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High-throughput RNA sequencing (RNA-seq) promises to revolutionize our understanding of genes and their role in
human disease by characterizing the RNA content of tissues and cells. The realization of this promise, however, is con-
ditional on the development of effective computational methods for the identification and quantification of transcripts
from incomplete and noisy data. In this article, we introduce iReckon, a method for simultaneous determination of the
isoforms and estimation of their abundances. Our probabilistic approach incorporates multiple biological and technical
phenomena, including novel isoforms, intron retention, unspliced pre-mRNA, PCR amplification biases, and multimapped
reads. iReckon utilizes regularized expectation-maximization to accurately estimate the abundances of known and novel
isoforms. Our results on simulated and real data demonstrate a superior ability to discover novel isoforms with a signifi-
cantly reduced number of false-positive predictions, and our abundance accuracy prediction outmatches that of other
state-of-the-art tools. Furthermore, we have applied iReckon to two cancer transcriptome data sets, a triple-negative breast
cancer patient sample and the MCF7 breast cancer cell line, and show that iReckon is able to reconstruct the complex
splicing changes that were not previously identified. QT-PCR validations of the isoforms detected in the MCF7 cell line
confirmed all of iReckon’s predictions and also showed strong agreement (r2 = 0.94) with the predicted abundances.

[Supplemental material is available for this article.]

Accurate methods for RNA-seq data analysis are proving essential

for characterization of gene regulation and function, as well as

understanding development and disease (Lopezbigas et al. 2005;

Kim et al. 2008; Wang et al. 2009). The plethora of alternative

isoforms present for many human genes significantly extend the

repertoire of proteins, and this source of variation has been linked

to human disorders, including cancer (Shah et al. 2012). The iden-

tification of the full set of transcripts present in a tissue, especially

those present at low abundance, remains challenging. Tran-

scriptome analysis from RNA-seq data typically involves solving

two subproblems:

1. Identification of the set of isoforms present in the data, and

2. Estimation of the abundance of these isoforms.

The first problem is challenging due to the incomplete nature

of RNA-seq data, with only two (paired) short reads generated from

each fragment of RNA. The second problem is complicated by the

plethora of sequencing biases present within a typical RNA-seq

data set, including base content and location within the isoform,

as well as PCR amplification bias, which results in multiple reads

generated from a single original fragment.

Some of the earlier methods for RNA-seq analysis addressed

either the identification or the quantification problem. For

identification, methods such as TopHat (Trapnell et al. 2009) and

MapSplice (Wang et al. 2010) align raw sequencing reads to the

genome in ways that allow for the discovery of novel isoforms

and identification of alternative and aberrant splicing events.

For quantification, early methods simply counted the number of

fragments mapping to each input isoform to compute its abun-

dance. However, recent methods have significantly improved on

this and have allowed for the correction of many systematic

biases. One such problem is the interdependence of the assign-

ment of reads to isoforms and the expression of the genes. While

the assignment of a read to an isoform clearly changes the

abundance prediction of this isoform, the converse is also true:

The likelihood that a read was drawn from a particular isoform is

proportional to its expression. This problem can be elegantly

solved by using the expectation-maximization (EM) algorithm as

previously shown in Nicolae et al. (2011) and Li et al. (2010).

Here, reads are assigned to isoforms based on an initial estimate of

each isoform’s abundance, and the estimates are recomputed

based on the reads. This process is iterated until it converges. One

drawback of the EM-based approaches is overfitting: All isoforms

provided to the program are assigned a (possibly very low)

abundance, even if they are not expressed.

To prevent overfitting, some approaches, like Cufflinks

(Trapnell et al. 2010), rely on parsimony and identify the minimum

set of isoforms necessary to explain the observed read data and

then reconstruct their abundance. Alternatively, RQuant (Bohnert

and Rätsch 2010) uses regularized quadratic optimization to cor-

rect for various sequencing biases in the more global coverage
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signal. One recent approach (Feng et al. 2011) identified the im-

portance of solving the two problems simultaneously. Indeed, ac-

curate estimation of isoform abundance is extremely difficult if

not all isoforms are known, as the read pairs generated from un-

identified isoforms can affect the quantity estimation of known

ones. Abundance estimation can be used to inform isoform re-

construction: Incoherent abundances likely indicate that some

isoforms were missed by the reconstruction stage. In this context,

IsoInfer/IsoLasso (W Li et al. 2011) was the first tool to simulta-

neously solve both identification and quantification problems by

computing a large set of possible isoforms and then using LASSO

(Tibshirani 1996) to select a subset of these that best explain the

observed abundances.

In this article, we present iReckon, an algorithm for simul-

taneous isoform reconstruction and abundance estimation. To

our knowledge, our method is the first to combine maximum

likelihood–based abundance estimation with analysis of a large

number of feasible isoforms in order to allow for novel isoform

detection. While the large number of parameters would typically

lead to overfitting, our method is based on the regularized EM

algorithm (Li et al. 2005) with a novel, nonlinear regularization

penalty to eliminate isoforms with marginal support. This allows

for the quantification and discovery of novel isoforms even with

very low expression. To speed up this algorithm, we introduce

several computational heuristics. Additionally, our method is the

first to directly model several biological and technical phenomena,

including the presence of unspliced pre-mRNA, intron retention,

and PCR amplification bias. Supplemental Figure S1 summarizes the

key features of iReckon and compares these to other popular tools.

We have evaluated the performance of iReckon using both

simulated data, with a known ground truth, and using several real

Illumina RNA-seq data sets, where we explore the method’s ability

to recapitulate previously known human transcripts. Additionally,

we apply our method to two cancer transcriptomes and demon-

strate its ability to discover complex splicing patterns (confirmed

by QT-PCR) that are missed by other methods.

