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Abstract

Recent research has advanced two degree-of-freedom (DoF), simultaneous, independent and 

proportional control of hand-wrist prostheses using surface electromyogram signals from remnant 

muscles as the control input. We evaluated two such regression-based controllers, along with 

conventional, sequential two-site control with co-contraction mode switching (SeqCon), in box-

block, refined-clothespin and door-knob tasks, on 10 able-bodied and 4 limb-absent subjects. 

Subjects operated a commercial hand and wrist using a socket bypass harness. One 2-DoF 

controller (DirCon) related the intuitive hand actions of open-close and pronation-supination 

to the associated prosthesis hand-wrist actions, respectively. The other (MapCon) mapped 

myoelectrically more distinct, but less intuitive, actions of wrist flexion-extension and ulnar-radial 

deviation. Each 2-DoF controller was calibrated from separate 90 s calibration contractions. 

SeqCon performed better statistically than MapCon in the predominantly 1-DoF box-block task 

(> 20 blocks/minute vs. 8–18 blocks/minute, on average). In this task, SeqCon likely benefited 

from an ability to easily focus on 1-DoF and not inadvertently trigger co-contraction for mode 

switching. The remaining two tasks require 2-DoFs, and both 2-DoF controllers each performed 

better (factor of 2–4) than SeqCon. We also compared the use of 12 vs. 6 optimally-selected EMG 

electrodes as inputs, finding no statistical difference. Overall, we provide further evidence of the 

benefits of regression-based EMG prosthesis control of 2-DoFs in the hand-wrist.
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I. Introduction

More than two million people live with limb absence in the U.S., and this number increases 

by an average 185,000 each year [1]–[3]. Trans-radial amputations make up 60% of total 

wrist and hand amputations, and documented rates of prosthesis use vary from 27–56% for 

upper-limb amputation [4]. The high demand for prostheses, expected to increase by at least 

47% by the year 2020, has brought more support from government and growth of the market 

[5].

While laboratory-based research on electromyogram (EMG) control has generated new 

strategies based on machine learning algorithms, most commercial prostheses still use 

simple two-site control schemes that have been available for decades [6]. Typical 

myoelectric prosthesis sockets are designed with two bipolar electrodes, one each located 

over extensor and flexor muscles, to control one degree-of-freedom (DoF) prosthesis hand 

open and close (Opn-Cls), respectively. Kestner [7] found need for a prosthetic wrist, as 

the fixed angle of a prosthetic hand is not compatible with all daily tasks (e.g., holding 

flatware for eating, a bottle for drinking). Although some advanced prostheses have a wrist 

rotator and users can co-contract their muscles to switch between hand open-close and wrist 

pronation-supination (Pro-Sup) [8], [9], users mostly employ their body and arm/shoulder 

movement for compensation instead [10]–[12]. Prosthesis mode switching, a.k.a. sequential 

2-DoF control via co-contraction mode switching, allows users to rotate the wrist with 

a complex and time-consuming approach [13]. Performance of this technique is highly 
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influenced by a user’s residual limb condition, since muscle contraction imbalance or neuron 

damage impede co-contraction; and users need a long period of time to master this skill, but 

easily fatigue [14].

Features extracted from myoelectric signals train models to estimate users’ intent. 

Regression modeling is one learning approach used to realize simultaneous, independent and 

proportional multi-DoF control [15]–[19]. Compared with classification models, of which 

numerous varieties have been investigated [20]–[25], the continuous outputs of regression 

estimates may more naturally mimic human movement. Regression models have been found 

to be more robust to some unpredictable small variations in EMG signals, such as fatigue or 

poor contact of electrodes, and may generate better performance during untrained conditions 

compared to classification models [19].

Most upper-limb myoelectric control users can easily operate hand open-close via the 

two-site conventional approach. But for wrist rotation—although most limb-absent users 

can easily rotate their residual limb repeatedly—the supinator (a wrist rotator) is a deep 

muscle difficult to record using surface EMG [26], and electrodes often shift during 

forearm rotation. These factors challenge the usability of surface EMG signals. As an 

alternative, researchers assessed offline other wrist motions of extension-flexion (Ext-Flx) 

and radial-ulnar deviation (Rad-Uln), especially since the EMG signal during Rad-Uln has 

demonstrably distinct patterns compared with the other wrist motions [27]. In the context 

of proportional control of multiple DoFs, “distinct” patterns are most clearly demonstrated 

when unique EMG channels record large amplitude EMG when contracting directly along 

one motion (e.g., radial deviation) and low amplitude EMG when contracting directly 

along all other motions. These results provide a potential 2-DoF control strategy by a 

corresponding “motion” mapping/translation.

Some prior lab-based prostheses testing of multiple-DoF control schemes used a large 

number of electrodes, or matrix electrodes. Such systems are not practical in current 

commercial prostheses due to cost and issues of electrode shorting/lift-off. Some researchers 

found that at least 4 electrodes were necessary to realize 2-DoF control, with improvement 

occurring if the number of electrodes increased [28]–[30]. A balance can be found between 

economic benefits and product quality if an optimal number of electrodes and their location 

were decided [28], [31].

Recent laboratory work studied myoelectric control using a 2-D virtual target tracing task, 

assessing performance via path efficiency, completion time, and attempt-ratio [32]. Others 

have studied the influence of training protocol [33], or of using modeling techniques of 

myoelectric representation learning (MRL) [34], principle component analysis (PCA) [33], 

and frequency division technique (FDT) [35]. Real 2-DoF prosthesis control during either 

laboratory or home study found a potential advantage of regression-based controllers [36] 

and classification-based [37], [38] in multi-DoF control compared with conventional control 

strategies.

