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Abstract

Despite increased understanding about psoriasis pathophysiology, currently there is a lack

of predictive computational models. We developed a personalisable ordinary differential

equations model of human epidermis and psoriasis that incorporates immune cells and cyto-

kine stimuli to regulate the transition between two stable steady states of clinically healthy

(non-lesional) and disease (lesional psoriasis, plaque) skin. In line with experimental data,

an immune stimulus initiated transition from healthy skin to psoriasis and apoptosis of

immune and epidermal cells induced by UVB phototherapy returned the epidermis back to

the healthy state. Notably, our model was able to distinguish disease flares. The flexibility of

our model permitted the development of a patient-specific “UVB sensitivity” parameter that

reflected subject-specific sensitivity to apoptosis and enabled simulation of individual

patients’ clinical response trajectory. In a prospective clinical study of 94 patients, serial

individual UVB doses and clinical response (Psoriasis Area Severity Index) values collected

over the first three weeks of UVB therapy informed estimation of the “UVB sensitivity”

parameter and the prediction of individual patient outcome at the end of phototherapy. An

important advance of our model is its potential for direct clinical application through early

assessment of response to UVB therapy, and for individualised optimisation of phototherapy

regimes to improve clinical outcome. Additionally by incorporating the complex interaction of

immune cells and epidermal keratinocytes, our model provides a basis to study and predict

outcomes to biologic therapies in psoriasis.

Author summary

We present a new computer model for psoriasis, an immune-mediated disabling skin dis-

ease which presents with red, raised scaly plaques that can appear over the whole body.

Psoriasis affects millions of people in the UK alone and causes significant impairment to
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quality of life, and currently has no cure. Only a few treatments (including UVB photo-

therapy) can induce temporary remission. Despite our increased understanding about

psoriasis, treatments are still given on a ‘trial and error’ basis and there are no reliable

computer models that can a) elucidate the mechanisms behind psoriasis onset or flare and

b) predict a patient’s response to a course of treatment (e.g., phototherapy) and the likeli-

hood of inducing a period of remission. Our computer model addresses both these needs.

First, it explicitly describes the interaction between the immune system and skin cells. Sec-

ond, our model captures response to therapy at the individual patient level and enables

personalised prediction of clinical outcomes. Notably, our model also supports prediction

of amending individual UVB phototherapy regimes based on the patient’s initial response

that include for example personalised delivery schedules (i.e., 3x weekly vs. 5x weekly pho-

totherapy). Therefore, our work is a crucial step towards precision medicine for psoriasis

treatment.

1 Introduction

Psoriasis vulgaris is a systemic immune-mediated inflammatory disease characterised by

immune cell infiltration, keratinocyte hyperproliferation (up to an eight-fold increase in epi-

dermal cell turnover) [1] and tortuosity of dermal blood vessels. Psoriasis is common (affecting

1–2% of “Western populations”) and manifests itself as red scaly plaques distributed over the

whole skin, causing significant disability and impairment to quality of life [2]. As well as being

associated with inflammatory arthritis in up to 30% of the patients, psoriasis is increasingly

linked to metabolic syndrome and cardiovascular disease [3].

The pathophysiology of psoriasis is complex, multi-factorial and thought to be triggered

through environmental genetic interactions. For example, psoriasis can be triggered in

response to innate or environment stimuli (e.g., injury or infection). It is known that both sti-

muli converge to myeloid dendritic cells and macrophages which then increase the production

of cytokines such as IL-12 and IL-23 that stimulate the activation and proliferation of T-cell

subsets, which in turn produce IL-17A, IL-17F, IL-20, IL-22, TNF and IFN-γ [4]. Tc17/Th17

represent the dominant T cell subsets in lesional psoriasis [5], with expanded Tc17/Th17 clo-

notypes localising to psoriatic epidermis [6]. These cytokines stimulate keratinocyte growth

and production of chemokines and keratinocyte-based growth factors further amplifying the

immune response and maintaining the hyperplastic and chronic inflammation within psoria-

sis plaques [7–13]. The importance of structural cells in regulating the immune response in

health and disease is increasingly recognised [14, 15].

Psoriasis is a chronic persistent disease but may undergo periods of remission; currently

though there is no cure. Narrow-band ultraviolet B (UVB) photo-therapy is one of just a few

treatments that can clear psoriasis plaques over 8–12 weeks of therapy and induce a period of

remission [16]; the treatment is usually prescribed to patients with mild to moderate psoriasis.

As patients typically attend the hospital department 3 times weekly, this facilitates the regular

recording of disease activity (Psoriasis Area and Severity Index [PASI]—a visual examination

of psoriasis extent), clinical response (including disease exacerbations—flares) and any adverse

events. Nevertheless, relapse is common (occurring in 70% of patients within 6 months from

the end of the therapy); patients may then be considered for further UVB or switched to sys-

temic therapy. At present, prediction of individual patient outcome to UVB or systemic ther-

apy is not feasible, although some progress has been achieved [17]. For example, lower rates of
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psoriasis clearance in the early stages of the UVB therapy were negatively associated with the

final clearance outcome [4].

Previous agent-based models [4] and ordinary differential equation (ODE)-based models

[18] have simulated psoriasis onset and psoriasis clearance by induction of keratinocyte apo-

ptosis through UVB phototherapy. However, despite the crucial role of acquired and innate

immunity in initiating and maintaining psoriasis, these models provide only an implicit repre-

sentation of the immune system.

The principal aims of the work presented in this paper were to develop a new ODE model

of epidermis that: 1) explicitly describes the complex interplay between immune cells and kera-

tinocytes; 2) maintains two stable steady states: a clinically healthy one (non-lesional skin) and

a psoriatic one (lesional/plaque skin) and 3) enables switching between the two steady states

via crossing of an unstable “transition” state through either the introduction of a sufficiently

strong, transient immune stimulus (“healthy” to “psoriatic” transition) or by inducing an

appropriate amount of apoptosis of proliferating keratinocytes and immune cells through

UVB phototherapy (“psoriatic” to “healthy” transition). The inclusion of an immune compo-

nent is important because it enables modelling the onset of psoriasis as well as flares. Further-

more, the immune component makes the model more generalisable, for example it would

enable modelling the effects of biologics therapies, which are crucial for treating moderate to

severe psoriasis. An additional important advance is the ability of our ODE model to take into

account patient-specific “UVB sensitivity” through a corresponding parameter, and predict

clinical outcome at the end of phototherapy based on the early clinical trajectory of response.

One of the factors contributing to a patient’s UVB sensitivity is measured clinically at the

beginning of phototherapy (minimum erythema dose). Clearly, other factors (e.g., genetic

ones) may influence a patient’s UVB sensitivity, but we do not explicitly model them in this

work. Together these results support the development of precision medicine in psoriasis.

2 Model and methods

2.1 Epidermis model

Our model focuses on human epidermis (see Fig 1a and 1b) and incorporates the following

cell species:

• proliferating keratinocytes: stem cells (SC) and transit-amplifying cells (TA);

• differentiating keratinocytes (D).

The model also incorporates immune cells (T cells) and dendritic cells (DC), which may be

located in either the epidermis or dermis but the location is not relevant to our model.

Proliferation and activation of SC and TA cells is mediated by IL-22, IL-17, type I interfer-

ons and TNFα cytokines produced by the activated T cells and/or dentritic cells [13]. In

response to the increase in proliferation rate, keratinocytes increase their production of growth

factors (GF) and chemokines that attract and activate dendritic cells producing more IL-23,

which in turn activates more T cells, resulting in a positive feedback and self-sustaining loop

(see Fig 1b).

