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Background: Psoriasis is a chronic and immune-mediated skin disorder that

currently has no cure. Pyroptosis has been proved to be involved in the

pathogenesis and progression of psoriasis. However, the role pyroptosis

plays in psoriasis remains elusive.

Methods: RNA-sequencing data of psoriasis patients were obtained from the

Gene Expression Omnibus (GEO) database, and differentially expressed

pyroptosis-related genes (PRGs) between psoriasis patients and normal

individuals were obtained. A principal component analysis (PCA) was

conducted to determine whether PRGs could be used to distinguish the

samples. PRG and immune cell correlation was also investigated.

Subsequently, a novel diagnostic model comprising PRGs for psoriasis was

constructed using a random forest algorithm (ntree = 400). A receiver operating

characteristic (ROC) analysis was used to evaluate the classification

performance through both internal and external validation. Consensus

clustering analysis was used to investigate whether there was a difference in

biological functions within PRG-based subtypes. Finally, the expression of the

kernel PRGs were validated in vivo by qRT-PCR.

Results: We identified a total of 39 PRGs, which could distinguish psoriasis

samples fromnormal samples. The process of T cell CD4memory activated and

mast cells resting were correlated with PRGs. Ten PRGs, IL-1β, AIM2, CASP5,

DHX9, CASP4, CYCS, CASP1, GZMB, CHMP2B, and CASP8, were subsequently

screened using a random forest diagnostic model. ROC analysis revealed that

our model has good diagnostic performance in both internal validation (area

under the curve [AUC] = 0.930 [95% CI 0.877–0.984]) and external validation

(mean AUC = 0.852). PRG subtypes indicated differences in metabolic

processes and the MAPK signaling pathway. Finally, the qRT-PCR results

demonstrated the apparent dysregulation of PRGs in psoriasis, especially

AIM2 and GZMB.

OPEN ACCESS

EDITED BY

Huabing Li,
Shanghai Jiao Tong University, China

REVIEWED BY

Ananta Paine,
University of Rochester, United States
Alejandro Caceres,
Instituto Salud Global Barcelona
(ISGlobal), Spain

*CORRESPONDENCE

Yue Luo,
moon_ms.luo@hotmail.com
Le Kuai,
kuaile@shyueyanghospital.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 07 January 2022
ACCEPTED 04 July 2022
PUBLISHED 30 August 2022

CITATION

Song J-K, Zhang Y, Fei X-Y, Chen Y-R,
Luo Y, Jiang J-S, Ru Y, Xiang Y-W, Li B,
Luo Y and Kuai L (2022), Classification
and biomarker gene selection of
pyroptosis-related gene expression in
psoriasis using a random
forest algorithm.
Front. Genet. 13:850108.
doi: 10.3389/fgene.2022.850108

COPYRIGHT

© 2022 Song, Zhang, Fei, Chen, Luo,
Jiang, Ru, Xiang, Li, Luo and Kuai. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 30 August 2022
DOI 10.3389/fgene.2022.850108

https://www.frontiersin.org/articles/10.3389/fgene.2022.850108/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.850108/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.850108/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.850108/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.850108/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.850108&domain=pdf&date_stamp=2022-08-30
mailto:moon_ms.luo@hotmail.com
mailto:kuaile@shyueyanghospital.com
https://doi.org/10.3389/fgene.2022.850108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.850108


Conclusion: Pyroptosis may play a crucial role in psoriasis and could provide

new insights into the diagnosis and underlying mechanisms of psoriasis.
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1 Introduction

Psoriasis is regarded as an immune-mediated, inflammatory

skin disease (Demir Pektas et al., 2018), affecting more than

100 million people worldwide; estimates of its prevalence vary

from 0.51 to 11.43% (Michalek et al., 2017). Comorbidities

associated with psoriasis include cardiovascular disease

(Tangtatco and Lara-Corrales, 2017), chronic obstructive

pulmonary disease (Ungprasert et al., 2016), and metabolic

syndrome (Armstrong et al., 2013), which can affect a

patient’s quality of life and pose significant challenges for the

medical field.

