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Abstract: Colon cancer remains one of the leading causes of cancer-related deaths worldwide.
Transformation of colon epithelial cells into invasive adenocarcinomas has been well known to
be due to the accumulation of multiple genetic and epigenetic changes. In the past decade, the
etiology of inflammatory bowel disease (IBD) which is characterized by chronic inflammation of the
intestinal mucosa, was only partially explained by genetic studies providing susceptibility loci, but
recently epigenetic studies have provided critical evidences affecting IBD pathogenesis. Over the
past decade, A deep understanding of epigenetics along with technological advances have led to
identifying numerous genes that are regulated by promoter DNA hypermethylation in colorectal
diseases. Recent advances in our understanding of the role of DNA methylation in colorectal diseases
could improve a multitude of powerful DNA methylation-based biomarkers, particularly for use
as diagnosis, prognosis, and prediction for therapeutic approaches. This review focuses on the
emerging potential for translational research of epigenetic alterations into clinical utility as molecular
biomarkers. Moreover, this review discusses recent progress regarding the identification of unknown
hypermethylated genes in colon cancers and IBD, as well as their possible role in clinical practice,
which will have important clinical significance, particularly in the era of the personalized medicine.

Keywords: epigenetic regulation; DNA methylation; colorectal cancer; inflammatory bowel diseases
(IBDs); biomarkers

1. Introduction

Epigenetics have been defined as the mechanisms that initiate and maintain heritable
patters of gene function and regulation in a friable manner without affecting the sequence
of the genome. There are three main mechanistic layers in the field of epigenetic alterations,
which include DNA methylation, histone modification, and microRNAs [1]. Epigenetic
regulation has recently been highlighted as a prospective mechanism of cancer therapy.
Therefore, an understanding of epigenetic mechanisms in cancer is required to improve
epigenetic therapies based on biological significance such as gene interactions, regulation
of pathways, and the function of epigenetic changes. The biological roles of epigenetic
components in cancer development, called the “cancer epigenome,” have led to new oppor-
tunities for understanding the process of cancer therapy, including the detection, treatment,
and prevention of cancer. However, this concept of the epigenome contributing to the
understanding of cancer development has recently expanded to other human diseases,
such as inflammatory bowel disease (IBD). Therefore, genome-wide methylation profil-
ing studies provide an entirely new approach to understanding the importance of DNA
methylation at the global transcriptional level during cancer development [2]. This review
outlines recent genome-wide epigenetic discoveries in colorectal cancer and IBD with a
focus on the roles of how the epigenome may contribute to detecting or preventing cancer
or other human diseases for further translational applications.

Life 2021, 11, 412. https://doi.org/10.3390/life11050412 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://doi.org/10.3390/life11050412
https://doi.org/10.3390/life11050412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11050412
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11050412?type=check_update&version=3


Life 2021, 11, 412 2 of 14

2. Epigenetic Regulation in Human Cancers
2.1. Histone Modification in Cancer

In human cancer, abnormal DNA methylation occurs alongside a number of other
types of epigenetic aberrations. Of these alterations, post-translational histone modifica-
tions are critically important in cancer cells. Chromatin is composed of DNA, histones,
and various other proteins. The amino-terminal tails of some histones project out of the
nucleosome core and are subject to a number of posttranslational modifications, or marks,
including acetylation, phosphorylation, ubiquitination, and methylation [3]. Acetylation
and methylation of histones have been intensely studied and both types of modifications
can remodel chromatin and lead to controlling the functional state of chromatin. Histone
acetylation and deacetylation are essential for gene regulation. Acetylation generally leads
to active transcription, whereas hypoacetylation is an indicator of inactive transcription.
Histone methylation can indicate both active and inactive transcription, and the state of
mono-, di-, and trimethylation has different effects. Methylation is facilitated by the en-
zymes known as histone methyltransferases (HMTs). In the last decade, aberrant patterns
of histone modifications were found to be a hallmark of cancer. Therefore, there has been
a large number of studies in this field and an increasing number of histone marks have
been identified. Histone modification to H3 has been very well studied and characterized
so far. Some of these marks are implicated in the activation of transcription. Examples
include acetylation of H3K4 (histone (H) 3 lysine (K) 4) and methylation of H3K4, H3K36,
and H3K79 [4–6]. In contrast, other marks result in an inactive chromatin state and tran-
scriptional repression. The primary examples of these types of modifications include
methylation of H3K9, H3K27, and H4K20 (Figure 1) [7–9].
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Figure 1. Schematics of the main epigenetic mechanisms associated with gene transcriptional silencing. Histone modifica-
tions, DNA methylation, and non-coding RNA mediated gene silencing constitute three distinct mechanisms of epigenetic
regulation. Abbreviations are following as TF (Transcription factor), H3K (Histon 3 Lysine), HMT (Histone methyltrasferase),
HDM (Histone demethylase), and SAM (S-Adenosyl methionine).