In developing our model defined by the system of ordinary differential equations (ODEs)

(1), the following three assumptions apply: 1) apoptosis induced by a single UVB dose lasts for

24 hours and affects proliferating keratinocytes and immune cells equally (see Section 2.2); 2)

cell growth depends on cell density (see Section E in S1 Text); and 3) we model clinically

observable behaviour via a simplified PASI model that does not take the disease area into
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account (see Section 2.3). Our model is designed as a bi-modal switch consisting of three

steady states: two are stable—clinically healthy (non-lesional skin) and psoriatic (lesional/pla-

que skin) states—and one is unstable (transition state). (The model features 32 steady states

overall, but only the three states mentioned above lay in the positive real space: see Sections A

and B in S1 Text.) The model design process considered the following main properties: epider-

mis composition, speed of psoriasis onset, epidermal turnover time, keratinocytes, apoptosis

and desquamation rates. The specific parameters (apoptosis and desquamation rates, degrada-

tion of apoptotic cells, and production/degradation of cytokines and growth factors) were

Fig 1. Our ODE model of epidermis describes an explicit interaction between the main types of keratinocytes and

immune cells mediating psoriasis. Panels: (a)—mechanism of interaction between the main cell types and cytokines

in epidermis; (b)—interactions between the species of our model, where SC—stem cells, TA—transit-amplifying cells,

D—differentiating cells,DC—dendritic cells, T—T cells, A—apoptotic cells, IL17/22—interleukin-17/22, IL23—

interleukin-23, TNFα—tumour necrosis factor alpha, GF—keratinocyte-derived growth factors, and⌀—degradation

species; (c)—cell density (cells/mm2) for every cell type (excluding apoptotic cells) in the healthy (non-lesional skin),

psoriatic (lesional/plaque skin) and transition steady states.

https://doi.org/10.1371/journal.pcbi.1010267.g001
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derived from published experimental and clinical data, and modelling outcomes described

in the literature, as detailed in Table 1. Notably, the ratio of production and degradation

rate parameters for immune cells (T cells and DC) vs. cytokines in our model matches the

ratio of half-life for CD4 T cells [19] and the IL-12 cytokine [20]. It is also important to note

that the tissue levels of endogenous cytokines such as IL-23 are below the level of assay detec-

tion. Consequently, half-life measurements and pharmacokinetic models such as those

reported in [21, 22] relate to exogenous administration of cytokines (or growth factors) and

may therefore differ from our model which includes a mass-action dependence of IL-23 pro-

duction on dendritic cells (or dependence on stem cells and TA cells for growth factor produc-

tion)—we thus assume comparable values for the cytokines and growth factors parameters in

our model.

Each parameter was tested in turn to ensure the model remained stable, and some of the

assumed parameters were adjusted in line with published data to ensure the model bistability

(see Section C in S1 Text for more details). Also, due to lack of clinical and biomarker data,

the values of the parameters of Table 1 have not been subject to personalisation. Should data

be available, it would be possible to personalise further the model in terms of the assumed

parameters.

Table 1. Model parameters.

Name Description Value Units Source

il1720 IL-17 degradation rate constant 36.5 d−1 inferred from [19, 20]

il2320 IL-23 degradation rate constant 36.5 d−1 inferred from [19, 20]

tnf20 TNF degradation rate constant 36.5 d−1 inferred from [19, 20]

gf20 GF degradation rate constant 36.5 d−1 inferred from [22]

il232 IL-23 production rate constant by dendritic cells 1 a.u./(cells × d) inferred from [21]

il172 IL-17 production rate constant by T cells 0.5 a.u./(cells × d) inferred from [21]

tnf2 TNF production rate constant by T cells 0.5 a.u./(cells × d) inferred from [21]

sc2gf GF production rate constant by SC 1 a.u./(cells × d) inferred from [22]

ta2gf GF production rate constant by TA 1 a.u./(cells × d) inferred from [22]

t2 T cells activation rate constant 55 cells/(a.u. × d) inferred from [23]

t20 T cells deactivation rate constant 1.51 d−1 inferred from [19, 23, 24]

dc20 Deactivation rate constant of DC 1.51 d−1 inferred from [19, 24]

p Coefficient for limiting keratinocytes growth 2 - assumed

dcvm Maximum activation rate constant of DC 6000 - assumed

dckp Dissociation constant in Hill equation for DC 3 � 1012 - assumed

dcact Basal activation rate constant of DC 1880 cells/d inferred from [24]

n Hill coefficient for DC 4 - assumed

sc2 SC production rate constant 0.0017635 (d × a.u.)−1 inferred from [23, 25]

sc2ta TA production rate constant by SC 0.0015415 (d × a.u.)−1 inferred from [26]

sc20 Proliferation limiting factor for SC 1.8135e-05 d−p inferred from [4, 26]

ta2 TA production rate constant 0.0017562 (d × a.u.)−1 inferred from [27]

ta20 Proliferation limiting factor for TA 3.7321e-06 d−p inferred from [27]

ta2d Differentiation rate constant 0.0018063 (d × a.u.)−1 inferred from [25]

d20 Differentiation limiting factor 5.05e-07 d−p inferred from [25]

ddesq Desquamation rate constant 0.0047529 d−1 [28]

abase Basal apoptosis rate 0.0036 d−1 [4, Fig 1b]

a20 Degradation rate of apoptotic cells 36 d−1 [29, Fig 5–5]

https://doi.org/10.1371/journal.pcbi.1010267.t001
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In the next three subsections we describe in detail how our epidermis model is valid with

respect to general clinical and biological measurements. In Section 3.3 we describe validation

of our PASI and UVB phototherapy modelling with respect to individual PASI trajectories of

our patient cohort.

dSC
dt
¼ sc2ðIL17=22 þ TNFaÞSC � sc20SCp

� abaseSC
dTA
dt
¼ ðIL17=22 þ TNFaÞðsc2taSCþ ta2TAÞ

� ta20TAp � abaseTA
dD
dt
¼ ta2dðIL17=22 þ TNFaÞTA � d20Dp

� abaseD � ddesqD

dDC
dt
¼

dcvmGFn

dckp þ GFn
þ dcact � dc20DC � abaseDC

dIL17=22

dt
¼ il172T � il1720IL17=22

dT
dt
¼ t2IL23 � t20T � abaseT

dGF
dt
¼ sc2gf SC þ ta2gf TA � gf20GF

dA
dt
¼ abaseðSC þ TAþ DC þ T þ DÞ � a20A

dTNFa
dt

¼ tnf2T � tnf20TNFa

dIL23

dt
¼ il232DC � il2320IL23

ð1Þ

2.1.1 Epidermis composition. Fig 1c shows the epidermis composition in the three steady

states of our model (the precise values are reported in Table 2). The total number of cells per

unit area of human epidermis is different from person to person, and varies across the human

Table 2. Steady states of the model.

Species Description Healthy (non-lesional) Transition Psoriatic(lesional/plaque) Units

SC Stem cells 3,947.21 4,855.46 12,544.23 cells/mm2

TA Transit-amplifying cells 22,224.37 27,308.71 70,349.64 cells/mm2

D Differentiating cells 50,529.36 63,458.55 173,504.14 cells/mm2

T T cells 1,556.09 1,897 4,782.97 cells/mm2

DC Dendritic cells 1,563.06 1,905.5 4,804.4 cells/mm2

A Apoptotic cells 7.98 9.94 26.6 cells/mm2

S Total cell count 79,828.07 99,435.16 266,011.98 cells/mm2

IL17/22 Interleukin 17/22 21.32 25.99 65.52 a.u.

IL23 Interleukin 23 42.82 52.20 131.63 a.u.

TNF Tumor necrosis factor alpha 21.32 25.99 65.52 a.u.

GF Keratinocyte-based growth factors 717.03 881.21 2,271.06 a.u.

https://doi.org/10.1371/journal.pcbi.1010267.t002
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body. Ref. [24] reports a total cell density of 73,952 ± 19,426 cells/mm2 (mean and standard

deviation) and 1,394 ± 321 cells/mm2 for Langerhans cells (i.e., dendritic cells in epidermis). In

line with these data, the total cell and Langerhans cells densities in our model are 79,828 cells/
mm2 and 1,563 cells/mm2, respectively.

The proportions of cell species in the healthy steady state are consistent with the values

found in the literature. From Table 2 we see that our model features 63.2% of differentiating

cells (40–66% is reported by [4]), 27.8% of transit-amplifying cells, 4.9% of stem cells, 1.8%

dendritic cells and 1.8% of T cells. Hence, our model suggests that up to 96% of all cells in the

epidermis are keratinocytes [4, 23].

2.1.2 Psoriasis onset. We model the onset of psoriasis by increasing the activation rate of

dendritic cells (corresponding to parameter dcact in the equation for model species DC in (1))

by a constant amount dcstim for τstim days. This produces psoriasis onset at different rates: from

fast (as quick as 10 days) to slow (as long as 14 weeks). That is consistent with the known time

lags between the onset of an immunological stimulus (e.g., streptococcal sore throat) and the

first appearance of psoriatic lesions [4, 30, 31].

In the psoriatic state the growth rate of the proliferating keratinocytes (SC and TA cells)

and their differentiation rate increase with respect to the healthy state by 9.74 and 9.73 times,

respectively (see Section D in S1 Text for more details). Compared to normal skin, the

increased number of proliferating keratinocytes in vivo ranges in psoriasis from 2–3 times [6,

32] to 6–8 times [1, 33]. As a result, the cell density in the psoriatic state of our model is

266,012 cells/mm2, i.e., 3.33 times the density in the healthy state, which is within the 2–5 times

range reported in clinical studies [34, 35].