Psoriasis is thought to progress as a result of abnormal

keratinocyte cell death in the skin (Ramirez et al., 2012). The

unique keratinization process of psoriasis is that late

differentiation markers are abolished because of premature

cell death (Iizuka et al., 2004), including pyroptosis, apoptosis,

necrosis, necroptosis, and ferroptosis. Pyroptosis-related genes

(PRGs) have been shown to have a strong association with

aberrant keratinocyte keratinization in vitro (Lachner et al.,

2017). Pyroptosis is a novel, inflammation-dependent type of

programmed cell death (Fang et al., 2020), encompassing the

classical caspase-1 pathway and the non-classical caspase-4/5/

11 pathway (Song et al., 2021) (Figure 1). As studies continue, the

non-classical pathway, caspase-11-mediated pyroptosis has been

found to contribute to the pathogenesis of psoriasis (Kenealy

et al., 2019). Multiple pieces of evidence indicated that PRGs are

differentially expressed in psoriasis, such as GSDMD, caspase-1/

2, IL-1 family genes (Lachner et al., 2017), NLRP1, NLRP3 (Deng

et al., 2019), and AIM2 (Ciążyńska et al., 2021). These findings

suggest that pyroptosis may serve as a potential prognostic or

therapeutic target in psoriasis.

Due to the limitations of current investigational techniques,

however, relevant gene expression studies have often been

confined to one or two PRGs, despite psoriasis being a

polygenically mediated disorder (Georgescu et al., 2019). A

comprehensive understanding of PRG characteristics will be

of great importance in elucidating the underlying mechanisms

and predicting the response of psoriasis to immunotherapy.

Hence, there is an urgent need to establish a predictive

screening model to identify potential PRGs of psoriasis with a

high predictive accuracy.

Various machine learning models have shown encouraging

performance in biomarker prediction studies (Izadyyazdanabadi

et al., 2018). The random forest model, one of the best

conventional machine learning approaches (Jha et al., 2018)

(Douville et al., 2021), is based on the principle of ensemble

learning (Sessa et al., 2020), which has previously shown a high

predictive accuracy (62–71%) in modeling (Tran et al., 2019) and

provide variable importance estimates than classifiers. The

random forest method has advantages even in uninformative

predictor of random forest missing data mechanism (Moore

et al., 2015). Despite the potential usefulness of random forest, its

application in psoriasis PRG regulators have not been reported.

Here, we comprehensively evaluated the regulation of PRGs.

First, the differential expressions of PRGs between psoriasis and

normal samples was analyzed. Second, a machine learning model

of psoriasis was established using a random forest algorithm to

innovatively identify potential therapeutic approaches. Third, the

relationship between pyroptosis and the immune system was

investigated. Subsequently, we validated the mRNA expression of

PRGs in vivo. Therefore, this research provides potential targets

for the diagnostic and treatment of patients with psoriasis.

2 Methods

2.1 Psoriasis patients’ dataset

2.1.1 mRNA expression profile of psoriasis
patients

The mRNA expression profiles of psoriasis patients and

control were downloaded from the Gene Expression Omnibus

(GEO) database (Barrett et al., 2013) (http://www.ncbi.nlm.nih.

gov/geo/). The data acquisition criteria were as follows: all

participants of the included studies were human; samples

were not based on cell lines; sample type should be skin

tissue; patients should be diagnosed with psoriasis; datasets

should be complete data for analysis; ethical approval was

obtained; and the control group had neither systemic nor

autoimmune diseases and no relevant family history.

GSE114286 was obtained as the training cohort, and the other

three datasets (GSE14905, GSE109248, and GSE117239) were

obtained for external validation analyses, the basic information

for which is shown in Table 1.

2.1.2 Dataset characteristics
The R package limma was adopted to identify the

differentially expressed genes (DEGs) between psoriasis and

normal samples. To correct for false-positive results,

Benjamini and Hochberg’s (1995) false discovery rate (FDR)

method was used by default. A fold change of >1.5, a
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p-value <0.05, and an FDR <0.05 were set as the cutoffs to screen
DEGs (Yu et al., 2012).