Results
In this section, we first present a brief outline of the iReckon algo-

rithm, with additional details presented in the Methods section. We

then evaluate the performance of iReckon on both simulated and

real RNA-seq data and compare it to three popular existing algo-

rithms, Cufflinks (Trapnell et al. 2010), SLIDE (J Li et al. 2011), and

IsoLasso (W Li et al. 2011). Finally, we use iReckon to explore the

transcriptomes of two breast cancer data sets—a patient sample re-

cently sequenced at the BC Genome Sciences Center (Shah et al.

2012) and the MCF7 cell line (accession no. SRX040504) (Sun et al.

2011).

iReckon algorithm overview

The iReckon workflow consists of three stages: (1) the identifica-

tion of all possible isoforms, (2) realignment of reads to these iso-

forms, and (3) the reconstruction of abundances of every putative

isoform. iReckon then reports isoforms with positive abundances.

These three steps are overviewed within the next three subsections.

Subsequently, we describe a visualization tool for transcriptomic

data that we have developed for use with iReckon or any similar

method. The details of the methods and models are described in

the Methods section, as are the running time and memory re-

quirements of iReckon.

Reconstruction of possible isoforms

The first step of iReckon is the identification of isoforms possibly

present within the sequenced sample. While iReckon will accept

a set of annotations, we also align all of the reads to the genome

using an algorithm that allows for split-mapping. We used TopHat

(Trapnell et al. 2009) for this task, though another tool could

be used instead. The alignments and the known isoforms are used

to generate the set of all observed and known splice junctions,

which in turn are used to construct splicing graphs (Heber et al.

2002) that represent the isoforms possibly present within the

sample. Note that the information about splice junctions can

help us determine most alternative splicing events (exon skip-

ping, alternative donor/acceptor sites, etc.), except intron re-

tention, which is discussed in Isoforms Reconstruction Model

Extensions in the Methods section. For each graph, we then

enumerate all paths from each of the possible transcription start

sites to the end sites. Each such path corresponds to an isoform,

and we further add isoforms corresponding to pre-mRNA and any

putative intron retention events detected by our intron retention

statistical model (see Isoforms Reconstruction Model Extensions).

The total number of paths through the splicing graph can po-

tentially be extremely large. In such rare cases, we prioritize the

splice sites based on the number of reads split-mapped across each

site and select up to 100,000 paths through the graph with the

highest support.

Realigning the reads

For each putative isoform, we extract its corresponding DNA se-

quence and realign the paired reads to the set of all possible iso-

forms. This step allows for the direct (without splitting) alignment

of each read and allows us to use more sensitive alignment tools,

resulting in having more reads correctly aligned. This step also

corrects for coverage biases near exon junctions due to alignment

difficulty. Note that each read pair can align not just to multiple

isoforms within a gene but also to multiple genes. Each pair is

assigned an initial affinity for each isoform to which it was aligned.

This affinity is based on the alignment score and the inferred insert

length (for details, see Alignments and Resulting Optimizations).

Isoform selection and abundances estimation

Finally, we simultaneously determine the set of isoforms present in

the data and estimate their abundances by using a regularized EM

algorithm on the set of possible isoforms. The standard EM algo-

rithm iteratively estimates the abundance of each isoform based on

the read pairs currently assigned to it, and then reallocates the pairs

to isoforms based on both alignment scores and the isoforms’ es-

timated expression levels. Because the allocation of reads to iso-

forms depends on their expression, the process needs to be iterated

multiple times until it converges. The standard EM algorithm

would assign most isoforms a positive (though possibly very low)

abundance. However, this is likely to lead to inaccuracies, espe-

cially in our case, as iReckon considers the space of all possible

isoforms, with most not expected to be present in the sample.

To balance between maximizing the likelihood of the data

and the simplicity (number of isoforms) in the model, we intro-

duce a regularization penalty. While the ideal objective would

be to directly penalize the number of isoforms (or parameters;

L0-norm) (McLachlan and Peel 2000), optimizing such an ob-

jective is computationally intractable, so the sum of the param-

eters (L1-norm, or LASSO) is commonly used as a regularizer.

However, as we explain in the Regularized EM Algorithm section
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in the Methods, this is not appropriate for abundances, so we

introduce a novel regularization penalty based on a concave

function. We also extend the standard EM algorithm to properly

handle PCR duplicates (see Accounting for PCR Duplicates). The

isoforms with positive estimated abundances at the convergence

of the regularized EM are considered present in the sample and are

reported by the algorithm.

Visualization

We have found visualization of the RNA-seq data essential during

the development of our method and validation of novel isoforms,

as well as an effective way to evaluate the tool’s performance. To

enable effective visualization we have developed an RNA-seq anal-

ysis plug-in within the Savant Genome Browser (Fiume et al. 2010,

2012). The RNA-seq Analyzer plug-in displays the reads aligned

to the genome, computes for each read the probabilities of iso-

form of origin (these are visualized by coloring the reads), and

visualizes the coverage signal for each isoform. A local version of

iReckon is also implemented within the plugin and allows iso-

forms reconstruction and abundances estimation from the reads’

alignments to a single selected gene. Figure 1 displays the in-

terface of this plugin, which can be downloaded from http://

savantbrowser.com.