Different regression-based approaches have been evaluated offline and online (e.g., [18], 

[32], [34]–[36], [39]). Most studies have used commercial prosthesis hardware, with custom 
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controllers. Electrode site selection is usually circumferential around the forearm (for hand-

wrist prosthesis) with equal inter-electrode distances, or manually selected based on residual 

anatomy. The number of electrodes used has varied. A few studies have combined pattern 

recognition with proportional control [40], [41] (as have some commercial products). A 

fundamental limitation of all of this work is the limited sample size (often ≤10), which 

seems necessitated by the complexity and cost of such studies [42], [43]. The aggregate 

sample size of limb-absent subjects that have tested such systems is even smaller (as small 

as one limb-absent subject in some studies). Hence, there exists no standard approach to 

regression-based multi-DoF simultaneous, proportional control of prostheses, particularly in 

controller calibration, regression method, number of electrodes used, electrode site selection, 

etc.; nor have its advantages vs. disadvantages with respect to other control approaches been 

adequately understood.

In this paper, we assessed regression-based simultaneous, independent and proportional 

2-DoF (hand-wrist) myoelectric prosthesis control on both able-bodied and limb-absent 

subjects, comparing three control strategies—Opn-Cls & Pro-Sup direct control, a new 

Ext-Flx & Rad-Uln mapping control with translation, and conventional two-site sequential 

control. Six or twelve optimally-sited electrodes (out of 16 total) were tested on a prosthesis 

to investigate the minimum number of electrodes feasible on commercial prostheses. Bypass 

brackets were designed separately for able-bodied and limb-absent subjects to carry a hand-

wrist prosthesis adjacent to the forearm/residual limb. Each bypass allowed subjects to don 

the prosthesis without a socket, while allowing access to the limb for electrode placement. 

The three control strategies were tested with different standard physical tasks—box-block, 

refined-clothespin relocation and door-knob (the latter two requiring use of 2-DoFs). Six 

vs. twelve optimally-selected electrodes were tested to explore the minimum number of 

necessary electrodes for able-bodied subjects. Based on these results, more targeted tasks 

were conducted on limb-absent subjects.

II. Methods

A. Experimental Apparatus

Experimental data were collected from 10 able-bodied (5 male, 5 female; aged 18–45 

years) and 4 trans-radial limb-absent (3 male, 1 female; aged 39–65 years; 2 congenital, 

2 traumatic amputee) subjects at Worcester Polytechnic Institute (WPI), as approved by 

the WPI Institutional Review Board (IRB Protocol 17–155). Able-bodied subjects had 

no physical limitations of their dominant forearm muscles. Limb-absent subjects had ≥5 

cm residual limb length with functional muscle contraction and prior experience with 

myoelectric-controlled prostheses. Subjects provided written informed consent.

Subjects stood at the experimental table, adjusted to hip height (Fig. 1). Sixteen bipolar 

EMG electrodes were secured on the proximal forearm, equally spaced about the forearm’s 

circumference. For able-bodied subjects, electrodes were secured on the dominant side with 

the midpoint of the bipolar contacts placed 5 cm distal to the elbow crease. For limb-absent 

subjects, electrodes were secured on the affected side at the level corresponding to that of 

their own prosthesis. Each bipolar electrode consisted of 5 mm diameter, stainless steel, 

hemispherical contacts separated 1 cm edge-to-edge, oriented along the forearm’s long 
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axis. Each EMG signal was differentially amplified (Liberating Technologies, Inc. BE328 

amplifier; 30–500 Hz pass band, CMRR > 100 dB over the pass band) and provided 

selectable gain. All EMG channels were sampled at 2000 Hz on a PC (16-bit resolution).

Then a 3D printed bypass prosthesis bracket was strapped to the shoulder and arm on the 

same side as the electrodes (Fig. 1). A wrist rotator (Fillauer Motion Control Standard Wrist 

Rotator, maximum speed 28 rpm) and prosthetic terminal device (System Electric Greifer 

DMC Plus, proportional speed 8–200 mm/sec) extended from the bypass, providing wrist 

Pro-Sup and hand Opn-Cls, respectively. The electrodes (input) and the prosthesis control 

signals (output) were part of a PC-based system programed in MATLAB (The MathWorks, 

Natick, MA, USA) [44]. The main processing loop of this system operated at 100 Hz so as 

to minimize controller delays.

B. Prostheses Control System

1) Control Sources: Subjects compared two regression-based 2-DoF simultaneous, 

independent and proportional velocity control algorithms, and conventional two-site velocity 

control. Limb-absent subjects controlled the prostheses by attempting to move their phantom 

limb. The control algorithms were as follows. 1) Direct control (DirCon) in which 

subjects’ Opn-Cls controlled Greifer Opn-Cls, and subjects’ Pro-Sup controlled prosthetic 

wrist rotation. This 2-DoF approach is the most intuitive. 2) Direct control with mapping/

translation (MapCon) in which subjects’ wrist Ext-Flx controlled Greifer Opn-Cls (Ext 

corresponded to Opn), and subjects’ Rad-Uln controlled prosthetic wrist rotation (Rad 

corresponded to pronation). Subjects were permitted to invert either/both of these mappings 

(although none chose to do so). 3) Sequential control (SeqCon) in which subjects controlled 

either Opn-Cls or Pro-Sup, then switched between them by triggering a co-contraction EMG 

signal. Co-contraction was defined as a simultaneous contraction of both processed forearm 

EMGs (processing described below) above set thresholds for a defined time duration 

[45], [46]. Each respective threshold was set between the EMG values triggered during a 

maximum co-contraction and normal hand-wrist tasks, as selected by the subject. The time 

duration was set between 30–100 ms, again selected by subject preference.

2) Control Calibration and Thresholding: For calibration of DirCon and MapCon 

(Fig. 2), subjects performed a 90 s calibration consisting of 10-s of rest and eight distinct 

10-s, contiguous constant-posture constant-force contractions (four 1-DoF and four 2-DoF). 