2.2 Characteristics of PRGs

2.2.1 PRGs obtained
Two pyroptosis gene sets were acquired

(REACTOME_PYROPTOSIS and GOBP_PYROPTOSIS), and

a total of 39 PRGs were obtained from the Molecular Signatures

Database (MSigDB) (Liberzon et al., 2015) (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp).

2.2.2 PRG internal correlation analysis and
protein–protein interaction (PPI) analysis

For correlation analysis among PRGs, the Spearman

correlation function of the R package was used. The range of

the correlation coefficient of a pair (r) was from 1 to -1; r values

close to 1 or -1 indicate a strong positive or negative correlation

between genes, respectively.

A protein–protein interaction (PPI) network analysis was

performed to identify potential interactions among PRGs.

The STRING database (Szklarczyk et al., 2017) (https://

string-db.org/) was used to obtain interaction pairs for

proteins related to pyroptosis with the highest confidence

(interaction minimum >0.9). Cytoscape software (Shannon

et al., 2003) (version 3.9.0) was then used to display the PPI

network.

2.3 Identification of differentially
expressed PRGs

2.3.1 DE mRNA levels of PRGs
Pyroptosis-related genes were extracted, and we screened the

PRGs using the R package limma, with p < 0.05, |Fold change|

>1.5 as the conditions. The heatmap was created using the R

packages pheatmap and ggplot2 to show differentially expressed

PRGs in patients with psoriasis compared with normal control

samples. We also examined the effectiveness of PRGs in other

skin diseases.

2.3.2 The ability of differentially expressed (DE)
PRGs to discriminate samples by principal
component analysis (PCA)

To determine whether PRGs were suitable for distinguishing

psoriasis from normal tissue samples, PCA was used to determine

the genotyping consistency using the R package mixomics.

FIGURE 1
Overview of pyroptosis regulatory pathways.
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2.4 PRGs and immune cell correlation
representation

Pearson correlation were performed for PRGs and immune

cell abundance using the cor function in R, and then the

pheatmap function was used to draw a heatmap. If the grid

on the right image is marked with *, it means that the absolute

value of the correlation between the pyroptosis gene and immune

cells is >0.5.

2.5 Diagnostic model using a random
forest algorithm

2.5.1 Establishing the random forest model
We used a machine learning diagnostic model, the random

forest, to screen candidate psoriasis-specific genes from PRGs

using the R package randomForest (Liaw and Wiener, 2002).

Random forest is an ensemble method for the training and

prediction of samples based on multiple classification trees.

The best split among all variables was used for each node,

and the best among a random subset of predictors was used

for the random forest. The parameter optimization is initially

performed using randomly generated parameter sets. As

computation time increases with increasing ntree, we used

ntree = 400 in our modeling. The training set contained three

quarters of the samples in each repetition. The procedure was

repeated 100 times by random sampling.

2.5.2 Internal validation
Conventionally, the internal validation set should include

one quarter of the samples in each repetition. Ten-fold cross-

validation was performed as an internal validation method to

confirm the predictive performance of our diagnostic model for

psoriasis based on PRGs. The receiver operating characteristic

(ROC) curves were generated, and the area under the curves

(AUC) were derived as the internal cross-validation, using the

pROC package in R to evaluate the discriminative ability.

2.5.3 External validation
The universality and reliability of the random forest

diagnostic model were independently validated against an

external validation cohort, including the GSE14905,

GSE109248, and GSE117239 datasets, whose characteristics

are shown in Table 1. The ROC analysis procedure was

performed.

2.6 Consensus clustering analysis of PRGs

We performed consensus clustering to investigate whether

there was a difference within PRG-based subtypes, such as

psoriasis-related functions and pathways. Consensus clusteringT
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is an unsupervised clustering algorithm used to identify subgroup

members and verify subgroups based on resampling.

