
miRNA was given a significant differential P-value.
The resulting list of 281 miRNAs was sorted according
to P-value. Seventy miRNAs were considered to be sig-
nificantly differentially expressed and had P-values lower
than a threshold of 0.01.

Cell lines and tissue samples

Human colorectal cancer cell lines SW1116, SW620,
HCT116, HT29 and LOVO were originally obtained
from the American Type Culture Collection. The cells
were maintained in Dulbecco’s Modified Eagle Medium
(Hyclone, USA) with 10% heat-inactivated fetal bovine
serum (Hyclone) and 1% penicillin/streptomycin in a
37�C and 5% CO2 atmosphere.
The tissue samples were collected at surgery from

patients who suffered from either colorectal adenocarcin-
oma cancer (T2N0M0 and T4N0M0) or papillary adeno-
carcinoma of the thyroid. Tumor tissue (0.5� 0.5�
0.5 cm) and normal tissue counterparts were collected as
a pair from each patient, immediately flash-frozen in
liquid nitrogen, and stored at �80�C. Peripheral blood
mononuclear cells (PBMCs) obtained from healthy men
and women were used as controls to compare selected
miRNA expression with the cancer cell lines. The study
was approved by the local ethics committee.

RNA isolation and quantitative real-time PCR

Total RNA was extracted from 1� 105 cells or 0.08 g of
the tissue sample with a MirVanaTM miRNA Isolation
kit. Next, 0.8 mg of the RNA was reverse transcribed into
cDNA with a TaqMan MiRNA Reverse Transcription kit
according to the manufacturer’s instructions. Then,
20 ml of the real-time PCR reaction was set up with
validated TaqMan probes and specific primers including
hsa-miR-20a, hsa-miR-20b, hsa-miR-27a, hsa-miR-27b,

hsa-miR-106b and snRNA U6 for each miRNA. The re-
actions were incubated in the ABI STEPONE Real-Time
PCR System (Applied Biosystems, Foster City, USA). The
real-time PCR reactions were performed in duplicate
and repeated three times. The threshold cycle (Ct) value
was determined by the default settings. An snRNA U6
was used as an endogenous control. We calculated the
relative expression of each selected miRNA (as the fold
change) in a cancer cell line or tumor tissue and compared
this expression to that in the PBMCs of healthy controls
or relevant normal tissue counterparts with the 2���Ct

method (41). All reagents and specific primers for each
miRNA were obtained from Applied Biosystems (Foster
City, USA) unless otherwise indicated.

RESULTS AND DISCUSSION

The FCS procedure

Previous studies have revealed that genes associated with
the same or similar disorders may participate in the same
cellular pathways, molecular complexes, or functional
ontologies (24,25). Within a specific cancer type, if
miRNAs are associated with a similar regulatory
pattern, their target genes may share common functional
characteristics (22,26). We assumed that if a miRNA is
involved in a specific cancer, the miRNA target genes
and the cancer-related genes would be associated with
the same or similar functions. Based on this assumption,
we used the FCS of the miRNA target genes and
cancer-related genes to quantify the association between
miRNAs and a specific cancer. We calculated the FCS by
using the large-scale gene product functional annotation
dataset and classic semantic similarity measurements. The
detailed steps are shown in the ‘Materials and Methods’
section and Figure 1. Our method can be used on the
web-based server CMP (cancer miRNA prioritization),
which is freely accessible at http://bioinfo.hrbmu.edu.cn/
CMP.

Performance of FCS

To assess whether the FCS method reflects a biological
relationship between miRNAs and cancer, we performed
a validation with the known cancer miRNAs obtained
from experimental data sets (see ‘Materials and
Methods’ section). For a specific human cancer, each of
the known miRNAs was taken as one test case. For each
test case, we generated 99 negative controls, and each of
the negative controls had the same target gene set size as
the test case. Next, we calculated the FCSs of the case
miRNA and the negative controls; we then ranked the
case miRNA together with the negative controls. When
the known cancer miRNA is prioritized as top 1, the em-
pirical P< 0.01, which is widely accepted as a strict sig-
nificant level. A similar performance method has been
used before (42).