Since maximum voluntary contraction (MVC) cannot be measured on the affected side of 

prosthesis users, all subjects were instructed to maintain, as best as possible, a contraction 

target effort of 30%—without feedback. MVC was not measured in either the able-bodied 

or limb-absent subjects. For DirCon, the contraction sequence was: Cls, Opn, Sup, Pro, 

Cls+Sup, Cls+Pro, Opn+Sup, and Opn+Pro. For MapCon, the contraction sequence was: 

Flx, Ext, Uln, Rad, Flx+Uln, Flx+Rad, Ext+Uln, and Ext+Rad. Raw EMG signals from all 

channels were digitally notch filtered (second-order IIR filter at 60 Hz, notch bandwidth 

of 1 Hz), highpass filtered to attenuate motion artifact (fc = 15 Hz, fifth-order Butterworth 

filter), rectified, lowpass filtered (fc = 16 Hz; Chebyshev Type I filter, ninth-order, 0.05 

dB peak-to-peak passband ripple) and downsampled from 2000 Hz to 100 Hz. Then, a 

critically damped lowpass filter (fc = 1 Hz, second-order) [47] was applied to further 
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smooth the signal and estimate EMG standard deviation (EMGσ, a.k.a. processed EMG). 

The first and last second of each 10 s contraction was removed to avoid filter and movement 

transients. Then, each EMGσ from the resting contraction (weighted eight times) and the 

eight active contractions were used as inputs to a regression-based (2-output) static EMGσ-

force model [31]. Re-using one rest contraction balances the weight of the regression fit, 

without extending its duration. A force of zero was assigned as the output target for unused 

DoFs during each contraction. Fit coefficients were estimated via the linear least squares 

pseudo-inverse method, in which singular values of the design matrix were removed if the 

ratio of that singular value to the largest was less than a tolerance value (Tol = 0.01, based 

on previous study) [16], [48]. Backward stepwise selection was utilized for optimal selection 

of either 6 or 12 electrodes (out of 16 total). In this manner, only the best channels yielding 

the lowest RMSE between EMG-force and target force were used [28], [31], and their gains 

were calculated for prostheses control. In addition, this RMSE provided an assessment of the 

calibration quality.

During experimental trials using DirCon and MapCon, EMG-force was computed in real-

time, then two thresholding methods were applied. First, a resting threshold was applied 

to each direction of the two individual DoFs (total of four thresholds) to minimize the 

impact from noise and unintentional EMGσ signals. Initially, the threshold was set to 10 

%MVC for each direction. Then, subjects were asked to rest and to slowly move their 

arm. If unintentional prosthesis movement resulted, the corresponding threshold was slightly 

increased until no movement occurred. Second, a fixed-ratio co-activation thresholding 

method was applied to attenuate the risk of inadvertent activation of another DoF (Fig. 3). 

When the ratio of the larger force (in %MVC) to the smaller force (from the two DoFs) was 

less than a threshold, only the DoF with the larger force was actuated. If the two forces are 

drawn in the x-y plane, a default threshold angle of α = 25 degrees [49] was used. This angle 

could be changed during setup as desired by the subject.

For SeqCon, the two channels which produced the most distinct EMGσ (based on channel 

amplitudes) when subjects performed Ext and Flx calibration, respectively, were manually 

chosen. For limb-absent subjects, we selected EMG sites near the location of the sites 

used by their existing two-site prosthesis controller, whenever multiple distinct channel 

options existed. Each channel gain was set to correspond to 30% MVC. The estimated 

force was calculated as the algebraic difference of the forces estimated by each channel. A 

resting threshold was applied to each channel to reduce the influence of noise and small 

unintentional activation. For switching between the 2 DoFs, a fixed window size (30–100 

ms) and a co-contraction threshold were set to detect a co-contraction. All the channels and 

coefficients were manually calibrated until subjects could easily control the prostheses and 

trigger co-contraction.

3) Hardware Control: The estimated hand and wrist force levels, in %MVC, were 

linearly mapped to hand and wrist velocity (speed and direction), with 50% MVC in each 

corresponding to maximum speed. Built-in hardware thresholds were essentially disabled 

by matching the software thresholds to them. Thus, all thresholding was set in our custom 

software.
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C. Experimental Protocol

Subjects stood for all tasks, but otherwise their posture was not constrained (Fig. 1). To 

prevent cumulative muscle fatigue, at least two minutes rest after calibration and one minute 

rest between trials were provided. All limb-absent subjects completed 10–20 minutes of 

mirror-box training before the trials to help rebuild their phantom limb control sensation. 

The two traumatic amputees had prior mirror-box training experience.

To assess controller performance, three tasks were chosen from widely-used outcome 

measures described in the literature. 1) The box-block task [50] was a 1-DoF assessment 

mainly testing hand Opn-Cls. Subjects grasp (hand Cls) a block and then drop it (hand Opn) 

after traversing over a partition. They return back over the partition and repeat. We did not 

lock the prostheses into 1-DoF control during this task. The number of transferred blocks in 

60 s and number of drops were measured in each trial. 2) The refined-clothespin relocation 

task [51] was a 2-DoF assessment. Subjects perform hand Cls to grasp a clothespin (2 lbs. 

resistance) from a horizontal rod, rotate the clothespin 90° (wrist Pro or Sup), then place and 

release (hand Opn) the clothespin onto a vertical rod. Once complete, subjects rotate their 

wrist back to its original orientation and attempt to relocate another clothespin. Subjects 

were allowed to use arm or body movement for compensation. If the clothespin dropped, 

subjects moved on to the next clothespin. The time required to complete three successful 

moves (maximum of 120 s) and number of drops were measured in each trial. 3) The 

doorknob task was a 2-DoF assessment. Opening a door is a common but important task 

that most people face every day. Compared with the SHAP door-handle test [52], our task 

used a round knob so as to require actuation of both the wrist and hand—more appropriate 

for 2-DoF assessment. During each task cycle, subjects grasped the round knob of the door 

(hand Cls), rotated the knob (wrist Pro or Sup), pulled the door open, and then released the 

knob (hand Opn). Subjects then shut the door to ready for the next trial. The time required to 

complete three successful door openings (maximum of 120 s) was measured in each trial.