2.1.3 Epidermal turnover time. In psoriasis, despite an increase in epidermis thickness,

the epidermal turnover time drops by up to 4–7 times [36, 37]. This implies that the cell growth

rate cannot linearly depend on the cell density (see Section E in S1 Text). Thus, in each ODE,

we introduced the non-linear term a � Xp, where a is a constant, X is the corresponding kerati-

nocyte species, and p is a parameter modelling the nonlinear dependency between the kerati-

nocyte growth rate and the cell density. Parameter p is the “growth limiting constant” and

models factors that influence the keratinocytes growth. (The higher the value of p the higher

the ratio between the turnover times of the psoriatic and healthy states—for more details see

Section E in S1 Text.) For simplicity, we assumed p = 2, but any p> 1 can be used for personal-

ising the model.

For setting the parameter values related to the growth rate, we applied epidermal turnover

time values reported in the literature. Turnover times for healthy epidermis vary from 39 days

[25], to 47–48 days [38] to 40–56 days [37], while a previously published model [18] predicts

52.5 days.

Similarly to [18, 25], the epidermal turnover time τ in our model can be calculated as the

sum of the turnover time in the proliferating and the differentiating compartments using the

formula:

t ¼
SC þ TA

ðTNFaþ IL17=22Þðsc2SCþ sc2taSC þ ta2TAÞ
þ

D
ta2dðTNFaþ IL17=22ÞTA

ð2Þ

where TNFα is the tumour necrosis factor α, and the cell species densities are taken from either

the psoriatic state or the healthy state (see Table 2). In our model, the epidermal turnover time

in psoriatic epidermis drops almost three-fold in comparison to healthy epidermis, from 41.31

days to 14.25 days, consistent with in vivo studies [36, 37].
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2.1.4 Apoptosis and desquamation rates. Cell apoptosis and desquamation (terminal dif-

ferentiation) are the two main mechanisms in our model by which keratinocytes can leave the

proliferating and the differentiating compartments. It is technically challenging to measure

rates and duration of apoptosis in human tissue, and so the parameters used in the model are

based on data from mouse skin and in vitro studies of human keratinocytes [4, 28, 29, 39, 40].

In addition, it is assumed that in healthy epidermis all cells undergo apoptosis at the same rate

(relative to their cell mass). In Section F S1 Text we provide more details.

2.2 Modelling UVB phototherapy

In our model, psoriasis clearance with UVB is implemented by increasing the rate of apoptosis

of proliferating keratinocytes (SC and TA) and immune cells (DC and T) for tuvb hours by

uvbdose � uvbs � (X − XH), where uvbdose is the administered UVB dose (in J/cm2), X is the target

species cell density, XH is the target species cell density in the healthy steady state, and uvbs is

the “UVB sensitivity” parameter in (J−1d−1). Note that differentiated keratinocytes (D) may

undergo apoptosis when UVB irradiated, but at a negligible rate [29, Section 5.3.4]. Hence, our

model does not increase the apoptotic rate of differentiated cells during UVB irradiation. In

Eq (3) we give the full ODEs for our model when simulating UVB phototherapy as explained

above. (The constants SCH, TAH, DCH and TH are found in Table 2, column “Healthy”.)

dSC
dt
¼ sc2ðIL17=22 þ TNFaÞSC � sc20SCp

� uvbdoseuvbsðSC � SCHÞ
dTA
dt
¼ ðIL17=22 þ TNFaÞðsc2taSCþ ta2TAÞ

� ta20TAp � uvbdoseuvbsðTA � TAHÞ

dD
dt
¼ ta2dðIL17=22 þ TNFaÞTA � d20Dp

� abaseD � ddesqD

dDC
dt
¼

dcvmGFn

dckp þ GFn
þ dcact � dc20DC

� uvbdoseuvbsðDC � DCHÞ
dIL17=22

dt
¼ il172T � il1720IL17=22

dT
dt
¼ t2IL23 � t20T � uvbdoseuvbsðT � THÞ

dGF
dt
¼ sc2gf SC þ ta2gf TA � gf20GF

dA
dt
¼ abaseðSC þ TAþ DC þ T þ DÞ � a20A

dTNFa
dt

¼ tnf2T � tnf20TNFa

dIL23

dt
¼ il232DC � il2320IL23

ð3Þ

We assume that UVB induced apoptosis is distributed between 0 and 24 hours, as the peak

of cell apoptosis is reported to be between 18 and 24 hours following UVB irradiation [4, Fig

S2] i.e., we assume tuvb = 24 hours. (If needed, the model can be reparameterised to allow for a
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shorter or longer duration of apoptosis.) Thus, the rate of UVB induced apoptosis is propor-

tional to the applied dose (defined in terms of energy per unit area), current cell density (i.e.,
the higher the cell density the higher the number of apoptotic cells) and the patient-specific

parameter UVB sensitivity (larger sensitivity values result into higher apoptosis rates). The

term (X − XH) is introduced to account for the fact that the thickness of healthy epidermis

does not reduce in response to UV [41, 42]. We also restrict our model to operate only between

the healthy and psoriatic states thus, the term (X − XH) is always kept positive.

Standard clinical protocols administer narrow-band UVB for up to three times a week (e.g.,
Monday, Wednesday and Friday) for up to 12 weeks, with increasing graduated dose incre-

ments (on alternate doses) over the course of the treatment. An example of UVB dosimetry is

shown in Fig 2a. The changes in cell densities and cytokine concentrations following the indi-

cated UVB regime are shown in Fig 2b and 2c; the rate of cell apoptosis is shown in Fig 2d.

The rate of cell apoptosis in the model falls back to the basal value shortly after the end of the

24-hour period. This is because apoptotic cells are removed from the epidermis fairly quickly

in our model (mean lifetime of 40 minutes—see Section F in S1 Text). The obtained apoptosis

values are consistent with those reported in vivo [4, Fig 1e].

Our model predicts complete clearance and eventual remission when the model dynamics

drops below the “transition” steady state (i.e., at approximately 90% clearance). These data are

consistent with recent findings in a prospective study of 100 patients in which achievement of

PASI90 (i.e., at least 90% improvement over their initial PASI) pointed to longer remission

[43]. However, not all patients achieving PASI90 progress to complete clearance and/or

remission.

Fig 2. ODE psoriasis model demonstrates that UVB-induced apoptosis leads to psoriasis clearance. Simulation of

the model response to a 10-week course of UVB phototherapy. Panels: (a)—simulated UVB irradiation regime, (b)—

cell densities, where SC—stem cells, TA—transit-amplifying cells,D—differentiating cells,DC—dendritic cells, T—T

cells, S = SC + TA + D +DC + T—total cell density, T andDC dynamics overlap and are represented by alternating

colours, (c)—cytokines concentration, where IL17/22—interleukin-17/22, IL23—interleukin-23, TNF—tumour

necrosis factor alpha, GF—keratinocyte-derived growth factors, TNF and IL17/22 dynamics overlap and are

represented by alternating colours, (d)—number of apoptotic cells per 1,000 cells.

https://doi.org/10.1371/journal.pcbi.1010267.g002
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Apoptosis vs. growth arrest. Psoriatic epidermis was thought to be resistant to apoptosis

[44] although only few previous studies have investigated before and during the early stages of

therapy. Our experimental work [4, 45] provides clear evidence that therapeutic UVB irradia-

tion induces apoptosis of psoriatic epidermis within 24 hours of irradiation. Our previous

agent-based modelling suggested that apoptosis was sufficient to account for epidermal re-

modelling during resolution of psoriasis. UVB also induces growth arrest of cultured keratino-

cytes [46] and epidermal keratinocytes in normal human skin [47] but whether UV-induced

growth arrest of immune cells or keratinocytes contributes to psoriasis plaque clearance

remains unknown. We thus considered whether in our model growth arrest could account for

clearance during UVB therapy. We found that growth arrest alone (no apoptosis) could induce

clearance with a delay of several weeks after the end of the therapy (see Fig D in S1 Text—simi-

lar results are reported by [4]). However, in clinical practice psoriasis does not improve after

UVB treatment completion, and therefore we do not further consider growth arrest in this

paper.