2.6.1 Identification of pyroptosis-related
subtypes

The classification of patients into subtypes based on

PRGs was calculated using the R packages

consensusclusterplus and pheatmap, which were employed

for consensus unsupervised clustering analysis. The box

plots were created using the R software package ggplot2

(Yi et al., 2020). The criteria included cumulative

distribution function (CDF) curve increasing smoothly.

The k value was adopted to describe the number of

clusters, from 2 to 8 and finally set k = 3 as the optimal

subtype number because of the highest delta area score.

2.6.2 DEGs based on PRG subtypes
The consensus clustering classified psoriasis into three

distinct subtypes based on PRGs. We next identified DEGs

among the different clusters using the limma package.

Considering the insufficient sample size in cluster 3 (sample

duplicates <3), we focused on the first two clusters.

2.6.3 Biological functions based on PRG
subtypes

To explore the differentiation in biological characteristics

and potential pathways between PRG-based subtypes, the Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways among clusters were investigated using the R

package clusterProfiler (Kursa, 2014), with an FDR cutoff

of <0.01.

2.7 Experimental verification

2.7.1 Animal preparation
Twelve male C57BL/6 mice, aged 6–7 weeks, weighing

22–25 g, provided by Shanghai Medical Experimental Animal

Center (permission no. SCXK(Hu)2018-0003, Shanghai,

China) were used as experimental animals. They were

housed in a specific pathogen free (SPF) facility, at a

temperature of 21–25°C, 16–8 h light–dark cycle, free water,

and standard diet provided by Shanghai Pu Lu Tong Biological

Technology Co., Ltd. The Yueyang Hospital of Integrated

Traditional Chinese and Western Medicine of Shanghai

University of Traditional Chinese Medicine Ethics

Committee approved the animal experiment (No. YYLAC-

2020-078-3) (Supplementary File S1).

2.7.2 Imiquimod (IMQ)-induced psoriasis-like
mice model establishment and intervention

After shaving the hair of mice in a 2 × 2 cm2 square area, the

animals were randomly separated into two groups:

1) Control group (NC), received a topical dose (62.5 mg) of

petroleum jelly.

2) Psoriasiform modeling group (IMQ), received a topical dose

(62.5 mg) of IMQ cream (5%) for 6 h prior to intragastric

administration of saline (1.8 g/kg).

All treatments were applied once per day for 12 consecutive

days from the date of application of IMQ (day 0). Mice were

fasted and allowed to drink water for 12 h prior to sample

collection. The animals were euthanized by CO2 inhalation

(day 12), and back and ear tissues were collected for further

experiments.

2.7.3 qRT-PCR
To detect the mRNA expression level of PRGs selected by the

random forest algorithm, qRT-PCR was used. Skin tissue

homogenates from psoriasis-like mice were taken and applied

Trizol reagent (Beyotime, China) protocol for total RNA

extraction, whose concentration and purity were determined

using an ultraviolet spectrophotometer and assessed via

agarose gel electrophoresis. The relative quantitative method

(2−ΔΔCT) was applied. Reverse transcriptase was used to

prepare cDNA. The results were normalized to GAPDH.

Primers were designed and synthesized (Table 2).

2.7.4 Statistical methods
All experimental data were analyzed using the statistical

software SPSS 24.0 (IBM Corp., Armonk International

Business Machines, New York, United States). Data are

TABLE 2 Primers used for qRT-PCR.