Three control strategies (DirCon, MapCon, SeqCon) were tested on all subjects. Subjects 

initially performed calibration, then used all 16 electrodes to test all motions and their 

combinations. Thresholds were adjusted, based on their feedback, to enhance control 

robustness and accuracy. If it was still difficult to control the prostheses, all subjects were 

offered at most three calibrations and chose the best one for the tasks. These calibration 

steps, combined with subject practice, typically lasted 20–30 minutes per controller. 

Additional time was provided, as needed, until each subject confirmed that they were 

comfortable controlling the prosthesis. Then for control tasks, able-bodied subjects used 

DirCon and MapCon with either 6 or 12 electrodes (backward selected). Limb-absent 

subjects only used 6 electrodes for DirCon and MapCon, to shorten the experiment length to 

prevent fatigue. All subjects used SeqCon with 2 electrodes (manually selected, as described 

above). The three control strategies, number of electrodes used (only varied for able-bodied 

subjects) and three tasks were randomized during the experiment. Subjects were blinded to 

the number of electrodes in use. Three trials of data were collected for each condition.
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D. Statistics

1) Calibration Quality Assessment: The RMSEs from the calibration quality 

assessment satisfied the normality assumption. Thus, repeated measures analysis of variance 

(RANOVA) and post hoc paired t-tests with Bonferroni correction (significance level p = 

0.05) were used to test for RMSE differences. Prior to RANOVA, the degree of sphericity 

(ε) was used to adjust the degrees of freedom by either the method of Greenhouse-Geisser 

(ε < 0.75) or Hyunh-Feldt (0.75 < ε < 1). Each RANOVA assessed all possible interactions. 

These interactions were not significant, unless noted otherwise in the Results. When 

interactions were found, we proceeded to post hoc pair-wise comparison of all factor 

combinations, since the number of combinations was small.

2) Task Outcomes Involving Able-Bodied Subjects (Including Comparisons 
Between Able-Bodied and Limb-Absent Subject Results): We separately averaged 

each outcome measure (number of box-block transfers, time per clothespin transfer, and 

time per door open and close cycle) across the three trials per condition. Prior to each 

statistical test, we evaluated the normality assumption of the test data. The number of 

drops per trial in box-block and clothespin tasks failed the normality test, thus a non-

parametric Friedman test was used to test performance differences. All other outcome 

measures satisfied the normality assumption. Thus, RANOVA and post hoc paired t-tests 

with Bonferroni correction were used to test performance differences. Adjustments for 

degrees of freedom and treatment of interactions were performed as described above.

3) Task Outcomes Involving Only Limb-Absent Subjects: When comparing 

performance within a task for the limb-absent subjects, our subject pool was quite 

heterogeneous (2 congenital and 2 traumatic limb loss; distinct remnant musculature for 

each; distinct past experience with myocontrol for each), thus performance differences were 

tested using “n-of-1” statistical analysis (i.e., separate statistical analysis for each subject). 

The n-of-1 approach has been used before in prosthesis control research [36] and is well 

suited for heterogeneous subject pools with chronic conditions [53]. Thus, we separately 

conducted RANOVA (after confirming data normality) and post hoc t-tests with Bonferroni 

correction for each subject, without averaging the three trials per condition. Adjustments for 

degrees of freedom and treatment of interactions were performed as described above.

III. Results

A. Calibration Quality Assessment

Fig. 4 shows example target force levels and EMG-estimated forces for a set of calibration 

trials. Fig. 5 summarizes across subjects the RMSE between the target %MVC and that 

estimated from EMGσ of each calibration contraction type, separately for able-bodied and 

limb-absent subjects, and number of electrodes retained after backward stepwise selection. 

Both hand and wrist errors always contributed to the RMSE, even during 1-DoF tasks. 

This assessment describes how well subjects can produce the desired calibration contraction, 

which forms the basis of the 2-DoF control algorithms.
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For able-bodied subjects, a three-way RANOVA of RMSE was computed with factors: 

control strategy (DirCon, MapCon), number of electrodes (6, 12) and calibration contraction 

type (9 values, see Fig. 5). A significant interaction was found between control strategy and 

number of electrodes [F (1, 9) = 16.0, p = 0.002], while calibration contraction type was 

significant [F (8, 72) = 43.2, p < 10−6]. Post hoc comparison of the interacting factors found 

that for both DirCon and MapCon, 12 electrodes had lower RMSE than 6 electrodes (p ≤ 

10−4). For contraction type, rest always had lower RMSE than all other types (p < 10−4), 

Cls / Flx exhibited lower RMSE than Pro / Rad (p = 0.005), Cls+Sup / Flx+Uln (p = 0.003), 

Cls+Pro / Flx+Rad (p = 0.006) and Opn+Sup / Ext+Rad (p = 10−4); Opn / Ext had lower 

RMSE than Opn+Sup / Ext+Rad (p = 0.004); and Sup / Uln had lower RMSE than Cls+Pro / 

Flx+Rad (p = 0.012) and Opn+Sup / Ext+Rad (p = 0.026).

For limb-absent subjects, a two-way RANOVA of RMS error with factors control strategy 

and calibration contraction type found only type was significant [F (1.5, 4.5) = 19.1, pGG = 

0.007]. Post hoc comparison only found rest motion had lower RMSE than all others (p < 

0.04).