2.3 Modelling PASI

The Psoriasis Area and Severity Index (PASI) is used for assessing the severity of the ongoing

disease [48–50]. It ranges from 0 to 72, and it is calculated as a weighted sum of sub-scores cor-

responding to four body regions:

PASI ¼ 0:1 � Ch þ 0:2 � Cul þ 0:3 � Ct þ 0:4 � Cll; ð4Þ

where Ch, Cul, Ct and Cll are the sub-score values for head, upper limbs, trunk and lower limbs,

respectively. Each sub-score is obtained as

C ¼ ðSind þ Sery þ SdesqÞ � Sarea; ð5Þ

where Sind, Sery and Sdesq are values between 0 and 4 representing the severity of induration

(thickness), erythema (redness) and desquamation (scaling), respectively, for the four body

regions; Sarea is a value between 0 and 6 representing the extent of the affected area.

We mimic patients’ PASI by using the species of our ODE model as follows: we use the total

cell density

S ¼ ðSCþ TAþ Dþ T þ DCþ AÞ ð6Þ

as a proxy for epidermal thickness. As we scale between 0 and 1 all the species modelling the

PASI components (see below), we use the T cell density to represent inflammation which

translates to erythema clinically within the PASI score for simplicity. The scaled dynamics of

the cytokine species (i.e., IL-17, IL-23 and TNFα) is virtually identical to the scaled dynamics

of T cells as these two families of species share the same shape of equation—a standard mass-

action law (see the ODE model (1))—and both result in scaled densities very close to 0, hence

we only use T cell dynamics to estimate erythema. To assess scaling we use the non-proliferat-

ing cells D density.

In our model we do not take the surface area into account, and we only consider severity of

PASI components over a unit area (mm2). Thus, our model assumes that the affected area stays

constant throughout the therapy, while all the other components change (i.e., the plaques “fade

away” rather than “shrink” in size).

If we rescale the species concentration to the [0, 1] interval (where 0 and 1 represent healthy

and psoriatic steady states, respectively), we can model the relative change in each of the psori-

asis symptoms Sind, Sery and Sdesq over a unit area of skin. After weighting the rescaled species

we calculate the severity of the symptoms over a unit area for each body region (i.e., an
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estimate for Sind + Sery + Sdesq) as

C� ¼ Sind � S½0;1� þ Sery � T½0;1� þ Sdesq � D½0;1�; ð7Þ

where S[0,1], T[0,1] and D[0,1] are the cell species rescaled to [0, 1]. Thus, obtaining C� for each

body region, and assuming that the amount of energy delivered by UVB per unit of area is the

same across the entire surface of the body, the resulting PASI value can be modelled by

C ¼ 0:1 � C�h � Sh;area þ 0:2 � C�ul � Sul;areaþ

0:3 � C�t � St;area þ 0:4 � C�ll � Sll;area :
ð8Þ

However, PASI subscores are seldom recorded in clinical practice—only the cumulative score

is likely to be available. In order to mitigate this issue, we consider the average behaviour of the

components over the entire body instead of modelling each body region separately. As a result,

we introduce a new species to simulate a patient’s PASI when the PASI subscores are not avail-

able:

C
�
¼ C�

½0;1�
� PASI0; ð9Þ

where C�
½0;1�
¼ C�

SindþSeryþSdesq
is the value of C� rescaled to [0, 1], and PASI0 is the baseline PASI. In

the data we used in this work the PASI subscores are not available, and we thus used C�

instead of C and we assumed Sind = Sery = Sdesq = 1 in all our experiments (in other words, we

assumed the severity of induration, erythema, desquamation are all equal (to 1) in our model).

2.4 Model personalisation

Patient data. Our clinical data are derived from a prospective cohort of 94 patients receiv-

ing narrow-band UVB therapy for psoriasis, recruited at the Royal Victoria Infirmary, New-

castle upon Tyne (UK). The dataset is described fully in [43] but in brief it includes serial

weekly patients’ PASI measurements (median 7; range 4–11), corresponding serial UVB doses

(median 24; range 4–11), delivered 3 times a week together with data on time to relapse and

PASI at relapse, collected for up to 18 months. Out of 94 patients, 6 subjects did not relapse

within the 18-month monitoring period, and 26 individuals were lost to follow-up.

Parameter fitting. We estimate the UVB sensitivity parameter uvbs to fit the model PASI

simulations to the patients’ PASI data. For a given patient, the value of their uvbs parameter is

theminimal uvbs value that minimises

St
i¼1
ðPASIi � C

�
ð7 � iÞÞ2 ð10Þ

where t is the number of points (weeks) in the patient’s PASI trajectory (the model time units

are days while patients data are recorded weekly, hence the use of 7 � i in C�) and PASIi is the

(single) PASI measurement at the end of week i of phototherapy. The minimisation of (10) (as

a function of uvbs) while also minimising usbs is performed via an exhaustive search over the

[0, 1] interval, starting at 0 with a step of 0.01. For every value of uvbs we simulate our ODE

model (1) with C� defined by (9) and C�(0) = PASI0 and all other model species set at the pso-

riatic steady state. We then compute the error given by (10) and update the ‘minimum error’

and the ‘minimum’ uvbs variables if the newly computed error is lower than current minimum.

This method clearly allows minimising the value of uvbs since from all the parameter values

producing the lowest value for the objective function (10) we choose the lowest value for uvbs.
The minimisation of uvbs is important because it prevents the model from being ultra respon-

sive to treatments via unrealistically large uvbs values, which would represent patients who are
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overly sensitive to small doses of UVB, such as a very small fraction of their MED perhaps

comparable to an average daily exposure to sunlight. Paradoxically, UVB does not induce sig-

nificant erythema in lesional (plaque) skin. Localised irradiation with multiple (x8 or x16)

MEDs can be directed to localised plaques through 308 nm lasers for example [51] resulting in

rapid clearing. However, as such doses given as whole body irradiation would cause significant

erythema and burning of non-lesional skin, the parameters within the model constrain psoria-

sis clearance from occurring with a small number of high MED doses of UVB irradiation. In

the clinical dataset used for this work, the smallest recorded number of doses to achieve com-

plete clearance (PASI100) was 18, i.e., six weeks of UVB phototherapy.

Flares. During longitudinal follow up [52, 53] and during the course of the therapy some

patients may experience spontaneous disease exacerbations or flares (i.e., worsening of the

symptoms and signs due to undefined environmental/immunological stimuli). We simulate

patients’ flares by introducing and fitting parameters dcstim,i for i = 1, . . ., t (where t is the num-

ber of PASI values in the patient’s trajectory) for every patient. Each such parameter models an

immune stimulus of constant strength lasting 7 days, since in our dataset we have at most one

PASI reading per week. (These parameters will increase the activation rate of dendritic cells

from their basal value dcact—see the equation for species DC in Eq (1).) The parameters dcstim,i

are fitted sequentially beginning with i = 1, and every parameter is searched incrementally in

the interval [0, 6,000] starting at 0 with a step size of 60 (i.e., 100 increments). The current

parameter value is increased until the objective function value (10) starts rising. This parame-

ter value is set in the model, and the fitting of the next parameter dcstim,i+1 is performed.

Statistical methods. The goodness of fit of our model is assessed by calculating the distri-

bution of the difference (PASIi −C�(7 � i)) between the patients’ PASI trajectories and the

model PASI simulation for all but the baseline PASI values. (Our dataset contains 754 PASI

values distributed between 0 and 24.1, with mean 3.41, median 2.3 and IQR [1, 4.5]). We com-

pute mean, median and standard deviation of the resulting cumulative distributions, which are

then compared with PASI assessment errors made by formally trained physicians [54].

3 Results

We developed an ODE model of normal and psoriasis skin that would enable direct compari-

son to patient specific disease trajectories and prediction of outcomes to therapy at an individ-

ual patient level. As outlined in Section 2.1, our model’s behaviour (including key indicators

such as proliferation rates and epidermal turnover time), is consistent with data from clinical

studies. In the sections reported below, we systematically studied the dynamic behaviour of

our model for predicting the speed of psoriasis onset and the impact of varying UVB therapy

regimes and UVB sensitivity to outcome. Finally, we explored the capabilities of our model for

personalisation of disease trajectories and for stratification of patients undergoing disease

flares.

3.1 ODE model suggests speed of psoriasis onset depends on strength and

duration of immune stimulus

As described in Section 2.1, the onset of psoriasis is initiated by an immune stimulus that

increases the activation rate of the dendritic cells. Our analysis indicates that the speed of pso-

riasis onset depends on both the strength and the duration of this immune stimulus (Fig 3).

When the immune stimulus is sufficient to drive the system through the transition state, the

model will inevitably progress to the psoriasis steady state. In order to provide confidence that

this transition has resulted in psoriasis, to generate Fig 3 we have set the threshold relatively
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high along the transition path at 90% of the distance between normal and fully developed pso-

riasis state.