Performance comparison on simulated data

Since there is no ground truth for any real transcriptomic data set,

simulating realistic RNA-seq data is a standard method for com-

paring RNA-seq tools. We generated an RNA-seq data set based on

known human isoforms, while also introducing various alternative

splicing events (see RNA-seq Data Simulation) and utilized it to

quantify the performance of iReckon and three other programs

that perform both isoform abundance estimation and novel tran-

script discovery: Cufflinks, IsoLasso, and SLIDE. We aligned the

simulated data with TopHat and gave the four methods the library

of all known human isoforms to use as a guide. To compare the

methods, we evaluate their recall (TP/(TP + FN); fraction of true

isoforms, known or novel, identified by the method), precision

(TP/(TP + FP); fraction of reported isoforms, known or novel,

that are correct), as well as abundance estimation accuracy. To

compute these measures, we consider transcripts with positive

abundance reported by each method. We separate isoforms into

high, medium, and low abundance, based on the simulated iso-

form abundance as a fraction of the total simulated data (>10�3,

10�3 > x > 5310�5, and <5310�5, respectively). These three

classes make up 5%, 69%, and 26% of all isoforms. In these re-

sults, we did not consider isoforms corresponding to unspliced

pre-mRNA as this is only discovered and estimated by iReckon.

Figure 1. Screen shot of Savant transcriptome analysis plug-in (RNA-seq Analyzer). (A) Track for the reference genome. (B) Track visualizing aligned
reads, with the color representing their isoform of origin probabilities. (C ) Known isoform annotation from UCSC. (D) The estimated coverage signal for
the various isoforms detected by iReckon. If two RNA-seq data sets are loaded, one can also view differences between abundances of each isoform in the
two data sets. Note that the blue isoform has an intron retention event (middle). Because this isoform corresponds to a non-negligible fraction of the
overall gene expression level, the failure to identify this event may lead to inaccuracy in quantifying the other isoforms. Additionally, iReckon identifies and
quantifies the canonical isoform (in red), the pre-mRNA (in yellow,) and an additional isoform with an alternative donor site (in green). (E) An alternative
view of the relative isoform abundances and proportions of reads assigned to each isoform are provided via pie charts. In B and E, black reads are those that
could not be assigned to any detected isoforms.

iReckon: Isoform discovery and abundance estimation
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Figure 2A shows a comparison of the four methods at isoform

discovery. iReckon achieves the highest recall and precision.

Figure 2B demonstrates the method’s ability to identify isoforms

depending on their level of expression. While all methods perform

better at high-abundance isoforms than low-abundance ones,

iReckon’s performance degrades the least of the four methods.

Notably, iReckon’s recall for novel low-abundance isoforms is three

times that of the other methods (solid section of the bar). This is

likely due to the fact that iReckon uses efficient regularization and

that isoforms with unambiguous evidence in the data are still

reported, even at low abundance. In contrast, all other methods

filter out isoforms using abundance thresholds. To compare the

power of the different methods at discovering novel isoforms, in

Figure 2C, the recall and precision are computed by only consid-

ering novel isoforms (novel simulated and novel found). iReckon’s

precision is ;200% higher and its recall is 50% higher than other

methods of identifying novel isoforms from RNA-seq data.

To evaluate the abundance estimation accuracy of each

method, we compared the predicted isoform abundance of each

correctly identified isoform to its true (simulated) abundance. We

computed, for each isoform, the abundance error as the ratio

between the true and predicted abundance estimates, larger over

smaller. Figure 3A demonstrates the abundance estimation ac-

curacy for each of the four methods depending on the error

threshold. Here iReckon clearly outperforms Cufflinks, SLIDE,

and IsoLasso across all three abundance classes and for all error

thresholds. The full data are presented as scatterplots in Sup-

plemental Figure S11. In terms of median per-isoform abun-

dance deviation (deviation = error � 100%), iReckon outperformed

the other methods on high-, medium-, and low-abundance classes

with 8%, 14%, and 48% median deviation, respectively. Cufflinks,

the second-best method overall, had 18%, 20%, and 70% median

deviation on the same classes, and SLIDE has a median deviation

of 11% on the fewer high-abundance isoforms it discovers. iRe-

ckon thus demonstrated a significantly better global accuracy than

Cufflinks (P-value of 8.06 3 10�18, Wilcoxon signed rank test). Box

plots associated with these results are presented in Supplemental

Figure S12.

Figure 3B shows each method’s recall based on the abundance

estimation error. In this case, an isoform is not considered pre-

dicted correctly if its abundance is misestimated beyond the given

error threshold. Here iReckon also greatly outperforms the other

methods, due to both its better overall recall and its higher abun-

dance accuracy.

Performance comparison with Illumina BodyMap2 RNA-seq
data

To further test the ability of iReckon to identify novel isoforms in

real RNA-seq data, we used an Illumina BodyMap2 muscle tran-

scriptome data set (NCBI SRA accession ERR030876), which con-

sisted of ;82 3 106 pairs of 50 bp-long reads. Starting with the

36,796 RefSeq human transcripts we left out 7842 random iso-

forms to be used for testing, while the remaining 28,242 isoforms

were provided to the RNA-seq analysis methods. While there are

novel isoforms that are present in any tissue, overall we expect a

large fraction of true transcripts within the RNA pool to be known.

To evaluate each of the methods, we computed precision as the

ratio of the previously known isoforms identified by each tool to all

of its predictions, and recall as the fraction of the left-out isoforms

that were predicted as present by each method. The results are

summarized in Figure 4A.

Overall, Cufflinks and SLIDE respectively identified 69,186

and 19,602 isoforms from the RNA-seq data, of which 17,072 and

5137 were known human transcripts (precision = 0.25 and 0.26).