According to the 100 randomization, we examined
whether known cancer miRNAs can be prioritized as
top 1 to produce an ROC curve. We tested 11 human
cancers and 655 miRNA–cancer associations. The
highest area under ROC curve (AUC) value of 96.36%
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was obtained with lymphoma cancer, and the lowest AUC
of 71.15% was obtained with thyroid cancer. We con-
ducted another performance analysis and generated 999
negative controls for each test case. Then, we examined
whether known cancer–miRNA can be prioritized as top
10. The AUC results of both the 100 randomization
and 1000 randomization are shown in Supplementary
Table S1. The results suggest that our FCS method can
successfully recover known miRNA–cancer associations
(Figure 2).

For each cancer, we tested the recall rate by analyzing
the top-ranked list. If the known cancer miRNA was

ranked in the top 10, the prediction was considered to
be successful. The performance precision is defined as
the recall rate of the top 10. Supplementary Table S1
lists all of the recall numbers of these 11 cancer miRNAs.

FCS versus miRNA differential expression analysis

To further demonstrate the advantage of the FCS method
in identifying cancer miRNAs, we compared the colorectal
cancer miRNA ranked lists from the FCS and differential
expression analyses (DEA). The differential expression
values of colorectal cancer genes were calculated using

Figure 2. AUC analysis of known cancer miRNAs predicted at top 1. These figures showed 1-specificity versus sensitivity when considering the
miRNAs predicted at top 1 varied with the FCS threshold.
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Student’s t-test. Each gene was given a significant P-value
and ranked by –log(P)-value. The overlap of these two
lists included 216 miRNAs, and the resulting list of
244 miRNAs sorted by FCS is shown in Supplementary
Table S2. We then calculated the correlation coefficient
between the FCS scored list and the –log(P)-value list by
DEA. We observed that miRNAs with higher FCS values
tended to have lower P-values, and the correlation coeffi-
cient between the FCS and DEA was 0.1835, with a sig-
nificance level of P< 0.0069 (Supplementary Table S2).
In particular, among the top 10 miRNAs with the
highest FCSs (Table 1), 7 miRNAs were already experi-
mentally verified and the other 3 miRNAs were prioritized
as candidate colorectal cancer miRNAs. Six of the
seven known cancer miRNAs were significantly and
differentially expressed with P< 0.001. In addition, hsa-
miR-20b, which was not a known cancer miRNA,
had a very high functional consistency with colorectal
cancer (FCS=0.83062) and was significantly

downregulated with an average of 2���CT< 0.047 in five
colorectal cancer cell lines as determined by qRT-PCR
(Supplementary Table S3). This method has a high pre-
diction coincidence with the expression profile analysis,
and the high differentially expressed miRNAs tend to be
prioritized at the top of the FCS list.

Previous studies have revealed that miRNAs may act as
fine-tuning regulators and that subtle changes in miRNA
expression can regulate gene functions (43,44). These im-
portant deregulating cancer miRNAs may be neglected by
DEA. For example, hsa-miR-27a, which is known to be
an oncogenic regulator in colorectal cancer cells, is a
target for the anticancer agent CDODA-Me and regulates
the zinc-finger protein ZBTB10 and the oncogenic protein
Sp1. However, we discovered subtle differential expression
by microarray analysis (P> 0.1) and a non-significant dif-
ferential expression pattern by qRT-PCR analysis in five
colorectal cancer cell lines with an average 2���CT> 0.79
(Supplementary Table S3). In this case, hsa-miR-27a is
neglected by DEA but can be prioritized by the high
FCS of 0.84334. Enrichment analysis reviewed that FCS
better distinguished cancer miRNAs and non-cancer
miRNAs in different significant intervals, especially
P> 0.0001 (Figure 3). Therefore, the FCS method was
more efficient than DEA in identifying cancer-related
miRNAs with a fine regulatory mechanism.