In addition, Fig 3 demonstrates the model dynamics for two exemplary scenarios simulat-

ing slow (14 weeks) and fast (10 days) psoriasis onset. Within the ranges explored for stimulus

strength and duration, 14 weeks is the longest delay and 10 days the shortest delay to a full pso-

riasis plaque achievable by our model—clinical observations report psoriasis onset no sooner

than 4 days after an immune stimulus [31].

Fig 3. The speed of psoriasis onset in ODE model depends on the strength and the duration of the immune

stimulus. Panels: (a)—heatmap where white-coloured area denotes combinations of immune stimulus strength and

duration that do not lead to psoriasis; other colours denote psoriasis; (b) and (c)—examples of model simulations for

the combinations of stimulus strength and duration values, as highlighted in Panel (a), leading to fast and slow

psoriasis onsets, respectively. Psoriasis onset occurs if totC = totCH + 0.9(totCP − totCH)� 247,376 cells/mm2� 0.93 �

totCP (i.e., the total cell density of the model has covered 90% of the distance between the healthy state and the psoriatic

state—see Table 2 for the actual cell densities). This is due to the relatively slow convergence of the model to the

psoriatic steady state.

https://doi.org/10.1371/journal.pcbi.1010267.g003
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3.2 ODE model simulates individual clinical outcomes and personalised

amendments of phototherapy to induce psoriasis clearance and remission

Our model indicates that a minimum number of UVB episodes and appropriate irradiation

frequency are necessary for clearing psoriasis and inducing remission, depending on the

patient-specific UVB sensitivity parameter uvbs (i.e., patient-specific UVB sensitivity to photo-

therapy), and actual UVB doses that will be administered.

Following a given UVB irradiation regime, our model can simulate different outcomes in

which the chances of psoriasis clearance increase for higher values of uvbs. For example, two

models with different UVB sensitivity values (modelling two patients) receiving equal amounts

of UVB might not reach the same outcome. The heatmaps presented in Fig 4 depict the model

outcome as a function of the number of UVB doses (of a given therapy regime) and the UVB

sensitivity parameter uvbs. Fig 4a and 4b show that changing therapy from 3 times to 5 times a

week can, overall, increase the likelihood and speed of psoriasis clearance, consistent with

Fig 4. Our ODE model predicts that the total number of UVB doses, irradiation frequency and the patient’s UVB

sensitivity (modelled by the uvbs parameter) are the key factors in designing a personalised therapy for achieving

psoriasis clearance and remission. Panels: (a) and (b)—green areas contain the values for which the model predicts

remission following the therapy; (c) and (d): personalised model simulation of a virtual patient (uvbs = 0.05) whose 3x

weekly phototherapy (c) fails to clear psoriasis while 5x weekly phototherapy (d) with the same doses (n = 30) succeeds.

https://doi.org/10.1371/journal.pcbi.1010267.g004
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results from a (small) clinical trial [55] and a recent survey [56]. However, as in [55], the actual

improvement is modest and might not be clinically justifiable because of inconvenience or risk

of side effects (e.g., erythema or “sun burn”). A standard protocol for UVB phototherapy is

treatment three times per week with a minimum of 24 hours between sessions but clinical

studies and our modelling indicates (see Section G in S1 Text) that lower frequencies of irradi-

ation (e.g., twice weekly [57]) may also be effective although may take longer in absolute time

to achieve clearance.

If within Fig 4, we consider a patient characterised by a “low” uvbs = 0.05, we can then com-

pare the model simulations of a therapeutic phototherapy course consisting of 30 doses but

delivered 3 times vs. 5 times a week and how this affects relapse. The 3 times a week simulation

(Fig 4c) results in relapse of psoriasis within a few months, whereas the 5 times a week therapy

regime (Fig 4d) induces a longer duration of remission, thereby showing that some patients

might potentially benefit from phototherapy delivery adjustments.

Finally, we note that the uvbs parameter is associated with the rate of keratinocyte and lym-

phocyte apoptosis induced by UVB in the model, and it could be potentially inferred from cor-

responding biomarkers collected before the start of the treatment (e.g., number of apoptotic

cells measured from biopsies 24–48 hours after localised delivery of phototherapy). Taken

together with the above results, these data provide evidence that our model can simulate per-

sonalised response to UVB therapy, individual dosimetry and UVB administration regimes in

clinical practice.

3.3 Representation of UVB response by the UVB sensitivity parameter

enables fitting PASI trajectories

Using the patients’ UVB doses and their full PASI trajectories (including baseline PASI), we

fitted the uvbs parameter in our model to reproduce each patient’s PASI trajectory. These mod-

els are called uvbs-personalised, and in Fig 5a and 5b we show the PASI simulation computed

by the uvbs-personalised models of two patients of our cohort.

We fitted the uvbs parameter for all our 94 patients. All of the derived uvbs values were dis-

tributed between 0 and 1, median 0.24 and IQR range [0.16, 0.34]. The distribution (n = 754)

of the difference between the model simulated PASI C� (see Eq (9)) and the patient’s actual

PASI data is shown in Fig 5c. The resultant model simulations provided a close fit to the

patients’ data with a mean PASI difference of 0.27 PASI units (recall that PASI ranges between

0 and 72).

Given a patient with a total of t weekly PASI readings, we calculated (for i = 1, . . ., t) the

absolute (i.e., |PASIi −C�(7 � i)| = ADi, see Fig 5d) and the relative (
ADi
PASIi

, see Fig 5e) PASI differ-

ences and compared them to the PASI assessment discrepancies achieved by trained clinicians.

(Here we only used the values whose corresponding PASIs were non-zero (n = 738). In the

remaining (n = 16) cases we obtained the following distribution of absolute difference:

median = 0.33, mean = 0.42, standard deviation = 0.37, range = [0.11, 1.67] and IQR = [0.24,

0.44].) For example, Ref. [54] reports on three formally trained physicians who performed 720

image-based PASI assessments of 120 patients with psoriasis (every physician assessed PASI

twice: at week 0 and 4 weeks later). The mean and standard deviation (see Table 3) of the abso-

lute and relative PASI differences of our models were very similar to the errors made by for-

mally trained physicians assessing patients’ PASI.

Together, these results suggest that given the patient’s baseline PASI, their UVB doses

administered during the therapy and the UVB sensitivity parameter, our model can simulate

PASI outcomes along the trajectory and final PASI that are indistinguishable from PASI

assessments made by trained professionals. We note that the UVB sensitivity parameter could
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be estimated at baseline (e.g., by measuring the rate of apoptosis in skin biopsies) or early dur-

ing the therapy, as we explain in Section 3.4. Therefore, our model can be used to predict indi-

vidual patient response to phototherapy and enables design of personalised UVB regimes to

improve outcomes, initially in silico, but ultimately in a clinical trial.

Fig 5. PASI measurements and UVB doses over the first three weeks of the therapy are sufficient to predict the

UVB sensitivity uvbs parameter, which allows high-accuracy model personalisation. Panels: (a,b)—results of

parameter fitting for two different patients; (c)—distribution (n = 754) of the difference between the model PASI

simulationC� and the patients’ actual PASI data; (d)—distribution (n = 754) of the absolute value of the difference

between the model simulation and patients’ PASI data; (e)—distribution (n = 738) of relative PASI difference

calculated as a ratio between the absolute PASI difference and the corresponding PASI value (excluding those values

for which corresponding PASI = 0; n = 16), (f)—results of fitting uvbs after 3 weeks with respect to fitting uvbs at the

end of the therapy.

https://doi.org/10.1371/journal.pcbi.1010267.g005
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3.4 The UVB sensitivity parameter can be estimated at the third week of

treatment

We found no statistically significant associations between the derived uvbs values and the avail-

able patients’ clinical variables collected at baseline (i.e., BMI, age, sex, smoking status, alcohol

consumption, skin type, baseline MED, age of psoriasis onset, previous phototherapies).

Therefore, we tested whether the uvbs parameter could be predicted by using only a portion of

a patient’s PASI trajectory. We discovered that the earliest reasonable prediction (R2 = 0.895

and adjusted R2 = 0.894; root mean square error = 0.069, Fig 5f) was made by fitting uvbs with

the data available at the end of week 3 of the therapy, i.e., four PASI measurements and nine

UVB doses. These data show that we can make a reasonable estimation of a patient’s UVB sen-

sitivity parameter value by the end of the third week of the therapy which can then be used to

predict subsequent response to UVB phototherapy. This discovery opens the path to personali-

sation of therapy.