IsoLasso identified 81,086 transcripts, of which only 4514 were

Figure 2. Ability of the different methods to discover simulated isoforms. Simulation contains 2533 known isoforms (provided to the methods) and
1006 novel isoforms (811 exon skips, 195 intron retentions). (A) Overall precision and recall for discovering simulated isoforms (known + novel). (B) Recall
for isoforms based on level of expression. (Hashed bars) Proportion of known isoforms; (solid bars) novel isoforms. While Cufflinks slightly outperforms
iReckon on discovery of known isoforms with high abundance, the results on low-abundance isoforms are reversed, and iReckon outperforms the other
methods at identification of all novel isoforms (size of solid sections of bars). (C ) Precision and recall for discovery of novel isoforms, as well as recall specific
to different types of alternative splicing simulated.
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known, corresponding to a precision of 0.06. iReckon, demon-

strated the highest precision (0.58), identifying 26,848 isoforms,

of which 15,623 were known. The 8554 isoforms that were not

provided to the tools were then used to evaluate the recall of

various algorithms at predicting novel isoforms. Note that we

do not expect all of these 7842 to be expressed within this

sample; however, an overall higher recall (at equal precision) is

indicative of better performance. iReckon identified 827 of these

isoforms (recall = 0.11) as present in the sample, followed by

Cufflinks with 771 (recall = 0.10), IsoLasso with 443 (recall =

0.06), and SLIDE with 207 (recall = 0.03). To further understand

the types of isoforms that are rediscovered by each method, we

plotted the number of rediscovered isoforms at each abundance

level (Fig. 4B). While the distributions are similar overall, iReckon

has the highest number of low-abundance isoforms, including

being the only method that predicts more than a handful of novel

isoforms with reads per kilobase per million mapped reads

(RPKM) < 10�2 and three times as many isoforms with RPKM <

10�1 as any other method.

Currently, iReckon does not predict novel start/end sites for

isoforms; however, it can accept a set of known start/end sites as

additional input. To evaluate the extent to which adding the

ability to predict novel start/end sites may improve performance,

we used the isoform start and end points that were predicted

by Cufflinks as input to iReckon. By use of this data, iReckon

reported 29,527 isoforms, of which 16031 are known (precision =

0.54), while rediscovering 1084 left-out isoforms (recall = 0.14).

Applications of iReckon to cancer transcriptomes

After validating the performance of iReckon on both simulated

and real data, we used it to evaluate the splicing patterns in two

cancer transcriptomes, especially to validate the method’s ability

to identify intron retention events. The two transcriptomes we

consider are a triple-negative breast cancer (TNBC) patient sample

recently sequenced at the BC Genome Sciences Center (Shah et al.

2012) and the MCF7 cell line (NCBI SRA accession SRX040504)

(Sun et al. 2011). For comparative purposes, we also ran iReckon on

additional data sets from the Illumina BodyMap2 data set, in-

cluding muscle, brain, leukocytes, and breast. First, we evaluated

the total amount of expressed pre-mRNA and intron retention

identified in the various data sets, as well as the total number of

novel isoforms (Table 1). While the total amount of intron re-

tention or number of novel isoforms does not vary in a consistent

fashion, the total amount of pre-mRNA observed was higher in

the cancer transcriptome than in healthy tissues. This is generally

supported by previous literature indicating overall inefficient

splicing in some subtypes of cancer (Yoshida et al. 2011); however,

variation in experimental protocols, cell subtypes, and inter-

individual variation cannot be easily excluded either.

In the following sections, we consider two intron retention

events that have previously been reported in the cancer tran-

scriptomes: the last intron of the NPC2 gene in the MCF7 cell line

(Singh et al. 2011) and the seventh intron of the TP53 in the TNBC

sample (Shah et al. 2012).

Figure 3. Abundance estimation accuracy and isoform detection recall depending on the acceptable error threshold. (A) Abundance estimation
accuracy for correctly predicted isoforms. The three plots show the fraction of correctly estimated isoforms depending on the acceptable error rate
(isoforms with error above threshold have incorrect abundances) for high-, medium-, and low-abundance isoforms. While performance is best for high-
abundance isoforms for all methods, iReckon outperforms other methods for all three categories and regardless of the error threshold. (B) Isoform
detection recall depending on the acceptable error rate (isoforms with error above the threshold are considered ‘‘not predicted’’). iReckon outperforms the
other methods, especially for low-abundance isoforms.

iReckon: Isoform discovery and abundance estimation
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MCF7 transcriptome

In the study of Singh et al. (2011), the investigators identified and

validated an intron retention event as well as an exon skipping

event in the NPC2 gene. By running iReckon on this data set, we

were able to detect both of these events, each of which is present

in high abundance. RNA-seq reads alignment visualization with

Savant and iReckon plugin (Fig. 5) confirms the findings. Fur-

thermore, iReckon identified two additional alternative donor

sites, leading to two novel isoforms: one alternative site within the

exon, and one in the downstream intron. By use of the visualiza-

tion plugin, we also detected a previously unknown single nucle-

otide variant (SNV) in the first nucleotide of the intron’s donor site,

changing the canonical GT to AT. The intron retention, the exon

skipping, or the two alternative donor sites were not present in the

TNBC data sets or in the Illumina healthy breast data set, and none

of the events were found in the NCBI EST library. Thus, it is likely

that the disruption of the canonical donor site of the last intron of

the NPC2 gene results in several types of noncanonical splicing,

including the following:

1. Intron entirely retained, resulting in an aberrant isoform;

2. Use of an alternative intra-exonic donor site 9 nucleotides (nt)

upstream, resulting in the deletion of three amino acids from

the coding region;

3. Use of an alternative donor site 16 nt downstream, resulting in

an out-of-frame aberrant isoform; and

4. The skipping of the whole exon preceding the disrupted donor

site, indicating that the splicing machinery failed because of

unsuccessful exon recognition, rather than intron recognition

(Berget 1995). The resulting mRNA product is also out-of-frame.