B. Box-Block Task

For able-bodied subjects (see Fig. 6 for summary results), the number of transfers in one 

minute, where more transfers represented better performance, was compared between 2-DoF 

control strategies (MapCon, DirCon) and number of electrodes (6, 12) via a two -way 

RANOVA. No statistical differences were found.

Next, we limited analysis of the 2-DoF control strategies to trials using 6 electrodes, 

available for both able-bodied and limb-absent subjects (see Fig. 6 for summary results). 

For number of transfers, a mixed two-way RANOVA with within-subjects factor of control 

strategy (DirCon + 6 electrodes, MapCon + 6 electrodes, SeqCon + 2 electrodes) and 

between-subjects factor of group (able-bodied, limb-absent) found control strategy to be 

statistically different [F (2, 24) = 21.62, p < 10−5], but group was not [F (1, 12) = 3.285, 

p = 0.095]. Post hoc comparison found that SeqCon transferred significantly more blocks 

than both MapCon (p < 10−3) and DirCon (p = 0.004). Note that while using SeqCon on this 

task, mode switching was not disabled. Nonetheless, the task was completed predominantly 

using only the hand DoF, and body/elbow/shoulder movement. Separately, a Friedman test 

on number of drops per trial (able-bodied subjects only) found no significant difference 

between the three control strategies.

Additionally for each limb-absent subject, the number of transfers in one minute (see Fig. 7) 

was compared between three different control strategies (MapCon+6 electrodes, DirCon+6 

electrodes, SeqCon) via a one-way RANOVA, with post hoc comparison made when a 

significant difference was found. The three trials per condition were not averaged. For three 

of the four subjects, the RANOVA was significant [F (2, 6) > 27, p ≤ 0.001], with post hoc 
comparison showing that SeqCon transferred more blocks (by a factor of 2–4) than either 

MapCon or DirCon (p < 0.038). For two of the associated post hoc evaluations, DirCon also 

transferred more blocks than MapCon (p < 0.038).
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C. Refined-Clothespin Relocation Task

For able-bodied subjects (Fig. 6), the time per move, where shorter time represented 

better performance, was compared between 2-DoF control strategies (MapCon, DirCon) 

and number of electrodes (6, 12) via a two-way RANOVA. No statistical differences were 

found.

Next, we limited analysis of the 2-DoF control strategies to trials using 6 electrodes, 

available for both able-bodied and limb-absent subjects (Fig. 6). For time per move, a mixed 

two-way RANOVA with within-subjects factor of control strategy (DirCon + 6 electrodes, 

MapCon + 6 electrodes, SeqCon + 2 electrodes) and between-subjects factor of group 

(able-bodied, limb-absent) found control strategy to be statistically different [F (1.27, 15.24) 

= 16.97, pGG < 10−4], but group was not [F (1, 12) = 0.007, p = 0.93]. Post hoc comparison 

found that SeqCon took significantly longer time than both MapCon (p = 0.003) and DirCon 

(p = 10−5). Separately, a Friedman test on number of drops per successful move (able-bodied 

subjects only) found no significant difference between the three different control strategies.

Additionally, for each limb-absent subject, time per move (Fig. 7) was compared between 

three different control strategies (MapCon+6 electrodes, DirCon+6 electrodes, SeqCon) via 

a one-way RANOVA, with post hoc comparison made when a significant difference was 

found. The three trials per condition were not averaged. For two of the four subjects, the 

RANOVA was significant [F (2, 6) = 11, p ≤ 0.009], with post hoc comparison in both 

showing that SeqCon required more time (poorer performance) than DirCon (p ≤ 0.01). For 

one of these subjects, SeqCon also required more time than MapCon (p = 0.001).

D. Door-Knob Task

For able-bodied subjects (Fig. 6), the time per door-open-close cycle, where shorter time 

represented better performance, was compared between 2-DoF control strategies (MapCon, 

DirCon) and number of electrodes (6, 12) via a two -way RANOVA. No statistical 

differences were found.

Next, we limited analysis of the 2-DoF control strategies to trials using 6 electrodes, 

available for both able-bodied and limb-absent subjects. For time per cycle, a mixed 

two-way RANOVA with within-subjects factor of control strategy (DirCon + 6 electrodes, 

MapCon + 6 electrodes, SeqCon + 2 electrodes) and between-subjects factor of group 

(able-bodied, limb-absent) found significant interaction between these two factors [F (2, 24) 

= 3.8, pGG = 0.037]. We proceeded to paired post hoc comparisons, finding that with the 

SeqCon control strategy, limb-absent subjects required more time than able-bodied subjects 

(p = 0.008); and with the limb-absent subject group, SeqCon required more time than both 

MapCon (p = 0.005) and DirCon (p = 0.01).

Additionally, for each limb-absent subject, time per cycle was compared between three 

different control strategies (MapCon+6 electrodes, DirCon+6 electrodes, SeqCon) via a 

one-way RANOVA, with post hoc comparison made when a significant difference was 

found. The three trials per condition were not averaged. For two of the four subjects, the 

RANOVA was significant [F (2, 6) > 24, p ≤ 0.001], with post hoc comparison finding that 

SeqCon required more time than either of MapCon (p ≤ 0.003) or DirCon (p ≤ 0.003). For 
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one other subject, the RANOVA was significant [F (2, 6) = 20.72, p = 0.002], with post hoc 
comparison finding that SeqCon and DirCon each required more time than MapCon (p ≤ 

0.009).