It should be noted that the H3K9 is found primarily in a gene-poor region, such
as telomeres and centromeres, and is associated with X chromosome inactivation and
gene repression at promoter regions [10]. On the other hand, H3K27 is generally found
in gene-rich regions and acts as a temporary marker correlating with the development
of regulators [11]. Hypermethylation of CpG islands in the promoter regions of tumor-
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suppressor genes in cancer cells is associated with a particular combination of histone
markers: deacetylation of histones H3 and H4, loss of H3K4 trimethylation, and gain of
H3K9 methylation and H3K27 trimethylation [1].

Histone methylation is carried out by any number of histone lysine methyltransferases
such as those in the polycomb complex and demethylation is carried out by a number of
demethylases such as LSD1 and the Jumonji-C-domain-containing proteins [12–14]. Global
changes of these and other histone marks have been found to be present in a wide range
of malignancies, suggesting that abnormalities in the chromatic state may be present in
cancer cells. Genome-wide studies of histone modification have been provided to better
characterize the chromatin of malignant cells by establishing the overall profile of histone
modifications in cancer cells.

2.2. DNA Methylation in Cancer

Research has mostly focused on the genetic basis of cancer in terms of how mutational
activation of oncogenes or inactivation of tumor suppressor genes (TSGs) support cellular
control pathway changes. Since the 1990s, a growing research effort has focused on the
importance of epigenetic alterations, which may also be critical heritable changes for
all human cancers [1]. The primary effect of epigenetic changes in cancer depends on
the stages of cancer progression, and the secondary effect of these changes is how they
affect the biology of each developmental step towards invasive disease. There are three
main epigenetic mechanisms as follows: DNA methylation, histone modification, and
microRNAs (Figure 1) [1,15].

In genomic DNA, methylation occurs at cytosine bases, which comprise 50% of the
positions in CpG dinucleotides. CpG dinucleotides are depleted from the eukaryotic
genome [16]. This review focuses mostly on studies on genes regulated by DNA methy-
lation in colon cancer and IBD. DNA methylation is a progressive enzymatic process (1)
starting with the addition of a methyl group to the 5′ carbon position of the pyrimidine
ring of cytosines (C) to produce 5-methylcytosine (5mC). (2) This covalent modification is
catalyzed by DNA methyltransferases (DNMTs) in CpG islands, which are mostly located
in the upstream region, called the promoter region. Regardless of the transcriptional level
of the gene, normal cells globally lack methylation levels at CpG islands. Therefore, if this
process is interrupted, the promoters may become abnormally hypermethylated, leading
to transcriptional repression [17]. In addition, methylation can induce a compact chro-
matin structure by supporting additional binding sites for methyl-binding proteins, which
also cause gene transcriptional repression by interactions with histone deacetylases [18]
(Figure 2a).