Table 2 presents the abundances of each of these isoforms, as

well as the number of reads that can be uniquely assigned to each

isoform.

To validate iReckon’s results, we performed QT-PCR with

primers designed to detect each of the four isoforms (as well as the

canonical one). All four isoforms were confirmed by QT-PCR, while

the abundances observed closely matched those predicted by

iReckon (see Table 2; r2 = 0.94). The homozygous SNP that we

detected disrupting the donor splice site (Fig. 5) was also confirmed

by Sanger sequencing. For comparative purposes, we also ran

Cufflinks and IsoLasso on this data set (we encountered technical

issues with SLIDE) and noted that each of these methods missed

two out of four novel isoforms (and predicted no additional ones).

TNBC transcriptome

While the MCF7 cell line consists exclusively of tumor cells, the

TNBC transcriptome was taken from a patient biopsy and thus

consists of a mixture of healthy and tumor material. Previously,

Shah et al. (2012) uncovered a mutation in the acceptor site of

intron 7 of TP53, mutating the canonical AG to GG and observed

a correlated increase in the retention of the subsequent intron

(computed using Miso) (Katz et al. 2010). The initial interpretation

was that the mutation led to mis-splicing of the intron, leading to

its retention.

We evaluated this data set with iReckon and, surprisingly, did

not predict the retention of intron 7. Instead, our method reported

a significant presence of pre-mRNA, an alternative acceptor site

used 19 bp downstream, as well as complete skipping of exon 8. All

three of these events were found only in the TNBC data set and not

in the healthy Illumina BodyMap2 breast or the MCF7 sample.

These isoforms are shown in Figure 6.

Figure 4. (A) The precision of the four methods at identifying known genes and their recall for discovering novel (hidden) isoforms from Illumina RNA-
seq data. (B) Histogram of the abundances of hidden isoforms (re-)discovered by each method. The x-axis units are log (RPKM).

Table 1. Expression of pre-mRNA and isoforms with retained
introns, and the number of novel transcripts in Illumina BodyMap2
healthy muscle, brain, leukocyte, and breast tissues, as well as
a triple-negative breast cancer biopsy and the MCF7 cell line

Muscle Brain Leukocytes Breast TNBC MCF7

Pre-mRNA 3,392 6,101 2,855 5,131 7,556 7,777
Intron retention 7,469 10,552 10,791 8,443 9,858 9,227
No. of novel

isoforms
15,598 23,606 14,027 20,131 18,685 24,787

The expression units are RPKM.

Mezlini et al.
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These results show that the consequences of a mutated ac-

ceptor site disruption are more complex than simply retaining the

intron, and include the following:

1. An alternative intra-exonic acceptor site 19 nt downstream

from the canonical site being used, creating an out of frame

aberrant isoform.

2. The acceptor site of the next intron being used, resulting in

exon skipping. The skipped exon length is not a multiple of

three and creates an out of frame aberrant isoform.

3. The entire splicing mechanism becomes disrupted or slowed,

resulting in the large abundance of partially spliced pre-mRNA

with all four final introns retained in the transcript. If we con-

sider the isoform corresponding to pre-mRNA and divide it into

three segments, corresponding to in-

trons 1–6, intron 7, and introns 8–10,

the abundance estimates for these are

0.3, 2.4, and 2.5 RPKM, respectively.

The coverage of the last four introns is

thus consistent with disruption of

splicing after the mutation, rather than

the retention of a single intron.

Table 3 summarizes the abundances

of these isoforms and the number of

reads unambiguously mapped to each. All

three events were only seen in the TNBC

data set with this specific mutation and

not in healthy breast or the MCF7 cell

line. We expect TP53 mutations in TNBC

to be early events in the evolutionary history of the tumor and

therefore to be present in all (or the majority of) cells; however, the

presence of multiple isoforms could result from either multiple

aberrant transcripts within each cell, or the presence of multiple

clonal populations in the sample. The relative quantity of TP53

pre-mRNA was higher in TNBC than in healthy breast and MCF7

(5.7% vs. 0.9% and 1.6% of the gene expression, respectively). Fi-

nally both the alternative acceptor site and the exon skipping

event have not been previously reported in the NCBI EST library.

Discussion
In this article, we introduce iReckon, a method for simultaneous

isoform discovery and abundance estimation. iReckon models

Table 2. Summary of detected isoforms of NPC2 in the MCF7 data set

iReckon results Relative abundances

Isoform
Abundance

(RPKM) Evidence iReckon QT-PCR Cufflinks isoLasso

Intron 4 retention 47.9 >200 38% 37% 0% 30%
Exon 4 skipping 51.7 120 41% 35% 37% 70%
Alternative donor site within exon 4 6.3 19 5% 13% 0% 0%
Alternative donor site within intron 4 20.1 41 16% 15% 63% 0%
Canonical (NM_006432) 0 0 0% 0% 0% 0%

Evidence is the number of read pairs (not counting duplicates) uniquely mappable to the corre-
sponding isoform and no other found isoform. The four last columns are the relative abundances within
the NPC2 gene measured by iReckon, QT-PCR, Cufflinks, and IsoLasso.

Figure 5. Screen shot of Savant displaying a segment of the NPC2 gene in the MCF7 data set. (Red isoform) Exon skipping; (blue) intron retention;
(green and yellow) contain the two alternative donor sites. The purple isoform with low expression is the pre-mRNA.
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important biological phenomena such as intron retention and the

presence of pre-mRNA. Our method generates a large set of possi-

ble isoforms and then utilizes a regularized EM algorithm to select

expressed isoforms from these. Due to this particular approach and

to the modeling of several RNA-seq artifacts (multimapping reads,

PCR duplicates, biases) and biological mechanisms (pre-mRNA,

intron retention), iReckon outperforms three popular current

methods—Cufflinks, IsoLasso, and SLIDE—at both the identifica-

tion of novel isoforms and the estimation of isoform abundances.