IV. Discussion

This research assessed the performance of regression-based 2-DoF simultaneous, 

independent and proportional myoelectric prosthesis control with different control strategies 

(DirCon, MapCon) and number of optimally-sited electrodes (6, 12), as compared to 

conventional sequential control (SeqCon). Evaluation was tested on standard box-block task 

(1-DoF assessment), refined-clothespin relocation task (2-DoF assessment) and a door-knob 

task (2-DoF assessment). The overall results showed no significant difference between 6 

and 12 electrodes. When tested on limb-absent subjects with only 6 electrodes, all subjects 

successfully controlled the prostheses to complete the tasks. Both MapCon and the more 

intuitive DirCon exhibited good performance, indicating they could be potential approaches 

for 2-DoF control.

A. Calibration Quality Assessment

In this study, subjects were offered up to three calibration trials, and could self-select 

the “best” trial after being given ample time to become comfortable with controlling the 

prosthesis. We presumed that a calibration with low EMG-force RMSE facilitates successful 

2-DoF control, and vice versa. Hence, we assessed EMG-force performance of the accepted 

trial. The principal findings were that RMSE was lower during rest contractions and that 

12 electrodes provided better EMG-force estimation than 6. The rest result is likely due 

to the fact that subjects can easily maintain a reproducible rest contraction, even in the 

absence of force feedback. But, it is difficult to accurately maintain a fixed active force 

level in the absence of feedback [54], [55], leading to poor tracking of the target force. One 

possible future solution is to feedback EMGσ in real time, which still avoids the need for 

measurement of force.

The finding that offline EMG-force estimation improved with 12 electrodes vs. 6 has 

been noted previously [28], [31]. Anecdotally, however, we found that subjects were not 

necessarily choosing the calibration trial with the lowest RMSE. In fact, some low RMSE 

calibration trials produced control models in which subjects could not actuate in one of the 

directions (i.e., no movement achievable). These calibrations were not selected. Nonetheless, 

a better metric might be the worst-case error out of the various control directions within 

a calibration trial, or some other metric that insures robust performance in all movement 

directions. This issue of strong offline EMG-force estimation not correlating to strong online 

prosthetic control has been noted by past studies. But, it is postulated that subjects can 

learn and adapt to the forward dynamics of the prosthesis in regression-based proportional 

control processors, perhaps reducing the requirement for highly accurate forward dynamics 

[19], [56]. Similarly, some studies of classification-based myocontrol of prostheses have 

found that high offline classification accuracy does not necessarily lead to high online 

performance [25], [57], [58]. These observations are disconcerting, since online performance 

evaluation is far more expensive and time-consuming than offline (in which many different 
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processing schemes can be evaluated, with many parameter variations), which likely slows 

the advancement of control algorithms. To combat this problem, recent investigation found 

that a combination of offline performance metrics [59], or alternative metrics [60], better 

correlated with online performance in classification-based controllers. Thus, a path may still 

exist for classification-based offline prosthesis control algorithm development, which would 

be a welcomed efficiency. Perhaps similar metrics can be developed for proportional control 

algorithms. In any case, further investigation is warranted to develop a self-assessment of 

calibration quality.

We calibrated using 10 s contractions at 30% MVC effort. It is likely that shorter durations 

would yield similar EMG-force performance, and thus be more convenient [61], [62]. Other 

effort levels might also be more appropriate, and could be investigated in the future. In fact, 

it is not clear that the same effort level should be prescribed for each movement direction. 

What is most important seems to be controllability. Additional gain (or gain attenuation) 

could be applied to each movement direction by the controller. Further, selection of the 

various noise floor thresholds also could strongly influence controller performance.

B. Sequential Control With Co-Contraction Was Better for 1-DoF Box-Block Task

Considering trials using 6 electrodes, SeqCon had (statistically significant) higher number 

of transports per minute on the 1-DoF box-block task than each of MapCon and DirCon. 

Because we didn’t lock wrist rotation during this task, 2-DoF control had the risk of 

unwanted wrist rotation, after which subjects lost time realigning the wrist to grasp the 

next block (e.g., similar to [63]). Subjects reliably contracted flexor muscles, then extensor 

muscles to grasp and release blocks, respectively. Therefore, an option to switch temporarily 

to 2-site SeqCon may be necessary within advanced prostheses controllers as an alternative 

scheme during activities when only Opn-Cls (1-DoF) contractions are required.

C. Two-DoF Control Was Best for 2-DoF Tasks

Sequential control is a complicated approach for 2-DoF control. None of our able-bodied 

subjects had prior experience using co-contraction for mode switching, thus required a 

relatively long training time. One limb-absent subject had used a prosthesis with EMG co-

contraction mode switching for several years, so achieved complete calibration in less than 

5 minutes. The remaining limb-absent subjects struggled to learn the skill. Their imbalanced 

contraction between flexion and extension muscles made co-contraction difficult. EMGσ 
from one channel often increased faster than the other, thus the difference between the 

two channels caused prosthesis movement prior to triggering the desired co-contraction. We 

mitigated this issue by rigorous selection of thresholds, but could not completely avoid it. 

Furthermore, frequent co-contraction is likely to cause fatigue.

Multi-DoF control is the trend for future prostheses development. Several virtual studies 

utilizing classification tests [64], [65] and/or target tracking [32], [39] have shown that 

limb-absent subjects can control a virtual 2-dimensional movement task with high precision. 

Using a physical prosthesis, all our limb-absent subjects had no difficulty realizing 

simultaneous, independent and proportional 2-DoF control, without prior experience doing 

so. Some prior research has found poorer performance when using Pro-Sup inputs, perhaps 
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due to electrode shift over muscle during Pro-Sup rotation or because key active muscles 

(e.g., supinator) are found deeper within the forearm and may not have EMG that is as 

identifiable at the skin surface. In contrast, summarizing our results across the 2-DoF tasks 

found that DirCon (Pro-Sup queued wrist rotation) performed similar to MapCon (Rad-Uln 

queued wrist rotation), and these two control strategies performed noticeably better than 

SeqCon.