Human cancer is the best model system for the investigation of methylation because
promoter DNA hypermethylation occurs in the promoter regions of genes. This phe-
nomenon has been established as a specific event in cancer cells that normally involves
unmethylated gene promoter regions associated with transcriptional silencing by promoter
hypermethylation, leading to loss of tumor suppressor gene function [19] (Figure 2b).
Transcriptional silencing of tumor suppressors by promoter hypermethylation may be a
critical event contributing to oncogenic development [1,2]. Most importantly, inactivation
of tumor suppressors by hypermethylation can affect numerous cellular pathways, such
as programmed cell death, the DNA repair system, control of the cell cycle, angiogenesis,
and tumor invasion. Retinoblastoma (Rb), p16, hMLH1, and VHL are well-known tumor
suppressors in cancer that are specifically silenced by CpG island hypermethylation of the
promoter [19,20].
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Figure 2. Epigenetic mechanisms in cancers. (a) Transcriptional gene expression, particularly gene silencing, is mainly
regulated by DNA methylation, histone modifications, and microRNAs. Representative enzymes that contribute to these
modifications include DNA methyltransferases (DNMTs), the TET family, methyl-CpG-binding domains (MBDs), histone
modifying enzymes (MLL1/2/3, SETD2, EZH2, LSD1, and UTX), histone methyltransferases (HMTs). The relationship
among these processes establishes a heritable repressive state at the start site of genes resulting in transcriptional gene
silencing (Adapted from You and Jones 2012). (b) Promoter DNA methylation patterns in normal and tumor cells. In
normal cells, CpG dinucleotides are randomly methylated and not associated with CpG islands located in the promoter
region. Thus, the unmethylated status of CpG islands in gene promoters permits active gene expression. In cancer cells,
CpG islands in the gene promoter region become abnormally hypermethylated, causing transcriptional silencing of genes.
Circles indicate CpG dinucleotides.

Colon cancer is a genetic and epigenetic disease. Evidence from the last decade
has demonstrated that epigenetic alterations have a pathological role in colorectal cancer
(CRC) [21]. Epigenetic alterations play a major role in the initiation and progression of
CRCs, and epigenetic instability appears to be a common phenomenon in CRC. In CRC,
inactivation of tumor suppressor genes by promoter hypermethylation has been observed at
each pathological process [17]. Numerous genes have been reported to be hypermethylated
and silenced in CRC, and some commonly well-known methylated genes include MLH1,
CDH1, TIMP3, O6-MGMT, SFRP1, SFRP2, p16, APC, HIC1, and CHFR [19,22,23].

2.3. miRNAs in Cancer

Sequences of microRNAs (miRNAs) are highly similar among species, and play critical
roles in numerous biological processes including cell proliferation, development, differenti-
ation, and apoptosis. In addition, subsets of miRNAs are thought to play roles as tumor
suppressor genes or oncogenes, and their dysregulation is a common feature of human
cancer (Figure 1) [24,25]. In human cancer, it has been known that miRNA expression
profiles differ between normal tissues and cancer, as well as between different tumor
types [26,27]. Importantly, the downregulation of subsets of miRNAs has been found in
many of these studies, suggesting that some of these miRNAs may act as tumor suppressor
genes [27]. Recent advance suggests that the mechanism underlying the downregulation of
miRNA expression in cancer is associated with epigenetic alterations. Specifically, tumor
suppressors of miRNAs have been investigated in more detail. For example, the first report
of altered miRNA deletion and downregulated expression of miR-15 and miR-16, two
miRNAs thought to target the antiapoptotic factor B cell lymphoma 2 (BCL2) in chronic
lymphocytic leukemia (CLL) [28]. The downregulations of let-7 and miR-15/miR-16 and
miR-127 are known to target the oncogenic factors RAS and BCL-2, respectively [29,30].
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3. Promoter DNA Hypermethylation as a Biomarker for Clinical Use

Aberrant DNA methylation in CRC is currently receiving greater attention than
histone modification due to its clinical utility as a biomarker. Recent efforts in genome-
wide sequencing of CRC have identified a large number of genetic or epigenetic changes
that are integrated with a few cellular signaling pathways, such as invasion, metastasis,
apoptosis, and cell senescence [19,31]. Therefore, these efforts have led to new directions to
discover unknown genes that are regulated by genetic or epigenetic mechanisms in CRC
(Figure 3a) [32].

Generally, epigenome profile technologies, including the Infinium Human Methyla-
tion 850K BeadChip (Illumina Inc, San Diego, CA, USA), are high-throughput platforms
that allow the methylation state of 850,000 CpGs to be assayed and analyzed [33,34]. This
technology may lead to the identification of numerous newly hypermethylated genes at the
genome-wide level using bioinformatics analysis. Using this recent technology to analyze
the global DNA methylation level of human cancer, it is necessary to first establish a methy-
lation profile to identify the differential pattern between two groups, such as equivalent
normal and tumor tissues from the same clinical patient samples.
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Figure 3. Identification of DNA hypermethylated genes in breast and colon cancers. (a) Heatmap cluster analysis of the
29 DNA hypermethylated genes shows three distinct gene groups (numbered blocks) identified by methylation frequency. A
subset of genes was noted in our previous studies [32,35], and genes with blue letters were identified later [36]. (b) Multiple
hypermethylated ECM genes in two primary colorectal cancers (CRC patients #1 and #2) (unpublished data).