Primer sequence

IL1B F:5′TGGACCTTCCAGGATGAGGACA3′
R:5′GTTCATCTCGGAGCCTGTAGTG3′

AIM2 F: 5′AGGCTGCTACAGAAGTCTGTCC3′
R: 5′TCAGCACCGTGACAACAAGTGG3′

DHX9 F: 5′AGGGTCCAGTGGAGACTACC3′
R: 5′CCACCTCCATAACCCCTTCG3′

CASP4 F:5′GTGGTGAAAGAGGAGCTTACAGC3′
R:5′GCACCAGGAATGTGCTGTCTGA3′

CYCS F:5′CACCGACACCGGTACATAGG3′
R: 5′TAATTCGTTCCGGGCTGGTC3′

CASP1 F:5′GAAACGCCATGGCTGACAAG3′
R: 5′GATCACATAGGTCCCGTGCC3′

CASP8 F:5′ATGGCTACGGTGAAGAACTGCG3′
R: 5′TAGTTCACGCCAGTCAGGATGC3′

CHMP2B F:5′CGAGCAGCCTTAGAGAAACAGG3′
R: 5′GTTTCCGTAGGTGGACAAGCTG3′

GZMB F:5′CAGGAGAAGACCCAGCAAGTCA3′
R: 5′CTCACAGCTCTAGTCCTCTTGG3′
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presented as mean ± standard deviation (SD). Comparisons

between two groups were conducted using one-way ANOVA.

Significant differences among two groups were indicated by **p <
0.01, *p < 0.05, or ***p < 0.001, two-sided.

3 Results

A flow diagram representing this work is shown in Figure 2.

First, the characteristic information and gene expression profiles

of psoriasis cases and healthy controls in the GSE114286,

GSE14905, GSE109248, and GSE117239 datasets were

obtained. Using the GSE114286 dataset, we identified several

differentially expressed PRGs, and PCA analysis indicated that

the PRGs could distinguish psoriasis from normal tissue samples.

Then, a correlation analysis between PRGs and immune cell were

conducted as well.

Subsequently, we developed a novel diagnostic model for

psoriasis based on PRGs using a machine learning random forest

method, which screened 10 potential PRG biomarkers.

GSE14905, GSE109248, and GSE117239 were used for

external validation.

To discover whether there was a difference between

subtypes of PRGs, we used consensus clustering analysis to

divide the samples into three subtypes. The particular

biological characteristics among clusters were investigated.

Finally, experimental validation was performed using IMQ-

induced psoriasis-like mice and qRT-PCR analysis.

3.1 The transcriptional regulator
landscape in psoriasis patients

The training cohort, the GSE98793 dataset, included

2,139 DEGs comparing psoriasis patients with healthy

individuals and 39 PRGs were presented respectively

(Supplementary Figure S1A). The external validation cohort

(GSE14905, GSE109248, and GSE117239) included

1,959 DEGs (Supplementary Figure S1B), the basic

information of which is shown in Table 1.

FIGURE 2
Article framework and workflow. PRGs, pyroptosis-related genes. PPI, protein–protein interaction. DE, differentially expressed.
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3.2 PRG characteristics

A total of 39 PRGs were obtained from MSigDB, and the

annotation analysis is shown in Supplementary Figure S2. We

attempted to demonstrate the PRGs correlation, and the

results indicated that the PRGs have positive connection,

especially AIM2, ACSP1, CASP8, and GZMB (Figure 3A).

The interaction relationships of these PRGs regulators were

exhibited as a PPI network, which reminded us that the

PRGs have strong protein-protein interaction, especially in

CHMPs family or CASPs family (Figure 3B). Among

all nodes, CASP1 and IL1B had the highest degree of

protein interactions in the PPI network. These results

indicated that expression imbalances of PRGs played critical

roles in psoriasis.

3.3 Identification of DE PRGs

3.3.1 PRGs are differentially expressed in
psoriasis

To investigate the contribution of PRGs to the pathogenesis of

psoriasis, the mRNA expression of PRGs was compared between

psoriasis and normal samples (Figure 3C). Furthermore, the results

of differences on PRGs in other skin disorders, including psoriatic

arthritis (GSE61281), atopic dermatitis (GSE124700 and

FIGURE 3
PRGs correlation and interaction analysis, and DE PRGs identification between psoriasis and normal samples (A). Spearman correlation analysis
of the 39 differentially expressed PRGs; blue represents a positive correlation, red represents a negative correlation, and the darker the color, the
stronger the correlation. (B). Protein–protein interaction (PPI) analysis of the 39 differentially expressed PRGs. (C). Heatmap of the 39 differentially
expressed PRGs in psoriasis and normal samples. (D). Principal component analysis (PCA) of PRGs.
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GSE60709), and acne (GSE53795 and GSE6475), indicated that

PRGs could be biomarkers of psoriasis (Supplementary Table S1).