To realize 2-DoF control, four distinct patterns/dimensions of EMG signals should be 

generated and then distinguished by the controller. For MapCon, which utilized more 

distinct wrist actions (Ext-Flx and Rad-Uln), subjects found little difficulty in separately 

controlling prosthesis open, close, pronate, supinate, or their combinations. But for DirCon, 

which utilized less distinct wrist actions (Opn-Cls and Pro-Sup), some subjects inadvertently 

produced wrist supination when attempting to trigger hand open. To reduce these errors, 

some subjects slowly opened the prosthesis hand, or triggered prosthesis hand open by 

simultaneously activating native/phantom hand open with low-effort pronation. We largely 

mitigated this problem by setting higher Sup thresholds, reducing the sensitivity of rotation. 

Subjects seemed to prefer this higher threshold, since they seemed to prioritize hand 

open/close performance, achieving small hand rotations through body posture and shoulder 

movement.

Another principle to realize 2-DoF control is the ability of subjects to reproduce the same 

EMG patterns as during calibration. For able-bodied subjects, reproducibility is facilitated 

by feedback from their real hand and wrist to produce the same motions. Limb-absent 

subjects do not have this advantage. In fact, congenital limb-absent subjects will never have 

experienced these feedback sensations. These differences may explain, in part, why the 

able-bodied subjects performed better than the limb-absent subjects on the 2-DoF door-knob 

task. Accordingly, congenital limb-absent subjects may be more amenable to MapCon, since 

they would be mapping “motions” which they have never experienced in the first place. If 

novel motor patterns are to be learned, selection of patterns that are more distinguishable 

from surface EMG are likely to be beneficial.

Traditionally, multi-DoF control is assumed to best be facilitated by selecting intuitive 

control strategies/phantom limb contractions [23], [66]–[68]. Indeed, limb-absent subjects 

have also opined this assumption [69]. However, recent evidence suggests that, with 

multiday training, feedback can be used to habituate non-intuitive muscle synergies that 

might be more advantageous for prosthesis control [70], [71]. Hence, multiday studies, 

which are more reflective of actual prosthesis use, may be necessary to best contrast the 

advantages of intuitive contractions vs. those which may be less intuitive but perhaps better 

for prosthesis control (after training).

D. Number of Electrodes and Channel Selections

Six or 12 optimally-sited electrodes demonstrated no significant difference when subjects 

controlled the prostheses for any of the tasks, even though 12 electrodes provided better 

EMG-force estimation during calibration of both DirCon and MapCon. The tasks and 

conditions were randomized and subjects were blinded to the number of active EMG 

channels in use. Most subjects could recognize the difference between 12 vs. 6 channels 
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due to different channel selection and different coefficients, but they could not tell which 

option provided better control. Six electrodes are reasonable to apply on a commercial 

prostheses considering cost, complexity and required microcontroller computation speed. 

When 6 electrodes were applied on limb-absent subjects, they could easily control the 

prosthesis after practice. Since adjacent EMG signals are highly correlated, a further 

increase in EMG channels introduces more redundant information, along with increased 

risk of electrode shorting, lift-off, etc. [72]. It is possible that even fewer than 6 electrodes 

might be acceptable, although not likely less than 4 for simultaneous, proportional and 

independent 2-DoF operation [28]–[30]. We used backward stepwise selection from 16 

candidate electrodes to reduce the number of electrodes to 12 or 6. In practice, this selection 

step would be part of the prosthesis fitting operation completed by a prosthetist and, 

thereafter, the electrode sites would be fixed into their socket. Though different subjects 

had their own best electrode locations, the selected electrodes were always spread around the 

limb, not concentrated in one muscle region.

E. Limb-Absent Subject Performance

Each limb-absent subject had prior myoelectric prosthesis control experience, completed 

mirror-box training before the experimental trials, and received practice time with each 

controller. Anecdotally, the mirror-box training was not judged by the subjects to be 

essential, since their prior myoelectric prosthesis use seemed to guide their perceived 

contraction pattern preferences. Nonetheless, we anecdotally observed that subjects became 

more skilled in the use of the prosthesis trial by trial. These learning effects were 

mitigated in our statistical comparisons because we randomized the testing order for each 

subject. Hahne et al. [36] compared 2-DoF, regression-based hand-wrist prosthesis control 

performance in five limb-absent subjects across two days, and found some improvement 

on the second day. They postulated that prosthesis control might benefit from interactive 

learning; the algorithm learns the EMG signal patterns from the user and generates 

corresponding coefficients, then the users learn how to use the prosthesis, etc.

The statistical tests using only limb-absent subject data variously found significance 

for the box-block, clothespin and door-knob tasks, suggesting that different subjects 

exhibited unique differences in performance. Numerous preexisting factors—such as 

muscle contraction ability, length of prosthesis use, limb-loss type and learning ability—

should greatly influence task performance. Hence, prosthesis controller implementation for 

different users must consider their unique needs and characteristics. Of note, all limb-absent 

subjects used 2-DoF control for the first time in this study, and with only 20–30 minutes 

of practice. Yet, each limb-absent subject performed better on each 2-DoF task using each 

2-DoF controller (compared to SeqCon).

F. Two-DoF Controller Limitations and Challenges

Though each subject could complete each of the three tasks using the 2-DoF controllers, 

substantial challenges remain. It was obvious that the quality of calibration was essential to 

a subject’s performance. For some subjects, the first calibration did not result in effective 

prosthesis control, perhaps because these subjects may have focused more on achieving 

the instructed calibration contraction profile and not on contraction efforts that would 
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be easy for them to reproduce during real tasks. For these subjects, the second or third 

calibration usually led to a dramatic improvement in control. A more objective measure 

of calibration “success” is desired to inform the user if they need to re-calibrate for better 

control. Assessment of overall RMSE between target force and EMG-estimated force may 

be dubious. Analyzing the error from each individual motion direction after calibration 

might better help the user gradually develop the best patterns for everyday calibration.