We utilized iReckon to analyze the complexity of splicing profiles

generated by the disruption of two canonical splice sites in a TNBC

patient biopsy sample and the MCF7 cell line. In particular, we

observed three or more different aberrant isoforms generated for

both genes considered. The observed complexity of the splicing

landscape raises important questions about the mechanisms in-

volved and may lead to a better understanding of the underlying

biology. The ability of iReckon to identify intron retention and pre-

mRNA abundance may allow for novel biological discovery, for

example, the pre-mRNA signal can be used to discern splicing or-

der, as introns that are spliced-out later will be overrepresented in

the pre-mRNA. Similarly, the analysis of intron retention can help

uncover somatic mutations in cancer by identifying genes prone to

aberrant splicing.

Finally we want to note that while iReckon outperforms other

tools, there is still significant room for improvement. Even with

simulated data, the top competing methods achieved overall recall

of 62%, compared with 74% for iReckon; however, the numbers

dropped significantly when one considers only novel isoforms: to

41% and 58%, respectively. Thus, nearly half of all novel isoforms

are not being identified. Several steps can be taken to further im-

prove the performance of iReckon. Perhaps the most important

one is incorporation of sequencing biases, including those based

on sequence content (e.g., GC rate) and location of a read within

an isoform. Additional improvements can be achieved by directly

modeling a wider variety of biological events. One such event,

which may prove to be especially challenging, is the identification

and abundance estimation of fusion genes. The performance of

iReckon will also improve with development of better split-read

mapping algorithms. Many of iReckon’s false-negative isoforms

Figure 6. Savant screen shot showing healthy breast (from Illumina BodyMap2) and triple-negative breast cancer RNA-seq data. The third and fourth
tracks display the aligned reads from healthy and cancer tissue, respectively, with the colors representing the isoform of origin. (Red isoform) Canonical
annotated isoform. Its presence may be due to healthy cells biopsied together with the tumor. (Green isoform) Pre-mRNA (or partially spliced RNA);
(blue) contains the alternative acceptor site; (yellow) skips the next exon (to the left since the transcript is on the reverse strand). We can also see the single
nucleotide variant (SNV) that disrupted the acceptor site of the intron.

Table 3. Detected isoforms of gene TP53 in a TNBC data set

Isoform
Abundance

(RPKM) Evidence
Gene

proportion

Pre-mRNA (partially spliced) 0.8 >100 5.7%
Alternative acceptor site

within exon 8
2.2 18 15.2%

Exon 8 skipping 0.9 5 5.9%
Canonical (NM_000546) 10.6 25 73.1%

Evidence is the number of read pairs (not counting duplicates) uniquely
mappable to the corresponding isoform and no other found isoform.
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in the simulation experiments (especially unidentified exon-skip-

ping) were caused by splice junctions undiscovered by the initial

alignment step.

Methods

Isoform reconstruction model extensions
In addition to modeling novel isoforms via paths in the splicing
graph, as described in the Results section, iReckon also allows for
two additional types of isoforms: pre-mRNA and isoforms with
a retained intron.

Incorporating pre-mRNA

In real RNA-seq data, we observed that ;1% � 30% of the RNA
content for each gene can be due to unspliced pre-mRNA. While
the exact percentage will vary due to gene regulation and sequence
content, it is clear that treating pre-mRNA as noise can bias the
results by leading to overestimation of isoform abundances (since
some of the reads originally coming from pre-mRNA will be as-
signed to other isoforms) and can further complicate isoform
reconstruction due to reads mapping across splice sites and into
introns. To address this problem we add the complete pre-mRNA as
a potential isoform for each gene predicted from the original re-
construction. This (unspliced) isoform’s abundance is computed in
the exact same manner as that of all other isoforms. Because these
isoforms are only reported by our method, we do not consider
these when evaluating the accuracy of the various tools.

Intron retention model

Incomplete pre-mRNA splicing can lead to intron retention events,
where certain introns remain within mRNA that has undergone
splicing. Transcripts with unspliced introns may affect cell func-
tion due to malformed proteins or haplo-insufficiency. Such intron
retention events have been shown to play a role in certain cancers
(Skotheim and Nees 2007; Kim et al. 2008; He et al. 2009). Note
that intron retention cannot be accurately estimated if we do not
take pre-mRNA into account, as reads from introns can be ex-
plained by either unspliced mRNA or intron retention.

We consider the null hypothesis H0, that there is no intron
retention, and all reads within introns come from unspliced pre-
mRNA. To compute the P-value, we start by estimating the pre-
mRNA abundance as the average coverage of introns. The isoform
coverage signal at a nucleotide can be modeled by a Poisson(l)
distribution with the Poisson parameter being the average cov-
erage (read locations are often modeled as Poisson variables, and
the sum of Poisson variables is also Poisson). We compute the
l parameter for the pre-mRNA of each gene and reject the null
hypothesis and detect an intron retention if an intron’s coverage
is statistically unlikely to be generated from the pre-mRNA
(P-value < 10�4). Intron retention is a relatively rare event, so to
reduce the computational complexity, iReckon considers only
the one intron with the lowest P-value retained per gene. If
we detect intron retention within a gene, we generate, for each
isoform, a novel putative isoform with the corresponding intron
retained within the mRNA and pass all these isoforms to the
regularized EM algorithm.