Identification of global genome-wide methylation profiling in CRC has broad capacity
for important clinical applications, particularly molecular markers, which are becoming
increasingly attractive due to pharmacological reversibility [37], thereby improving the
development of insufficient current diagnostic methods. Based on the accumulation of
a large amount of data from genome-wide DNA methylation profiling, many studies
have recently reported DNA methylation as a biomarker for the detection or prognosis of
CRC, and there are integrative and comprehensive studies on the biological significance for
tumor suppressor genes as methylation biomarkers for clinical use. Numerous methylation-
based biomarker candidates were identified by genome-wide transcriptome profiles and
it has been found that these candidates are strongly linked by biological pathway. In
fact, we have identified that multiple genes, which are components of ECM pathway,
are hypermethylated in actual CRC patient samples, suggesting that the ECM pathway
eventually may be inactivated by DNA hypermethylation (Figure 3b). Hypermethylated
genes that have been well characterized to be associated with clinical significance in CRC
are described in Table 1. The list of promising DNA methylation biomarkers in colon cancer
are summarized in terms of previously reported literature, including validation data using
patient samples and clinical information. Although there are many reports that implicate
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biomarkers for clinical use using genome-wide profiling analysis, multiple, prospective,
large-scale population studies to validate biomarker candidates are necessary to prove
their clinical significance as promising biomarkers.

Analysis of DNA methylation has led to a new generation of cancer biomarkers [38].
Although certain genomic mutations provide sensitive and specific biomarkers [39,40],
their utility is undermined due to their heterogeneity. DNA hypermethylation in cancers
provides major advantages when designing biomarker assays due to affecting identi-
cal residues in the regulatory regions of specific genes. Accordingly, numerous studies
have employed DNA methylation of specific genes for biomarker and diagnostic devel-
opment [1,38,41]. Such diagnostic tests can broadly be used for early detection of cancers,
assessing prognosis, determining the effects of therapy or detecting human diseases.

4. DNA Methylation in IBD

In the past decade, there have been integral improvements in our understanding of
genetic factors that contribute to inflammatory bowel diseases (IBDs), including ulcerative
colitis (UC) and Crohn’s disease (CD).

Over decades, genetic studies have provided many susceptibility candidate loci, and
innate and acquired immune responses have been implicated in IBD pathogenesis [42].
Thus, recent international collaboration studies have provided critical evidence that ge-
netic changes affect IBD pathogenesis, causing abnormal immune responses. However,
identified genetic factors account for only a limited portion of the disease variance (13.6%
for CD and 7.5% for UC), which covers only approximately 20% of the genetic risk [43–45].
However, genetic factors may explain a part of IBD pathogenesis, indicating a need to
better understand the interaction of genes and the environment during IBD development.
Epigenetic factors may explain these interactions between the environment and the genome.
Epigenetic studies may provide a new approach to understanding the pathogenesis of IBD,
suggesting that IBD is a genetic and epigenetic disease.

The first step of DNA methylation studies has mostly focused on the relationship
between cancer and IBD. Several reports have suggested that promoter hypermethylation
of multiple genes is associated with UC [46]. Other studies have identified many kinds
of genes, such as CDH1, p16, MDR1, and GDNF, which are hypermethylated with high
frequencies in patients with UC. Promoter hypermethylation of the CDH1 gene has been
confirmed to be associated with long-standing inflammation. Thus, the DNA methylation
of this gene, as a useful biomarker, may be implicated in patients with UC for detecting
patients at high risk for developing colorectal cancer [47]. Recently, we confirmed that
several genes known to be hypermethylated in the early stage of CRC are hypermethylated
in Korean UC patients [48]. However, further study is necessary to define the clinical
relevance, such as disease duration, severity, extent, phenotype, and activity state of
inflammation and dysplasia.

Growing evidence suggests that there are significant differential DNA methylation
patterns between normal and IBD patient samples [49,50]. To understand the molecular
basis of CD, comprehensive genome-wide studies identifying a number of diverse suscep-
tibility loci associated with CD pathogenesis have been performed [45]. Although little is
known about DNA methylation patterns in CD pathogenesis, we recently reported that the
TCERG1L gene is hypermethylated in serum samples from CD patients, suggesting that
DNA methylation is an important mechanism to understand CD pathogenesis [50].
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Table 1. Possible promising DNA methylation biomarkers in colorectal diseases.