3.5 The UVB sensitivity parameter and immune stimuli enable

stratification of flaring patients

Flares are spontaneous worsening of a patient’s psoriasis symptoms and signs that can happen

both on and off therapy. For example, Fig 5b illustrates an unexpected and sustained increase

in a subject’s PASI (outside of observer error range [54]) despite ongoing UVB phototherapy.

We hypothesised that our uvbs-personalised models could be used to distinguish between pso-

riasis flares and PASI assessment discrepancies. We remark that in case uvbs is not available

from clinical biomarkers, one could assume a baseline value or estimate a value after three

weeks of therapy as previously discussed.

For each patient with t weekly PASI measurements we looked at their PASI errors, com-

puted as

Di ¼ PASIi � C
�
ð7 � iÞ i ¼ 1; . . . ; t; ð11Þ

whereC� is the uvbs-personalised model PASI simulation (see Section 2.3), and the relative

PASI errors with respect to the model simulation, calculated as

di ¼
PASIi � C

�
ð7 � iÞ

C
�
ð7 � iÞ

i ¼ 1; . . . ; t; ð12Þ

because unlike the patients’ PASI, the value of C�(7 � i) is always strictly positive.

Table 3. Simulation of PASI outcomes by our ODE model that are comparable to PASI assessments made by for-

mally trained physicians and nurses.

Source Absolute PASI difference (mean±sd) Relative PASI difference (mean±sd)

Inter-rater difference [54] 1.968 ± 2.480 24% ± NA

Intra-rater difference [54] 1.984 ± 2.175 29.2% ± NA

Our model difference 0.842 ± 0.838 35.4% ± 30.1%

The uvbs parameter of the models was estimated taking into account the full PASI trajectory. The mean assessed

PASI value was 8.8 and the range was [0.7, 34.8] (the corresponding figures in our dataset are 4.01 and [0, 31.8]), and

the best mean absolute PASI difference was (reported for observers 1 and 2) 1.968 with standard deviation of 2.480,

while the best mean absolute intra-observer PASI difference (the difference between the PASI assessments for

observer 2) was 1.984 with a standard deviation of 2.175. NA—value is not available.

https://doi.org/10.1371/journal.pcbi.1010267.t003
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Utilising the DBSCAN clustering algorithm [58], we clustered the calculated PASI differ-

ences of all patients (n = 754 PASI measurements) into two groups: PASI assessment errors

and potential flares. We asked DBSCAN to identify two groups (see Fig 6a) within the data:

the main cluster (black triangles) and the outliers (red crosses). By considering all positive rela-

tive error values (i.e., the δ’s) as flares (n = 98) we fitted a threshold curve

d ¼ e� 5�D ð13Þ

that separated the outliers (potential flares) from the main cluster (potential PASI assessment

errors). (The 98 potential flares are distributed over 47 patients out of 94).

We note that the threshold curve was identified using a large number of PASI measure-

ments in which the sequential nature of the measurements was not retained. Therefore, this

would enable using our uvbs-personalised models for ‘online’ detection of flares in the clinic as

follows: every time a PASI measurement is obtained one computes both the simple (Δ) error

and the relative (δ) error and then decides whether the pair sits above (flare) or below (mea-

surement error) the threshold curve. Hence, as soon as a flare is detected the patient’s photo-

therapy regime can be modified (through increasing the frequency of irradiations and/or

adding more UVB doses) to achieve a greater % improvement in PASI during therapy or a lon-

ger period remission.

3.6 Flares during the therapy are associated with shorter remission

Our uvbs-personalised models provide evidence that detecting flares is extremely important

not only for improving overall model fit, but also for predicting patients’ remission period.

To improve model fit, we applied an immune stimulus (iteratively increasing its strength

starting from 0 while the sum of the squared errors (10) decreases) for 7 days for every week

which is identified as a flare by the threshold curve (13). The resulting model is called flare-
enabled. Fig 6b shows an example of a “flare” that was predicted and probably could not be

detected visually. Our model implements a weak and persistent immunological stimulus but

this result could also possibly be explained by increasing adaptation and resistance to UVB,

which we do not currently model. In contrast, Fig 6c demonstrates a substantial flare in

response to larger immunological stimulus (see Fig E in S1 Text for the model simulations

without taking flares into account).

Next, we studied patients’ remission. We dropped therefore patients who were lost to fol-

low-up (n = 26) and those who did not relapse within the 18 month period (n = 6; our model

correctly predicts remission for all these patients). Then we divided the remaining patients

(n = 62) into two groups based on their simulated post-therapy PASI values: those whose uvbs-
personalised, flare-enabled model simulations predicted relapse were assigned to a Simulated
Relapse group (n = 13), and the rest were placed into a Simulated Remission group (n = 49).

When compared to the actual, observed behaviour (see Fig 6d), the patients in the Simulated
Relapse group demonstrated a shorter remission period (median value of 3 months vs. 5

months, Kruskal-Wallis p-value = 0.035) compared to the Simulated Remission group. (Simu-
lated Relapse group: mean = 4.23, standard deviation = 4.17, range = [1, 16] and IQR = [1.75,

6]; Simulated Remission group: mean = 6.45, standard deviation = 4.7, range = [1, 18] and IQR

= [3.75, 8.25]).

We conclude that detecting flares is important so that therapy amendments can be applied

not only to achieve better clearance at the end of phototherapy but also with the aim of extend-

ing the remission period.
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4 Discussion

There is increasing interest in the application of systems biology modelling in medicine and

immune-mediated inflammatory disorders [59]. To the best of our knowledge, the ODE-based

model presented in this paper delineates for the first time the complex interactions between

immune stimuli, keratinocyte growth, differentiation and apoptosis in the onset of psoriasis

lesions, regulation of psoriasis flares and plaque resolution during UVB phototherapy. Our

model features two stable steady states—non-lesional and psoriatic skin; switching between

them occurs through immune stimuli and UVB phototherapy. We further include PASI

modelling, which is necessary for a clinically valid model. Importantly, we demonstrate that

individual patients’ PASI trajectories, recorded in response to UVB therapy, can be simulated

by a designated model species and by estimating a single individualised model parameter

(called “UVB sensitivity”) that is proportional to the rate of UVB-induced apoptosis. Notably,

we show that the value of the UVB sensitivity parameter can be estimated by the end of the

third week of a patient’s UVB therapy. We show that within a cohort of 94 patients this model

enabled the prediction of individual patient outcome at the end of phototherapy based on

baseline PASI, UVB dosimetry and the early trajectory of PASI response. The level of accuracy

Fig 6. Our ODE model enables identification of psoriasis flares. Panels: (a)—distribution of relative PASI difference

with respect to absolute PASI difference computed by DBSCAN with � = 0.5 and minimum number of points 20 (red

crosses—outliers, and black triangles—main cluster) and a possible curve separating flares (all the points above the

blue line) and PASI measurement errors (all point below the line); (b,c)—examples of fitting immune stimuli for two

different patients, (d)—patient groups based on model predictions of psoriasis relapse: our personalised flares-enabled

model predicts Remission (n = 49) and Relapse (n = 13) groups.

https://doi.org/10.1371/journal.pcbi.1010267.g006
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was within the error limits of PASI assessments made by trained professionals. Together these

results support the prediction of longer term clinical outcomes that can be tested in the clinic.

Over the past twenty years several papers have reported agent-based models of human epi-

dermis formation and homeostasis [60–64]. However, due in part to the disease complexity

and to the difficulty of obtaining clinical data, there are few publications addressing the

computational modelling of psoriasis and its treatment. An early work [65] proposed a 2D

agent-based model of psoriasis formation that included keratinocytes only; and a psoriatic

state was induced by manipulating the time transit-amplifying cells are allowed to proliferate

for. Importantly this model did not include the concept of disease severity (e.g., by incorporat-

ing PASI), treatment response and was only qualitatively validated. An earlier work from our

group introduced a 2D agent-based model that featured two stable steady states and modelled

response to UVB phototherapy [4]. Whilst producing an interesting visualisation and quanti-

tative read-out of the psoriasis clearance process which provided insight into the mechanisms

of clearance, the agent-based model was limited by a lack of personalisable data, including dis-

ease severity (PASI) and did not explicitly include immune cells, limiting its generalisability to

other psoriasis treatments such as biologics. Recently, an ODE model [18] has been developed

that proposes the interesting hypothesis that the epidermis phenotypes result from the homo-

eostasis of two distinct families of cells: healthy and psoriatic keratinocytes. While the model

mostly behaves in a way consistent with the dynamics of psoriasis, the hypothesis on which it

rests has not found confirmation in the medical field, to the best of our knowledge [66]. Fur-

thermore, the UVB phototherapy regimes used for clearing psoriasis seem unrealistically short

(seven doses over 16 days vs. 25–30 doses, 3x weekly in common clinical practice), which

would likely entail high erythemogenic doses.