3.3.2 DE PRGs have the ability to discriminate
psoriasis samples

The PCA results were used to determine distinctiveness-based

confidence measures of PRGs (Dim1 = 46.6%, Dim2 = 13.2%),

which indicated that PRGs have the ability to clearly distinguish

psoriasis from normal samples (Figure 3D).

3.4 PRGs and immune cell correlation
analysis

Emerging evidence has indicated there is crosstalk between

pyroptosis and immune responses (Orning et al., 2019). In

Figure 4, T cells CD4 memory activated show the strongest

positive correlation with TP63 (r = 0.69), while mast cells resting

and NAIP are the most negatively correlated pair (r = -0.64). The

CIBERSORT and immune cell abundance between psoriasis and

normal is shown in Supplementary Figure S3.

3.5 Random forest model mediated by
PRGs

3.5.1 Ten feature DE PRGs were screened out
random forest model

The random forest algorithm was used to rank the

importance of prognostic PRGs. Applying the selection

criteria previously used, we shortlisted 10 PRGs by mean

decrease accuracy and mean decrease gini (Figures 5A–C).

Interleukin 1 beta (IL-1β) was the most prominent pyroptosis

eigengene of psoriasis, followed by absent in melanoma 2 (AIM2)

and caspase 5 (CASP5). DExH-Box helicase 9 (DHX9) and

caspase 4 (CASP4) contain slightly more predominance than

cytochrome C, somatic (CYCS), and caspase 1 (CASP1).

3.5.2 Internal validation
The model demonstrated good discrimination by

performing cross-validation in an ROC curve in internal

validation [AUC = 0.930 (0.877, 0.984)] (Figure 5D), which

indicated the excellent performance of the current random

forest model.

FIGURE 4
Heatmap of the differentially expressed PRGs in various immune cells. (A). PRG correlation map with immune cells, where the horizontal axis
represents PRGs and the vertical axis represents immune cells. (B) The correlation map marked with absolute value. Asterisks represent levels of
significance *p < 0.05.
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3.5.3 External validation

The ROC curve analysis was subsequently used for

independent external validation, with the value of the

AUC representing the consistency of the model. The

results showed that the AUC was 0.870 (95% CI

0.828–0.913) for GSE109248, 0.875 (95% CI 0.750–1.000)

for GSE117239, and 0.812 (95% CI 0.625–1.000) for

GSE14905 (Figure 5E), which indicated the model had a

good predictive performance. In summary, this random

forest model showed reliable predictive power in the

external discrimination test (mean AUC = 0.852).

3.6 Consensus clustering analysis of PRGs

3.6.1 Three pyroptosis subtypes of psoriasis
obtained

To investigate the association between the PRGs and

psoriasis subtypes, we used a consensus clustering algorithm

in the training cohort. When variable (k) = 3, the psoriasis

patients could be well separated into three subtypes of

39 PRGs (Figures 6A–C) with the highest intragroup

correlations and the lowest intergroup correlations. Cluster

1 included nine patients and cluster 2 included seven patients,

leaving two psoriasis patients in cluster 3. The PCA results

showed these three clusters were significantly different from

each other, especially cluster 1 and cluster 2 (Figure 6D).

3.6.2 Differential genes and biological functions
based on PRGs subtype

To investigate the differences in biological functions

between cluster 1 and cluster 2, we initially calculated

the differentially expressed mRNAs (Supplementary Table

S2). Next, we performed the GO and KEGG enrichment

analyses, which revealed the enrichment of metabolic

processes (Figures 7A,B), the MAPK signaling pathway,

FoxO signaling, and the RAGE signaling pathway

(Figure 7D).