Diseases
Types Gene Samples for

Study
Methylation
Sensitivity References

CRC

TFPI2
Tumor tissue 99% Grockner et al., 2009 [51]

Stool 73% Grockner et al., 2009 [51]
FBN2 Tumor tissue 86% Yi et al., 2012 [52]

TCERG1L Tumor tissue 99% Yi et al., 2012 [52]
SEPT9 Plasma 69% Lofton-Day et al., 2008 [53]

p16 Serum 70% Nakayama et al., 2008 [54]
EVL Tumor tissue 60% Yi et al., 2011 [36]

IGFBP3 Tumor tissue 25% Yi et al., 2011 [36]
NDRG4 Tumor tissue 86% Melotte et al., 2009 [55]

Stool 61% Melotte et al., 2009 [55]

UC

FAM217B, Tissues 62% Kang et al., 2016 [56]
KIAA1614 Tissues 64% Kang et al., 2016 [56]

RIB2 Tissues 91% Kang et al., 2016 [56]
SYNE1 Tissues 80% Papadia et al., 2014 [57]
FOXE1 Serum 60% Papadia et al., 2014 [57]

CD
TCERG1L Serum 57% Bae et al., 2014 [50]

FHIT Tissues 71% Kim et al., 2020 [58]

IBD

TGFB2 Tissues 30% Azuara et al., 2013 [59]
SLIT2 Tissues 65% Azuara et al., 2013 [59]

TMEFF2 Tissues 25% Azuara et al., 2013 [59]
ITGA4 Tissues 80% Gerecke et al., 2015 [60]
TFPI2 Tissues 30% Gerecke et al., 2015 [60]

5. Early Detection Methylation Biomarkers in CRC

Because early detection of human diseases has led to an improved clinical outcome
for multiple types of cancer, numerous studies have focused on the development of early
detection strategies. DNA methylation changes occur in the early stage of cancer develop-
ment and are potentially great early indicators of existing human disease as well as risk
assessment for the development of disease [61].

5.1. TFPI2

The tissue factor pathway inhibitor (TFPI2) gene is at the intersection of both the
hypermethylome and PcG-marked genes. There are several studies on the biological
roles of TFPI2, a Kunitz-type serine proteinase inhibitor, associated with protecting the
extracellular matrix of cancer cells from degradation [62]. In addition, it has been suggested
that loss of TFPI2 function may predispose cells towards a proinvasive program, such as
in late stages of carcinogenesis. Our previous study on the CRC “DNA hypermethylome”
identified TFPI2 hypermethylation based on an expression array-based approach [32].
Aberrant promoter hypermethylation of TFPI2 was detected in almost all CRC adenomas
(97%, n = 56) and stages I to IV CRCs (99%, n = 115). Therefore, in CRC data using
both tumor tissues from patients and stool DNA, TFPI2 has been strongly suggested as
a potential biomarker for noninvasive detection of colorectal neoplasia [51]. Since TFPI2
has been identified as an early detection marker of CRC, growing evidence has suggested
this gene as a potential biomarker in other types of cancer, such as gastric [63] lung [64],
pancreas [65], oral [66], esophageal [67], and liver cancer [68].

5.2. FBN2 and TCERG1L

Our previous study identified hypermethylation of the FBN2 and TCERG1L genes [32].
Both genes are frequently hypermethylated (>60%) in adenomas (tubular adenoma and
villous adenoma). Fibrillin 2 (FBN2) is an extracellular matrix protein, and the transcription
elongation regulator 1-like (TCERG1L) gene is located on chromosome 10 and has recently
been shown to have frequent cancer-specific methylation according to our microarray-
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based approaches [32]. Although little is known about their biological function regarding
epigenetic changes in human cancers, the methylation of these genes has great potential to
detect early-stage colon cancer.