Alignments and resulting optimizations

After constructing the set of all possible isoforms, we store their
sequences in a transcriptome reference file (as opposed to a ge-
nome reference). We then use Burrows-Wheeler alignment (BWA)
(Li and Durbin 2009) to align all the reads to the transcriptome,

and from the possible alignments, we can compute read-isoform
affinities for the nth read pair and the ith isoform as

An;i = Q n; ið Þ � L length n; ið Þð Þ; ð1Þ

where Q(n, i) is the mapping probability of the nth pair to the ith
isoform computed from the alignment scores, L is the probability
density function of the fragment length distribution within our
RNA-seq experiment, and length(n,i) is the length of the fragment
corresponding to the nth read pair if it originated from the ith
isoform. These affinities are related to the compatibilities of Li et al.
(2010) and Nicolae et al. (2011). The probability that the nth read
pair, which aligns to the set of isoforms Sn, comes from the specific
isoform of index i, of normalized abundance ui is computed as
follows:

P Zn;i = 1
� �

=
An;i � ui

+j2Sn
An; j � uj

: ð2Þ

Zni is an indicator latent variable that is one if read pair n was
generated from isoform i, and zero otherwise, and its expected
value is E[Zni] = P(Zn,i = 1).

Additionally, to improve the running time of the subsequent
step, we separate all isoforms into independent groups, such that
no read is mapped to isoforms in more than one group. Each of
these groups can be processed separately by the regularized EM
algorithm presented next, allowing for simple parallelizations
and reducing memory usage. To further optimize the algorithm,
we cluster the reads by their affinity signature. All the reads that
align to the same subset of isoforms with very similar relative read–
isoform affinities are clustered together and assigned to isoforms as
a single entity, so that our algorithm only considers the affinities
and cardinality of each cluster, instead of evaluating each read
independently. We use a simple greedy clustering algorithm that
unifies all pairs within a fixed distance of the center of the cluster.
This heuristic has no observed influence over the performance of
iReckon (recall, precision, quantification accuracy) while greatly
improving its speed and reducing its memory usage. For clarity
of presentation, we consider each read pair separately in the for-
mulae below.

Regularized EM algorithm

Our method is an extension of previous EM-based approaches for
transcript quantification (Li et al. 2010; Nicolae et al. 2011). The
likelihood function for transcript abundance estimation with
multimapped reads is very similar to the one introduced by Li et al.
(2010):

logP r; zjuð Þ= +
N

n =1

+
M

i =1

zn;i � log
ui

li
� P rnjiso = ið Þ

� �
: ð3Þ

Here r = (r1, r2,. . ., rN) is the set of read-pairs and l = (l1, l2,. . ., lM),
u = (u1, u2,. . ., uM) are, respectively, the lengths and abundances
of the isoforms. zn,i is the value of the Zn,i latent indicator variable
(see Equation 2). Finally, P(rn|iso = i) is the probability that the read
rn is sampled from isoform i, and is constant with respect to the
abundances u.

As discussed previously, this algorithm may suffer from over-
fitting. Because not all isoforms are expressed in a given sample,
this problem is present even if only known isoforms are consid-
ered (Nicolae et al. 2011) and is exacerbated if the algorithm
considers putative novel isoforms, most of which are likely to
be false positives (Feng et al. 2011). Additional (unmodeled)
biases and noise in the RNA-seq data further confound this, as
extraneous predictors (isoforms) will be used to fit the noise and
biases to increase the overall likelihood. Because our algorithm
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considers all plausible isoforms, it becomes crucial to introduce
efficient regularization to remove false-positive isoforms by driv-
ing their expression to zero.

While the L1 penalty is commonly used as a solution to
overfitting (e.g., Tibshirani 1996), it is not appropriate for abun-
dance estimation. Because isoform abundances (in RPKM) are sim-
ilar to normalized frequencies, they have positivity constraints as
well as a fixed sum (see definition of RPKM):

+
i

ui � li = C;0 # ui 8i: ð4Þ

The constant C is discussed in section 5 of the Supplemental
Information. The regularization term minimized by LASSO is the
sum of the abundances. However this term is tightly constrained,
because abundances are very similar to frequencies. This type of
regularization is not adequate in the hyperplane of the u vari-
ables (described by the constraints). In order to reduce the
number of nonzero abundances and thus avoid overfitting, we
use a nonlinear function of the abundances in the penalty term.
We have chosen the regularization penalty �l � e+i

ffiffiffi
ui

4
p

for its ef-
ficiency in giving sparse solutions (the fourth root is steep near
zero) and its fast convergence speed. The specific shape of the
function heavily penalizes low-abundance isoforms, while the
penalty for high-abundance ones is lower. Adding regularization
to the EM algorithm requires changes to the M step, as we
can no longer directly solve the maximization problem. Hence
we use a limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) (Zhu et al. 1997) optimization algorithm for the M step,
and because the objective function is no longer concave, we
utilize random restarts to allow the EM algorithm to more fully
explore the search space. The regularization rate l is set so that
most read pairs have affinity to an isoform with positive abun-
dance. To do so, we iteratively increase lambda using pro-
gressively smaller steps until growing it any further would result
in >0.01% of all reads not being assigned to an expressed isoform.
We compared the performance using our regularization term,
LASSO, and not doing regularization at all, and show that LASSO
is inappropriate, while our method outperforms not doing reg-
ularization for most genes (see section 3 of the Supplemental
Information).