Case study: thyroid cancer

To demonstrate the ability of FCS to uncover known
cancer miRNAs and predict novel susceptibility candi-
dates, we present a case study of thyroid cancer.
Thyroid cancer mostly originates from the epidermal
cells of thyroid follicles and is one of the few malignancies
that is increasing in incidence (45,46). Many researchers

Figure 3. Different distributions of expression significance and FCS values between cancer miRNAs and non-cancer miRNAs. The formula is
enrichment=108/(rank) for an interval of 216 miRNAs. The mean enrichment reflects the position of the cancer miRNAs in the prioritized list.
FCS can distinguish cancer miRNAs and non-cancer miRNAs where cancer miRNAs are always enriched at the top positions at different expression
significant levels. By contrast, expression analysis confused these two types of miRNAs.

Table 1. FCS ranked list of the top 10 candidate colorectal cancer

miRNAs

miRNA FCS Rank with FCS P-value of DEA

hsa-miR-20a 0.84500 1 8.59E–07
hsa-miR-106b 0.84499 2 1.69E–08
hsa-miR-27a 0.84334 3 1.80E–01
hsa-miR-27b 0.84222 4 8.44E–03
hsa-miR-20b 0.83062 5 NA
hsa-miR-17-5p 0.83058 6 1.27E–10
hsa-miR-128a 0.83007 7 3.67E–01
hsa-miR-141 0.81952 8 6.02E–04
hsa-miR-153 0.81644 9 2.89E–01
hsa-miR-30a-5p 0.81204 10 2.29E–05
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have demonstrated that miRNAs play an important role
in thyroid cancers. Here, we provide a comprehensive pre-
diction of new thyroid cancer-related miRNAs.

First, we extracted 350 thyroid cancer-related genes
from NCI (http://www.cancer.gov/) (see ‘Materials and
Methods’ section). Next, we calculated the FCSs of 244
candidate miRNAs with thyroid cancer genes, and
compared the known thyroid cancer miRNAs with the
unknown cancer miRNAs in the FCS-ranked list.

We discovered that 10% of the known thyroid cancer
miRNAs have FCS values >0.8, and 83.33% of the

known thyroid cancer miRNAs have FCS values> 0.7
(Figure 4). The distribution of FCSs between thyroid
cancer miRNAs and unknown cancer miRNAs is signifi-
cantly different (P< 3.24e–005 on the Kruskal–Wallis
test).
The top 10 miRNAs in the FCS ranked list included

miR-20a/b, miR-106b, miR-27a/b and miR-30c/e-5p,
and these miRNAs were predicted to be novel thyroid
cancer miRNAs (Table 2). Among these novel miRNAs,
some proto-oncogenic miRNAs such as miR-20a and
miR-17-5p are members of the miR-17-92 intronic
miRNA cluster on chr13. Moreover, miR-106b is a
member of the miR-106b-25 cluster. The miR-17-92
cluster plays an oncogenic role in anaplastic thyroid
cancer cells (47). Previous research revealed that the trans-
forming growth factor-beta (TGFb) tumor suppressor
pathway is under the inactivation control of the
miR-106b-25/miR-17-92 clusters; this pathway plays a
major role in the development of a variety of human
tumors (48,49). For the same derived transcript, the onco-
genic properties of the host gene MCM7 could be linked
to the host miR-106b-25 cluster, and members of the
miR-106b family have a crucial effect on the cell-cycle
progression by regulating P21/CDKN1A (50,51). We
also evaluated the expression level of miR-27a and
miR-27b in thyroid cancer by conducting qRT-PCR ex-
periments in two cancer samples. The fold changes were
calculated by the 2���CT method; miR-27a and miR-27b
showed a significant upregulated expression pattern in
thyroid cancer tissues with average 2���CT values of
2.20 and 2.15 (Supplementary Table S3), respectively.
These results demonstrate that the method described in