6. Prognostic Methylation Biomarkers in CRC
6.1. EVL and IGFBP3

By merging genome-wide genomic and epigenomic change profiles, new genes have
been identified, and core pathways associated with these genes have been defined in
CRC. We previously emphasized that DNA hypermethylation can affect many new genes
associated with key pathways altered in CRC. An integrative and comprehensive approach
of multiple whole genome analyses (genetic and epigenetic) has been used to define the
core pathway, namely, the extracellular matrix (ECM) pathway, which is silenced in all
colon cancers. Simultaneous DNA hypermethylation of a subset of genes that are major
components of the ECM remodeling pathway is also significantly associated with poor
survival in adjusted analyses of CRC patients. In addition, the promoter hypermethylation
of both EVL and IGFBP3 has been identified as novel methylation biomarkers, suggesting
that these both gene methylation is associated with worse survival of CRC patients. Taken
together, the methylation of IGFBP3 and EVL might be potentially useful in defining
prognostic biomarkers for CRC patients (Figure 4) [36].
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Figure 4. Schematic representation of extracellular matrix (ECM) pathway silencing by DNA hy-
permethylation in colon cancer. Six genes, namely, TIMP2, PLAU, TIMP3, Osteonectin, MMP9, and
Nidogen, are regulated by promoter DNA hypermethylation in other cancer types and have been
shown to be similarly altered in CRC in our previous study [36]. In addition, Yi et al. identified
genes within the extracellular matrix, including 13 hypermethylated genes in CRC derived from
our gene discovery approach (IGFBP3, HAPLN1, ICAM5, CD109, FLNC, GPNMB, NRCAM, EVL,
NTNG1, MMP2, LAMA1, CPAMD8, and FBN2). Different colors indicate the locations of each gene.
Yellow circles, green color and blue color indicate ECM, membrane, and cytoplasm, respectively. The
functional gene ontology analysis was based on the MetaCore database (Adapted from Yi et al. 2011).
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6.2. SEPT9

Multiple studies have studied the use of single or combined DNA methylation-based
biomarkers for diagnostic purposes for CRC. Several groups have identified methylation
of the SEPT9 gene as one of the best candidates as a prognostic biomarker in different CRC
cohorts [69,70]. Importantly, de Vos et al. developed and expanded a method to validate
the SEPT9 blood-based biomarker assays in plasma samples of CRC patients [71], which
support the strong evidence about the use of biomarkers for the detection of CRC using
less invasive screening methods.

6.3. Vimentin

Although numerous studies have reported the use of single or combined DNA
methylation-based biomarkers in cancer, it is suggested that testing combined genes is more
useful for diagnostic or prognostic rather than using a single gene. Ahmed et al. identified
a highly methylated gene panel in CRC including VIM to implicate their clinical use for
prognostic methylation biomarkers [69]. Subsequently, the promoter methylation of Vi-
mentin (VIM) has been validated as promising biomarkers to detect CRC in patients [69,72].
Recently, there has been an effort to identify an effective methylation biomarker; a methyla-
tion methyl-beaming assay has been developed to detect the methylation of VIM in plasma
samples of CRC patients [73]. Using VIM gene methylation, this technology achieved 59%
sensitivity in early stage of CRC. SEPT9 and VIM are the only methylation markers being
used because of the multicenter retrospective and prospective validations performed on
these biomarkers.

6.4. NDRG4

Melotte et al. identified N-Myc downstream-regulated gene 4 (NDRG4) as a potential
methylation biomarker in CRC [55]. NDRG4 was originally identified by screening the gene
expression change profile in the tumor endothelium by a microarray approach [74]. NDRG4
is frequently hypermethylated in CRC patient samples (>70%) along with adenomas
compared to noncancerous colon mucosa (4%). To understand the clinical relevance of
utility as a methylation biomarker, the promoter methylation of NDRG4 has been tested in
stool DNA from CRC patient samples. These experiments provide strong evidence that the
promoter methylation of NDRG4 may have potential utility as a noninvasive biomarker to
screen the risk of CRC.

7. Methylation Biomarkers in IBD
7.1. FOXE1 and SYNE1

Patients with UC, which is a chronic inflammation, have a higher risk of developing
CRC [75]. The disease duration of UC is an increasing risk factor for the development of
CRC. SYNE1 and FOXE1 are two genes that have been recently linked to tumor growth,
especially in gastrointestinal cancer. Hypermethylation of these genes has been studied
in CRC patients, and these genes are being explored as noninvasive biomarkers for the
detection of colorectal cancer in stool and blood samples [76]. Interestingly, Papadia
et al. found that SYNE1 and FOXE1 hypermethylation events frequently occur in colitis-
associated colorectal cancer, suggesting a useful marker of neoplasia in long-standing
IBD [57].