With respect to the use of machine learning approaches for psoriasis treatment, a recent

paper [67] has employed unsupervised machine learning techniques to identify subgroups in

patients undergoing biologic treatments based on their PASI trajectory over time. The analysis

has revealed a model with four classes of response trajectories with distinct clinical outcome

and remission. However, it is unclear whether the model and its class characterisation are pow-

erful enough to predict individual patient outcome. In a recent paper [43], we report the devel-

opment of a machine learning approach combined with a logistic regression model to predict

final PASI using the first 2–3 weeks of PASI measurements during UVB phototherapy. Thus,

compared to previous publications, notable advances of our model reported herein are the

flexibility to be personalisable at the individual subject level with a single parameter (UVB sen-

sitivity), the possibility to include flares during the therapy (via an extra parameter mimicking

a transient immune stimulus), and the ability to capture the PASI dynamics during photother-

apy in a way indistinguishable from actual PASI measurements in clinical practice. These are

crucial factors that facilitate the clinical application of our model and represent a significant

advance compared to the works surveyed above. Furthermore, the inclusion of key compo-

nents of the immune system in our model enable its generalisation to biologic therapies, which

are used for treating more severe forms of psoriasis. In particular, developing machine learning

models predictive of psoriasis outcome for biologics is likely to be challenging due to the time-

sparsity of data during the early phases of biologics treatments, in part related to the time

frame of clinical follow up. As such, mechanistic models like ours built from both clinical data

and experimental data within the literature will likely be instrumental for modelling biologics

treatments.

Our model is based on three main assumptions: 1) apoptosis induced by a single UVB dose

lasts for 24 hours and affects proliferating keratinocytes and immune cells equally (see Section

2.2; based on our previous studies [4]); 2) cell growth depends on cell density (this is a com-

mon assumption in modelling—more details are given in Section E in S1 Text); and 3) our
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PASI model does not take the disease area into account, since our model tracks cell densities

only, and in most cases the PASI subscores are seldom recorded in the clinic. Additionally, our

model focuses on whole body phototherapy of mild to moderate psoriasis and whether more

severe psoriasis responds clinically in a similar manner remains to be determined

experimentally.

With respect to strengths, our model is computationally efficient: simulations generally

take only a few seconds on a standard desktop or laptop computer. Furthermore, with only

two tuneable parameters—UVB sensitivity and immune stimulus—our model is able to fit

with high accuracy real PASI data (in the sense that PASI outcome model simulations are com-

parable to PASI measurements by clinicians), including flares during the therapy. The UVB

sensitivity parameter could be estimated at baseline by clinical biomarkers or at week 3 during

UVB phototherapy by simple PASI readings (R2 = 0.895 and adjusted R2 = 0.894;

RMSE = 0.069). Our model supports personalised therapy outcome prediction by being able to

include UVB doses administered in the clinic and different delivery patterns (i.e., 3x weekly vs.
5x weekly). Finally, our model is highly generaliseable: it already has the foundations necessary

to accommodate other therapies (e.g., biologics) that block the immune stimulus (e.g., anti-IL-

17 or anti-IL-23 antibodies) or induce growth arrest.

As for limitations, it is worth noting that the PASI errors clustering can vary depending on

the utilised clustering algorithm and its hyper-parameters. This underscores the need for fur-

ther experimental work to identify the biomarkers that are associated with disease flares and

such studies can now be guided by our computational model. Although not strictly a limitation

of our modelling, one should keep in mind that PASI does not provide an objective,

completely reliable assessment of psoriasis severity. By definition, it is at least in part observer

dependent, and this could lead to significant differences between predicted and observed out-

comes in the clinic. Finally, our model provides a broader picture of the compartments within

epidermis, and therefore, it does not take into account certain specific spatial details. For

example, it cannot distinguish between the actively dividing and the dormant stem cells and

transit-amplifying cells. Also, cell differentiation is modelled as a single step process while in

reality it involves multiple stages.

The current ODE model is also confined by its transition between two main steady states.

Thus, the initial psoriasis state prior to UVB phototherapy is independent of individual PASI

scores, and therefore the cell densities at time 0 are equal. In expanding our model to consider

moderate to severe psoriasis and its response to biologics, it would prove highly complex and

computationally challenging to model individuals according to their exact baseline PASI. We

will thus explore broad categories of baseline psoriasis activity and how this influences

response (for example, PASI 5 to 10, PASI greater than 10, PASI greater than 20).

Our model is based on ODEs and therefore it necessarily needs to abstract some cellular

mechanisms to give an ‘overall’ picture of the system dynamics. For example, modelling the

different modes of division of stem cells is not currently readily compatible with ODEs. Ideally,

the state of every cell type should be represented by a different species (e.g., TA cells that

underwent one and two cycles of division will be modelled by two different species. Similarly,

symmetric and asymmetric divisions should be handled as separate ODEs). This would signifi-

cantly complicate the model and our approach of relating cell species and the clinical outcome

of the therapy in the form of PASI, which is crucial for personalised treatments. Agent-based

models would be a better framework to study in detail this kind of cellular mechanisms,

although at a much heavier price in terms of model construction and computational effort.

(The latter in particular would prevent such a model from being used in ‘real time’ in the

clinic, while ODEs simulation is nearly instantaneous.) Building on our previous work [4], we

are further developing a 3-dimensional agent-based model of psoriatic skin and UVB therapy
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that will be well suited to exploring symmetric and asymmetric divisions and other important

issues arising from experimental studies [66].

Although biologic therapy has not been considered in the current work, the explicit repre-

sentation of immune cells (DC, T) and mediators (TNF, IL-17, IL-23) opens up the possibility

of simulating the effects of biologics by adapting the current model. In addition, we suggest

that further studies to identify biomarkers (e.g., obtained from blood or RNA-sequencing of

biopsies) associated with the proposed UVB sensitivity parameter should be conducted. Data

from further clinical studies should also be used to refine and improve the model parameters.

Finally, validating the model in a clinical setting will open up its use for personalised treatment

of psoriasis in practice.

In conclusion, our computational model of psoriasis explicitly describes the interaction

between the immune system and epidermal keratinocytes in transitioning between the steady

states of lesional and non-lesional psoriatic skin. Importantly our model underscores the

importance of apoptosis as an important mechanism in clearance of psoriasis in response to

UVB. Together with data from our experimental studies [4, 45] this suggests that targeting of

apoptosis in drug development and therapeutic compound screening may prove useful. Addi-

tionally, our model distinguishes disease flares, and supports prediction of amending individ-

ual UVB phototherapy regimes based on the patient’s initial response that include for example

personalised delivery schedules (i.e., 3x weekly vs. 5x weekly phototherapy). Therefore, our

work represents a crucial step towards precision medicine for psoriasis.
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30. Valdimarsson H, Baker BS, Jónsdóttir I, Powles A, Fry L. Psoriasis: a T-cell-mediated autoimmune dis-

ease induced by streptococcal superantigens? Immunology Today. 1995; 16(3):145–149. https://doi.

org/10.1016/0167-5699(95)80132-4 PMID: 7718088

31. Gudjonsson JE, Thorarinsson AM, Sigurgeirsson B, Kristinsson KG, Valdimarsson H. Streptococcal

throat infections and exacerbation of chronic plaque psoriasis: a prospective study. British Journal of

Dermatology. 2003; 149(3):530–534. https://doi.org/10.1046/j.1365-2133.2003.05552.x PMID:

14510985

32. Cheng JB, Sedgewick AJ, Finnegan AI, Harirchian P, Lee J, Kwon S, et al. Transcriptional Program-

ming of Normal and Inflamed Human Epidermis at Single-Cell Resolution. Cell Reports. 2018; 25

(4):871–883. https://doi.org/10.1016/j.celrep.2018.09.006 PMID: 30355494

33. Doger FK, Dikicioglu E, Ergin F, Unal E, Sendur N, Uslu M. Nature of cell kinetics in psoriatic epidermis.

Journal of Cutaneous Pathology. 2007; 34(3):257–263. https://doi.org/10.1111/j.1600-0560.2006.