3.7 qRT-PCR-verified expression of PRGs
in IMQ-induced psoriasis-like mice

To further demonstrate the results of the random forest

model, we validated the nine target mRNAs in psoriatic mice,

FIGURE 5
A random forest algorithmwas used for ranking the importance of prognostic PRGs. (A,B) The importance of PRGs using the scores returned by
the random forest model. (C) Parameter optimization was initially performed using randomly generated parameter sets, ntree = 400 was selected in
themodeling, and stability was achieved when 100 random samples were taken, three quarters of the dataset was grouped as the training set and the
remaining one quarter as the validation set in each repetition. (D) The receiver operating characteristic (ROC) curve (area under the curve
(AUC) = 0.93) was generated by cross-internal validation. (E) ROC curve on independent external validation, from left to right are GSE117239,
GSE109248, and GSE14905, respectively.
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except for CASP5, which is not present in mice. In contrast with

the normal group, significant changes were observed by qRT-

PCR in the expression of several PRGs in the psoriasis group.

The most obvious significance of PRGs expression was

observed in Granzyme B (GZMB) (Figure 8), which was

dramatically elevated in inflammatory skin disorders; it is

known for its pro-apoptotic function, as well as epithelial

barrier disruption (Turner et al., 2019). Psoriasis has a high

levels of AIM2, the activation of which initiates the assembly of

the inflammasome, triggering thematuration and secretion of the

cytokine IL-1β (Lugrin andMartinon, 2018, 2). Here, we revealed

the high expression of the cysteinyl aspartate protease (caspase,

or CASP) gene family, including CASP1, CASP4, and CASP8,

which play significant roles in programmed cell death,

inflammation, and immunity (Hong et al., 2020). However, no

statistical significance was shown on DHX9, CYCS, and

CHMP2B, which should be accomplished in future research

using large scale clinical samples.

4 Discussion

Many studies have reported the indispensable role pyroptosis

plays in psoriasis (Wang et al., 2020). Whereas most research

focused on one or two PRGs in vivo or vitro, for instance, the

pathogenesis of psoriasis is closely related to caspase-1, IL-1β, IL-

FIGURE 6
Consensus clustering analysis of PRGs. (A) The cumulative distribution function (CDF) curve for each category number k compared with k -1.(B)
Delta area curve of consensus clustering, indicating the relative change in area under the CDF. The horizontal axis represents the category number k,
and the vertical axis represents the relative change in area under the CDF curve. (C) A heatmap showing the consensus clustering solution (k = 3) for
39 PRGs in three clusters. (D) The PCA results show these three clusters were significantly differentiated, especially clusters 1 and 2.
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18, or GSDMD. The contribution degree of PRGs in psoriasis are

still elucidated.

Here, we identified several differentially expressed PRGs, and

PCA indicated that these PRGs could distinguish psoriasis from

normal tissue samples. Subsequently, we developed a novel

diagnostic model for psoriasis based on PRGs, using the

random forest machine learning method, which involved

screening 10 potential PRG biomarkers, followed by internal

and external validation. We also looked for correlations between

immune cells and PRGs. To discover whether there was a

difference between subtypes of PRGs, consensus clustering

analysis was used to divide the samples into three subtypes.

The particular biological characteristics among clusters were

observed. Finally, experimental validation was performed

using IMQ-induced psoriasis-like mice and qRT-PCR analysis.

Random forest, a machine learning algorithm, was the main

predictive model used in our study to reveal contribution degree

of PRGs in psoriasis. It is an ensemble machine learning

algorithm based on decision trees, with strong anti-noise

ability and good robustness, and can be used for feature

selection based on features with a high prediction accuracy; it

is widely used for a variety of classification and regression

problems (Moore et al., 2015). We identified 10 regulators

based on feature values from the random forest algorithm.

Subsequent experimental validation provided further evidence

that mRNA expression of AIM2, CASP4, CASP1, CASP8, and

GZMB was significantly upregulated in IMQ-induced mice.

Pyroptosis is regulated by the classical caspase-1 pathway and

the non-classical caspase-4/5/11 pathway (Xiang and Yang, 2020).