The log-likelihood function that we optimize through the
regularized EM algorithm is as follows:

Objective uð Þ= logP r; z j uð Þ � l � e+i

ffiffiffi
ui

4
p

+ coherenceScore uð Þ; ð5Þ

where the first term is the data log-likelihood described above
(with modifications to account for PCR Duplicates, described in
the next section) and the second term is the regularization penalty.
The third term (coherence score) is described fully in section 4 of
the Supplemental Information. It is an additional parameter that
allows the algorithm to further differentiate between multiple so-
lutions with nearly identical likelihoods (for a full description of
the isoform reconstruction ambiguity problem, see Lacroix et al.
2008). Because the regularization term deforms the final solution
(abundances tend to become lower), our implementation contains
a second step where we re-run the EM algorithm without regula-
rization using only the isoforms with positive abundance in the
optimal solution of Equation 5.

Accounting for PCR duplicates

Multiple rounds of PCR during the RNA-seq experiment can lead to
multiple identical read pairs being generated from the same frag-
ment. Either systematically removing or keeping all duplicates will
bias the results. For example, in highly expressed genes, the ob-
served duplicate reads may be natural duplicates (read pairs with

identical locations generated from independent fragments), and
removing them will cause underestimation of abundances. We
estimate, for each read, its likelihood of being a PCR duplicate and
use this probability in the objective function of the EM algorithm
presented earlier (Equation 3).

First, we compute for each isoform the number of expected
natural duplicates. Given an isoform with a known length l and
abundance a, one can estimate the number of read pairs w that will
be generated from this isoform. We treat w as the number of samples
(fragments) drawn from the isoform. We estimate the probability
pf of a specific fragment f based on the isoform length, the fragment
length distribution, and any biases (normalizing so that the prob-
abilities of the different possible fragments sum to 1). The number of
occurrences Xf of that particular fragment f is modeled by a binomial
distribution B(w, pf), which can be approximated by the Poisson (w 3

pf) distribution since w is usually large (>20) and pf is very small
(<0.01). The number of duplicates of f is represented by the random
variable Yf = max{0, Xf� 1} corresponding to one ‘‘original read’’ and
Xf � 1 copies. Yf has the expected value

E Yf

� �
= pf �w + e�pf �w � 1: ð6Þ

The derivation of this equation is presented in the Supplemental
Information. The total expected number of natural duplicates is
the sum of the expectations over the possible fragments:

Nb Natural = +
l

s =1

+
f2Fs

E Yf

� �
; ð7Þ

where Fs is the set of fragments starting at position s that can
possibly be originated from the studied isoform.

For each read rn, we now calculate the probability P(dn = 1),
dn being the indicator variable that is zero when the read is a
PCR duplicate. For the ith isoform, let Nb_Copiesi be the observed
number of duplicates and Nb_Naturali the number of expected
natural duplicates (computed in Equation 7). Then

P dn = 1ð Þ = minf+i2Sn
E Zni½ ��Nb Naturali

+i2Sn
E Zni½ ��Nb Copiesi

if the nth read is a copy

1 if the nth read is unique

(
;

ð8Þ

where Sn is the set of isoforms the read rn aligns to, and E[Zni] is the
alignment probability based on Equation 2. The EM likelihood
function presented earlier (Equation 3) can thus be updated to
properly account for PCR duplicates by adding the indicator vari-
able dn:

log P r; z; d j uð Þ= +
n;i

dn � zni � log
ui

li
� P rn j iso = ið Þ

� �
: ð9Þ

Because small changes in abundances do not significantly affect
duplicate estimation, we do not need to update the E[dn] proba-
bilities at every iteration of the EM algorithm. For efficiency, we
update these only when the abundances have changed signifi-
cantly from their previous values.

RNA-seq data simulation

To simulate a realistic data set with known ground truth, we ran-
domly selected 75% of the multi-exonic isoforms of the UCSC
refGene data set to study and, for each of these, generated a set of
alternative splicing events: exon skipping and intron retention.
Each exon had 10% chance to be skipped, and the skipping could
be extended to the following exons with 30% probability per
exon, while each intron was retained with 1.8% probability. These
probabilities were adjusted based on the number of exons in the
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gene and based on the number of alternative isoforms already
simulated. We then selected multiple random subsets of all events
to be implanted in the original isoform. Finally, we add to this set
of isoforms the pre-mRNAs of all studied genes.

This set of isoforms is then given to FluxSimulator (The
FluxProject 2011), which randomly orders these and picks an
abundance for each following a mixed power/exponential law.
The parameters from the law were chosen so that the range of the
isoforms’ expression is 104 (the highest abundance over the lowest).
While FluxSimulator assigned a random abundance to the pre-
mRNA, we adjusted this to 10% of the initial value to correspond to
the expected low abundance of such isoforms. FluxSimulator was
then used to simulate RNA-seq read pairs from these isoforms in
a manner that reproduces in silico the experimental pipelines for
RNA-seq, making the simulated data sets as realistic as possible.

The results presented here are obtained from a simulation
with 1615 genes, 8 million read pairs, and 3539 isoforms, of which
30% are novel (pre-mRNAs are not counted). We also conducted
three additional simulations with slightly different parameters
(number of reads, proportion of novel isoforms, etc.), but no sig-
nificant change was observed in the results of the comparison
between iReckon and the other methods (data not shown).

Program performance

iReckon required 22 h to complete on the Illumina BodyMap2
muscle data set (contains ;82 3 106 pairs of 50-bp-long reads),
using an eight-core machine with 32-GB RAM (the actual memory
usage maxed at ;9 GB) and 80 GB of local storage. The largest
component of the running time (10 h) is the alignment of reads to
isoforms using BWA.

Software availability

iReckon is available both as a standalone package (open source),
which can be downloaded from http://compbio.cs.toronto.edu/
ireckon, and as a plugin for the Savant Genome Browser (Fiume
et al. 2010, 2012), which enables running iReckon on individual
genes in real-time.
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