00719.x PMID: 17302610

34. Van Scott EJ, Ekel TM. Kinetics of Hyperplasia in Psoriasis. Archives of Dermatology. 1963; 88(4):373–

381. https://doi.org/10.1001/archderm.1963.01590220005001

35. Weinstein GD, McCullough JL, Ross P. Cell kinetic basis for pathophysiology of psoriasis. Journal of

Investigative Dermatology. 1985; 85(6):579–583. https://doi.org/10.1111/1523-1747.ep12283594

PMID: 4067329

36. Weinstein GD, van Scott EJ. Autoradiographic Analysis of Turnover Times of Normal and Psoriatic Epi-

dermis. Journal of Investigative Dermatology. 1965; 45(4):257–262. https://doi.org/10.1038/jid.1965.

126 PMID: 5837896

37. Halprin KM. Epidermal “turnover time”—A re-examination. British Journal of Dermatology. 1972; 86

(1):14–19. https://doi.org/10.1111/j.1365-2133.1972.tb01886.x PMID: 4551262

38. Iizuka H. Epidermal turnover time. Journal of Dermatological Science. 1994; 8(3):215–217. https://doi.

org/10.1016/0923-1811(94)90057-4 PMID: 7865480

39. Haake AR, Polakowska RR. Cell Death by Apoptosis in Epidermal Biology. Journal of Investigative Der-

matology. 1993; 101(2):107–112. https://doi.org/10.1111/1523-1747.ep12363594 PMID: 8345210

40. Mesa KR, Rompolas P, Zito G, Myung P, Sun TY, Brown S, et al. Niche-induced cell death and epithe-

lial phagocytosis regulate hair follicle stem cell pool. Nature. 2015; 522(7554):94–97. https://doi.org/10.

1038/nature14306 PMID: 25849774

PLOS COMPUTATIONAL BIOLOGY Individualised computational modelling of psoriasis onset, flare and clearance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010267 September 30, 2022 24 / 26

http://www.ncbi.nlm.nih.gov/pubmed/9516955
https://doi.org/10.1124/jpet.117.244855
http://www.ncbi.nlm.nih.gov/pubmed/29420255
http://www.ncbi.nlm.nih.gov/pubmed/1748552
https://doi.org/10.1038/s41591-020-01182-9
http://www.ncbi.nlm.nih.gov/pubmed/33432173
https://doi.org/10.1046/j.1523-1747.2001.01247.x
http://www.ncbi.nlm.nih.gov/pubmed/11180009
https://doi.org/10.1111/1523-1747.ep12261462
https://doi.org/10.1080/09553008514552541
https://doi.org/10.1080/09553008514552541
http://www.ncbi.nlm.nih.gov/pubmed/3510994
https://doi.org/10.1007/BF01943142
https://doi.org/10.1007/BF01943142
http://www.ncbi.nlm.nih.gov/pubmed/6617813
https://doi.org/10.1016/j.jdermsci.2004.05.004
http://www.ncbi.nlm.nih.gov/pubmed/15541634
http://hdl.handle.net/10443/1156
https://doi.org/10.1016/0167-5699(95)80132-4
https://doi.org/10.1016/0167-5699(95)80132-4
http://www.ncbi.nlm.nih.gov/pubmed/7718088
https://doi.org/10.1046/j.1365-2133.2003.05552.x
http://www.ncbi.nlm.nih.gov/pubmed/14510985
https://doi.org/10.1016/j.celrep.2018.09.006
http://www.ncbi.nlm.nih.gov/pubmed/30355494
https://doi.org/10.1111/j.1600-0560.2006.00719.x
https://doi.org/10.1111/j.1600-0560.2006.00719.x
http://www.ncbi.nlm.nih.gov/pubmed/17302610
https://doi.org/10.1001/archderm.1963.01590220005001
https://doi.org/10.1111/1523-1747.ep12283594
http://www.ncbi.nlm.nih.gov/pubmed/4067329
https://doi.org/10.1038/jid.1965.126
https://doi.org/10.1038/jid.1965.126
http://www.ncbi.nlm.nih.gov/pubmed/5837896
https://doi.org/10.1111/j.1365-2133.1972.tb01886.x
http://www.ncbi.nlm.nih.gov/pubmed/4551262
https://doi.org/10.1016/0923-1811(94)90057-4
https://doi.org/10.1016/0923-1811(94)90057-4
http://www.ncbi.nlm.nih.gov/pubmed/7865480
https://doi.org/10.1111/1523-1747.ep12363594
http://www.ncbi.nlm.nih.gov/pubmed/8345210
https://doi.org/10.1038/nature14306
https://doi.org/10.1038/nature14306
http://www.ncbi.nlm.nih.gov/pubmed/25849774
https://doi.org/10.1371/journal.pcbi.1010267


41. Raj D, Brash DE, Grossman D. Keratinocyte apoptosis in epidermal development and disease. The

Journal of investigative dermatology. 2006; 126(2):243–257. https://doi.org/10.1038/sj.jid.5700008

PMID: 16418733

42. Qin JZ, Chaturvedi V, Denning MF, Bacon P, Panella J, Choubey D, et al. Regulation of apoptosis by

p53 in UV-irradiated human epidermis, psoriatic plaques and senescent keratinocytes. Oncogene.

2002; 21(19):2991–3002. https://doi.org/10.1038/sj.onc.1205404 PMID: 12082529

43. Watson N, Wilson N, Shmarov F, Zuliani P, Reynolds NJ, Weatherhead SC. The use of psoriasis bio-

markers, including trajectory of clinical response, to predict clearance and remission duration to UVB

phototherapy. Journal of the European Academy of Dermatology and Venereology. 2021; 35

(11):2250–2258. https://doi.org/10.1111/jdv.17519 PMID: 34255884

44. Wrone-Smith T, Mitra RS, Thompson CB, Jasty R, Castle VP, Nickoloff BJ. Keratinocytes derived from

psoriatic plaques are resistant to apoptosis compared with normal skin. The American Journal of

Pathology. 1997; 151(5):1321–1329. PMID: 9358758

45. Addison R, Weatherhead SC, Pawitri A, Smith GR, Rider A, Grantham HJ, et al. Therapeutic wave-

lengths of ultraviolet B radiation activate apoptotic, circadian rhythm, redox signalling and key canonical

pathways in psoriatic epidermis. Redox Biology. 2021; 41:101924. https://doi.org/10.1016/j.redox.2021.

101924 PMID: 33812333

46. Athar M, Kim AL, Ahmad N, Mukhtar H, Gautier J, Bickers DR. Mechanism of Ultraviolet B-Induced Cell

Cycle Arrest in G2/M Phase in Immortalized Skin Keratinocytes with Defective p53. Biochemical and

Biophysical Research Communications. 2000; 277(1):107–111. https://doi.org/10.1006/bbrc.2000.

3436 PMID: 11027648

47. Pavey S, Russell T, Gabrielli B. G2 phase cell cycle arrest in human skin following UV irradiation. Onco-

gene. 2001; 20:6103–6110. https://doi.org/10.1038/sj.onc.1204707 PMID: 11593418

48. Youn SW, Choi C, Kim B, Chae J. Reduction of Inter-Rater and Intra-Rater Variability in Psoriasis Area

and Severity Index Assessment by Photographic Training. Annals of Dermatology. 2015; 27:557–62.

https://doi.org/10.5021/ad.2015.27.5.557 PMID: 26512170

49. Armstrong A, Parsi K, Schupp C, Mease P, Duffin K. Standardizing Training for Psoriasis Measures

Effectiveness of an Online Training Video on Psoriasis Area and Severity Index Assessment by Physi-

cian and Patient Raters. JAMA Dermatology. 2013; 149:1–6. https://doi.org/10.1001/jamadermatol.

2013.1083 PMID: 23426158

50. Robinson A, Kardos M, Kimball A. Physician Global Assessment (PGA) and Psoriasis Area and Sever-

ity Index (PASI): Why do both? A systematic analysis of randomized controlled trials of biologic agents

for moderate to severe plaque psoriasis. Journal of the American Academy of Dermatology. 2012;

66:369–75. https://doi.org/10.1016/j.jaad.2011.01.022 PMID: 22041254

51. Asawanonda P, Anderson RR, Chang Y, Taylor CR. 308-nm Excimer Laser for the Treatment of Psoria-

sis: A Dose-Response Study. Archives of Dermatology. 2000; 136(5):619–624. https://doi.org/10.1001/

archderm.136.5.619 PMID: 10815855

52. Fry L, Baker BS. Triggering psoriasis: the role of infections and medications. Clinics in Dermatology.

2007; 25(6):606–615. https://doi.org/10.1016/j.clindermatol.2007.08.015 PMID: 18021899
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