Table 2. The top 10 prioritized thyroid cancer miRNAs in the FCS ranked list

miRNA FCS Functional description References

hsa-miR-20aa 0.85164 B-cell lymphoma, breast cancer, CML, HCC, lung
cancer, medulloblastoma, pulmonary hypertension

Inomata M, et al. (52),Yu Z, et al. (53), Venturinin
L, et al. (54), Connolly E, et al. (55), Matsubara
H, et al. (56), Northcott PA, et al. (57), Brock M,
et al. (58)

hsa-miR-106ba 0.85073 Alzheimer’s disease, CLL, gastric cancer, HCC,
multiple myeloma

Hébert SS, et al. (59), Sampath D, et al. (60), Kim
YK, et al. (61), Li Y, et al. (62), Pichiorri F, et al.
(63)

hsa-miR-17-5pb 0.83800 ATC, breast cancer, CML, HCC, lung cancer,
MYC-rearranged lymphoma, NB, pulmonary
hypertension, Sezary syndrome

Takakura S, et al. (47), Yu Z, et al. (53), Venturini
L, et al. (54), Connolly E, et al. (55), Matsubara
H, et al. (56), Tagawa H, et al. (64), Fontana L,
et al. (65), Brock M, et al. (58), Ballabio E, et al.
(66)

hsa-miR-20ba 0.83752 T-cell lymphoma Landais S, et al. (67)
hsa-miR-27ac 0.82441 Breast cancer, gastric cancer, HCC Guttilla IK, et al. (68), Liu T, et al. (69), Huang S,

et al. (70)
hsa-miR-27bc 0.82194 ALL, AML, colorectal cancer Mi S, et al. (71), Xi Y, et al. (72),
hsa-miR-30a-5pb 0.80958 ATC, cardiac hypertropy, colorectal cancer Visone R, et al. (73), Sayed D, et al. (74), Arndt

GM, et al. (75)
hsa-miR-30e-5pa 0.80916 Bladder cancer, DMD, HNSCC Wang G, et al. (76), Eisenberg I, et al. (77), Hebert

C, et al. (78)
hsa-miR-30ca 0.80743 Bladder cancer, cardiac hypertropy, colorectal cancer Wang G, et al. (76), Sayed D, et al. (74), Arndt GM,

et al. (75)
hsa-miR-30db 0.80684 AML, ATC, cardiac hypertrophy, CLL Dixon-McIver A, et al. (79), Visone R, et al. (73),

Marton S, et al. (80), Sayed D, et al. (74)

aMost updated cancer-related miRNAs prioritized in the top 10.
bKnown thyroid cancer miRNAs prioritized in the top 10.
cUnknown cancer miRNAs prioritized in the top 10.

Figure 4. Distributions of FCSs of thyroid cancer miRNAs and other
miRNAs (93.3% of known thyroid cancer miRNAs have FCSs> 0.70).
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this article is powerful not only in capturing known cancer
miRNAs but also in prioritizing novel cancer miRNAs
not yet detected by other methods.
In this study, we used a systematic approach for

prioritizing candidate cancer miRNAs based on the func-
tional consistency between miRNA target genes and
cancer-related genes. Our method integrated large-scale
functional information from GO biological process
branches and combined miRNA targets and cancer-
related genes. Our approach is useful in many respects
and has many advantages for research on cancer
miRNAs. The FCS-based prioritized miRNA ranked list
is ready for experimental verification and is a cost-effective
and time-saving method; it is a powerful supplement for
experimental research on miRNAs. In summary, our com-
putational approach is a systematic biological method
and is useful for cancer diagnosis, treatment, and prog-
nosis and miRNA-related drug research in cancer
pharmacology.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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