Upon stimulation by pathogenic microbes, intracellular pattern

FIGURE 7
Comparison of biological functions analysis between clusters 1 and 2. (A) The secondary classification of GO, including biological processes,
molecular functions, and cellular components. (B) Bubble map of the GO analysis, ranked by p-value. (C) Bubble map of KEGG signaling pathways,
ranked by Q-value. GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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recognition receptors (PRRs), such as AIM2, assemble into caspase-

1-dependent inflammasomes via apoptosis-related specific protein

pattern recognition receptors. Next, the activated caspase-1

cleaves the inflammatory cytokine IL-1β and IL-18 precursor,

making it an active cytokine, which is the classical pathway of

pyroptosis (Chen et al., 2018). Pyroptosis is characterized by

the cellular production of IL-1β (Wagner et al., 2017). Also,

the tendency of the numerical results to meet an agreement

with our experiments. Our model revealed consistencies with

clinical observations that the augmented protein levels of IL-

1β in skin tissue are associated with psoriatic lesional area and

severity (Cai et al., 2019) (Su et al., 2018, 3) (Yu et al., 2021)

(Ciążyńska et al., 2021, 2). Enhanced expression of IL-1β
mRNA has been observed in vivo, in IMQ-induced mice

(Shou et al., 2021) (Deng et al., 2019) (Tang et al., 2021).

This tendency was in accordance with the result of one

previous cell experiment (Kim et al., 2021). Aberrant or

excessive activation of the classical caspase-1 path is

associated with many autoinflammatory, autoimmune, and

metabolic diseases (Shi et al., 2015). One study revealed that

FIGURE 8
mRNA levels of the candidate PRGs of imiquimod (IMQ)-induced psoriasis-like mice compared with the control group (n = 5). The data are
expressed as means ± SD. Four skin lesions in each group were included in the analysis. *p < 0.05, **p < 0.01, compared with the control group.
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inflammasome sensors, NLRP3, NLRP1, CASP1, and AIM2,

enhanced expression in psoriasis patients (Verma et al., 2021).

An in vivo study demonstrated significantly augmenting

protein expression of AIM2 in IMQ-induced psoriasis-like

mouse model (Chung et al., 2020).

The non-classical pathway of pyroptosis mediated by

caspase-4 and caspase-5 was identified as kernel regulators

in psoriasis by a random forest algorithm in the current study.

Consistent with our findings, the non-classical

inflammasome is a complex of bacterial lipopolysaccharide

together with caspase-4, caspase-5, and caspase-11 (Liu and

Lieberman, 2017), which has been proved to directly

activated GSDMD-mediates pyroptosis process. After

stimulation of cells with lipopolysaccharide from gram-

negative bacteria, caspase-4/5/11 directly binds to lipid A

of lipopolysaccharide or activates caspase-1 via the

NLRP3 inflammasome pathway, which cleaves GSDMD to

become GSDMD N-terminal and GSDMD C-terminal, which

in turn causes cell membrane rupture and lysis as well as the

release of pyroptosis-related factors such as IL-18 and IL-1β
(Liu and Lieberman, 2017). Notably, the augmented levels of

CASP8 and GAMB were observed in the psoriasis-like

dermatitis model, although their roles in the pathogenesis

of psoriasis have not yet been investigated.

Accumulating evidence suggests that pyroptosis-related

regulators play a crucial role in psoriasis. Intervention in

the pyroptosis-related pathway could be a potential target

for the treatment of psoriasis. Our study had some

limitations. First, due to the lack of information about clinical

outcomes, we were unable to directly evaluate the prognostic

value of the current model, therefore, further studies are needed.

Second, achieving practical strategies for translating psoriasis

risk-associated genetic variants into functional annotations and

clinical applications remains challenging.

5 Conclusion

In summary, we used a machine learning model and

experimental verification to investigate the role of PRGs in the

pathogenesis of psoriasis. Through the experimental verification

of 10 PRGs obtained by machine learning, it was found that the

mRNA expression of IL-1β, AIM2, CASP4, CASP1, CASP8,

GZMB, especially IL-1β, CASP1, CASP8, and GZMB, was

ameliorated to alleviate the skin lesions IMQ-induced

psoriasis-like mice, which provided potential therapeutic targets.
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