7.2. TCERG1L

As mentioned above, the TCERG1L gene is hypermethylated in the early stage of
CRC. Bae et al. hypothesized that methylation of the TCERG1L gene can be detected in
serum samples from patients with CD [50]. In a cohort of CD patients, hypermethylation
of TCERG1L has been detected at high frequencies (57%) in sera, suggesting a potential
noninvasive biomarker to reduce the risk or prevent the progression of advanced stages
of disease [50]. However, due to the lack of testing TCERG1L methylation in control
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samples and clinical data of patients with CD, including disease duration, further studies
are necessary to define the clinical relevance of TCERG1L in patients with CD.

7.3. FAM217B, KIAA1614, and RIB2

To identify new genes regulated by promoter hypermethylation in IBD, genome-wide
DNA methylation profiling was performed using UC patient samples compared to normal
colon tissues. Differential methylation patterns were identified between normal colon
tissues and patient samples with UC. Regarding promoter hypermethylation in terms of
correlation with transcriptional gene expression, 48 genes were identified in this approach.
However, these genes should be validated in cohort samples with UC to prove epigenetic
regulation in patients with CD. After strong validation by RT-PCR and MSP in clinical
samples, FAM217B, KIAA1614, and RIB2 were found to be hypermethylated in patients
with UC in a disease-specific manner, indicating lower methylation of these genes in normal
colon tissues. Kang et al. suggested that this novel hypermethylated gene panel could be a
useful molecular biomarker for surveillance of UC patients, implicating their diagnosis or
prognosis [56].

7.4. FHIT

Using the same approach by genome-wide DNA methylation profiling in patients with
CD, Kim et al. identified many new hypermethylated genes in patients with CD. However,
after validation using methylation analyses, the fragile histidine triad (FHIT) gene was
identified to be frequently hypermethylated in patients with CD. Aberrant transcripts of
FHIT have been reported in multiple cancer types, such as colon, gastric, esophageal, and
lung cancers [77–80]. Detection of promoter methylation of FHIT has been identified by
meta-analyses and demonstrated to be useful for the early diagnosis of breast and NSCLC
carcinomas [81,82]. Although the biological function of FHIT has been implicated to be
associated with tumor progression, to the best of our knowledge, this was the first report
implicating aberrant DNA hypermethylation of FHIT in IBD pathogenesis.

8. Conclusions and Future Directions

World-wide consortia, such as the International Cancer genome consortium or the
Cancer Genome Atlas (TCGA), provide comprehensive genomic or epigenomic data of
various cancer types for many laboratories around the world. In recent years, much effort
has led to a better understanding of the mechanisms that underlie DNA methylation
changes in human cancer and other diseases. The value of epigenetic changes as candidate
biomarkers is reflected in thousands of scientific studies published to date that associate
DNA methylation with clinical relevance.

In the last decade, DNA methylation markers have been established as the most
promising clinical utilities due to their power of diagnostics, and they will provide a tool
for risk assessment, early detection, molecular diagnostics of resected specimens, pre-
dicting chemotherapy, and monitoring disease recurrence. Considering the development
of methylation biomarkers in cancers and other diseases, it is important to understand
not only that the identification of new genes is regulated by epigenetic mechanisms, but
also that the development and application of sophisticated technology, such as imaging,
nanoparticle-enabled, noninvasive, and minimally invasive technology, are important
to confirm the diagnosis of human diseases. This review focused on the discovery of
epigenetic alterations in colorectal disease, which may lead to the exploration of their
future clinical applications as molecular biomarkers or potential therapeutic targets in
colorectal diseases.

At last, the combination and integration of epigenomics, genomics, and all the other
‘omics’ such as transcriptomic, proteomic, and metabolomics aspects, will be essential to
maintain the increasingly rapid progress towards a full understanding of the underlying
molecular mechanisms that regulate the initiation and development of cancer progress.



Life 2021, 11, 412 11 of 14

Furthermore, these cancer genomic or epigenomic signatures will help us identify new po-
tential prognostic and detection tools and eventually, to develop effective clinical therapies.
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