Another issue was unintentional movement from another DoF. We manually applied two 

thresholding methods to reduce the impact from unintentional movement. However, a 

more reproducible, automated method for threshold selection should be developed. The 

unintentional movement usually happened in two cases. First, it occurred when subjects had 

a fast change from one motion to another. In this situation, EMG in most channels would 

spike, producing EMGσ values much higher than normal contraction. These contractions 

usually triggered a correct movement of the desired DoF, but also generated unexpected 

movement from another DoF. Second, unintentional movement was sometimes produced 

when subjects used very high force levels to control the prostheses, likely due to antagonist 

muscle co-contraction. In both of these cases, the contraction patterns are not present in the 

calibration data. It is hard to completely avoid unintentional movement during control, but 

effective threshold selection and lower muscular efforts can reduce the sensitivity of our 

current approaches. In this way, users can focus on one DoF with accurate and robust control 

and use an additional DoF when needed.

G. Primary Results and Contributions of This Work

The primary results and contributions of this work include:

• The work adds to the body of evidence on the successful use of regression-

based EMGσ-force models for simultaneous, independent and proportional 

myoelectric control of 2 DoFs in a hand-wrist prosthesis. A small number of 

literature studies/subjects exist in which online performance has been evaluated, 

processing methods vary for each, and the aggregate sample size of limb-

absent subjects in these studies is even smaller. Our studies with limb-absent 

subjects, therefore, add substantively to the literature. We have shown that our 

regularization method (Moore-Penrose pseudo-inverse) can provide useful online 

myocontrol of a physical prosthesis.

• One-DoF controllers demonstrated some advantages in 1-DoF tasks, while 2-

DoF controllers performed better in 2-DoF tasks. Prosthesis control algorithms 

should consider providing a mechanism for users to volitionally toggle between 

such controllers, in order to select the best controller for the task.

• Determining optimal locations to site EMG electrodes for prosthesis control has 

historically been more of an art than a science [73]. We previously introduced 

applying several electrodes about the limb, then selecting offline a minimum 

number of optimal electrodes via backward stepwise selection in an EMGσ-

force model [28], [31]. In the current work, this method was evaluated with 

online tasks using a physical prosthesis, with both able-bodied and limb-absent 

subjects. We demonstrated that offline EMGσ-force estimation benefited from 
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12 electrodes, but online myocontrol performed no different with 6 optimally-

sited electrodes (out of 16 total). In practice, electrode site selection would be 

performed during prosthesis fitting and used to select permanent electrode sites. 

No automated methods for site selection are available in commercial devices. 

Our backward selection method could provide such a method.

• This work provided considerable methods detail and discussion on the pivotal 

role of noise threshold selection in myocontrollers. These parameters and how 

they are used in the prosthesis controller tend to receive far less attention. 

But, most muscle effort occurs at low contraction, wherein measurement noise 

has a disproportionate influence [74]. Future work could look at more formal 

methods of noise attenuation, along with automated and reproducible selection of 

algorithm parameters/thresholds.

• Our work found statistical differences when comparing performance within 

limb-absent subjects, but these differences were not uniform. Some of these 

distinctions may simply reflect statistical variation. But, others may be a 

reminder of the unique anatomical and physiologic characteristics of each 

prosthesis user. That is, a “one-size fits all” solution may not be best for the 

limb-absent population.

V. Conclusion

This laboratory study evaluated two regression-based 2-DoF prosthesis control methods, 

compared with conventional co-contraction sequential control in box-block, refined-

clothespin, and door-knob tasks on both able-bodied and limb-absent subjects. We found 

that in the box-block task that focused on 1-DoF performance, conventional SeqCon 

performed better than MapCon and DirCon. In 2-DoF tasks (clothespin, doorknob), both 

MapCon and the more intuitive DirCon performed better than SeqCon, with faster and 

more robust performance. Six optimally-sited electrodes (out of 16 total) had overall 

similar performance with 12 electrodes and are more feasible for commercial prosthesis 

applications. More algorithm and hardware design to improve control comfort and 

robustness are appropriate next steps.
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Fig. 1. 
Experimental apparatus for box-block (top) and clothes pin (bottom) tasks, limb-absent 

subject. The subject was asked to wear a bypass bracket that attached a hand-wrist 

prosthesis. The forearm could move freely.
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Fig. 2. 
Sequence of calibration contractions. Subjects follow the instructions to perform indicated 

constant-pose, constant-force contractions over 90 s. The recording was used for coefficient 

calculation and calibration quality assessment.
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Fig. 3. 
Thresholding methods for 2-DoF control including resting (inner square) and fixed-ratio 

thresholding (blue and red lines emanating from inner square). Based on method of Fougner 

et al. [49].
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Fig. 4. 
Calibration time-series examples from one subject for a) MapCon and b) DirCon. Dashed 

red line segments show target force level. Wavy blue lines show model-estimated force.
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Fig. 5. 
Calibration quality assessment boxplots. RMSE for each contraction type under different 

control methods (MapCon, DirCon) and number of EMG electrodes (6, 12) for both able-

bodied and limb-absent subjects.
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Fig. 6. 
Boxplot results for a) box-block task (number of transfers per minute, drops per minute), 

b) clothespin task (time per move, drops per successful move), c) door-knob task (time per 

open/close cycle).
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Fig. 7. 
Boxplot results for each limb-absent subject for the box-block task (top row), clothespin task 

(middle row), and door-knob task (bottom row).
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