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ABSTRACT
The human IgG3 subclass is conspicuously absent among the formats for approved monoclonal antibody 
therapies and Fc fusion protein biologics. Concern about the potential for rapid degradation, reduced 
plasma half-life, and increased immunogenicity due to marked variation in allotypes has apparently 
outweighed the potential advantages of IgG3, which include high affinity for activating Fcγ receptors, 
effective complement fixation, and a long hinge that appears better suited for low abundance targets. 
This review aims to highlight distinguishing features of IgG3 and to explore its functional role in the 
immune response. We present studies of natural immunity and recombinant antibody therapies that 
elucidate key contributions of IgG3 and discuss historical roadblocks that no longer remain clearly 
relevant. Collectively, this body of evidence motivates thoughtful reconsideration of the clinical advance-
ment of this distinctive antibody subclass for treatment of human diseases.
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Introduction

As both understanding of antibody sequence-structure- 
function relationships and the number of antibody thera-
peutics in development and clinical use increase each year, 
it is surprising that the unique attributes of the immuno-
globulin gamma 3 (IgG3) subclass have not supported its 
translation into clinical practice by now. While the absence 
of IgG3 antibodies for therapy can be attributed to histor-
ical concerns about the ability to manufacture IgG3 in large 
scale as well as its in vivo half-life, stability, and immuno-
genicity, new data suggest that these exclusion criteria 
should be reconsidered. Here, we summarize the unique 
structural characteristics of human IgG3, including its 
extended hinge architecture, which offers both Fab–Fab 
and Fab–Fc distances and domain flexibilities not observed 
for other subclasses, and its unique functional attributes, 
which have yet to be fully leveraged in antibody design. We 
also explore associations between IgG3 responses in immu-
nization and infection to disease outcomes to elucidate 
potential immunological significance, and consider subclass 
switching experiments to provide mechanistic insights into 
the potential relevance of these associations. We revisit 
prior studies that have provided inferences to suggest chal-
lenges to translational development, and describe recent 
efforts to stimulate new interest in exploring the range of 
human IgG diversity for therapeutic purposes.

Human IgG subclasses: diversity in specificity, 
structure, and function

The four human IgG subclasses are named according to serum 
prevalence and exhibit relatively high sequence homology 
(~95%); however, amino acid variation at key positions results 
in incredible functional diversity.1,2 IgG1 and IgG3 subclasses 
are generally elicited in response to protein antigens associated 
with viral infections, IgG2 typically targets polysaccharide anti-
gens induced by bacterial infections, and the IgG4 response is 
associated with repeated exposure to allergens in the absence of 
an infectious agent.3–5 Such diversity among target antigens is 
reflected in functional differences between subclasses. Whereas 
IgG1 and IgG3 are potent activators of innate immune effector 
cells, IgG2 and IgG4 possess more subdued effector activity. 
The existence of these distinct types of IgGs and their associa-
tion with divergent immunologic stimuli suggests that human 
subclass diversity results from evolutionary pressures applied 
over long time periods. However, the immune system also 
leverages this diversity over short timescales – displaying 
rapidly divergent activity profiles of isotypes and subclasses 
when individuals are repeatedly exposed to foreign antigens, 
in which multiple rounds of class switch recombination (CSR) 
can occur.

Structurally, the principal differences among the human IgG 
subclasses relate to their hinge compositions, i.e., the sequence 
linking the CH1 and CH2 regions that comprise parts of the 
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Fab and Fc domains, respectively (Figure 1). Following reports 
of full-length human IgG 1, 2, and 4 sequences in the early 
1980s,7 the basis for the most striking distinction of IgG3 was 
apparent from its sequence, reported a few years later.8 IgG3 
possesses a unique extended hinge, typically composed of 
quadruplicate proline-rich repeated motifs with extensive 
interchain disulfide bonds, as well as a slightly extended 
upper hinge adjoining the CH1 (totaling 62 amino acids), 
which is encoded by four exons. In contrast, IgG4 has reduced 
hinge length (12 amino acids, as compared to 15 for IgG1) and 
can also undergo a process known as Fab arm exchange,9,10 in 
which the heavy-chain dimer can dissociate and re-associate in 
serum. This process leads to functional monovalency in 

antigen recognition based on the resultant swapping of Fab 
specificities. Lastly, IgG2 contains a 12 amino acid hinge with 
four disulfide bonds. Based on studies of IgG2 disulfide bond 
isomers,11,12 it is known that even subtle structural changes in 
the hinge can affect hydrodynamic radius, antigen binding, 
ligand blocking, and in vivo potency.12–17

Collectively, these distinctions among hinges result in a rich 
structural and conformational landscape (usefully visualized in 
Hayes et al.18). While the hinge contains many constrained 
proline and disulfide-bonded cysteine residues, its superstruc-
ture has been demonstrated to be quite flexible. Only a few 
antibodies have been crystallized as whole molecules,19 some-
times requiring perturbation γ correction to gain clarified 

Figure 1. Flexibility and other features of human IgG subclasses. Top: Representation of the Fab domain flexibility with respect to the hinge regions of the human 
IgG subclasses in which positions for Fab domains are represented by spheres in purple and teal. Figure adapted from Hansen et al.6 with permission. Bottom: 
Measured values for various physical attributes of IgG3 compared to other human subclasses.
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density for the hinge, carbohydrate, and solvent-exposed areas. 
Among IgG subclasses, circular dichroism has shown that the 
IgG3 hinge has a high degree of secondary structure,20 and 
significantly extended Fab–Fc distance. Each core repeat adds 
an estimated 25 Å between the Fab and Fc.18,21,22 Electron 
microscopy (EM), including cryogenic EM, have been used to 
define IgG hinge flexibility and range of motion19,23 and enable 
visualization of multiple conformation states. Aside from Fab– 
Fc distance, Fab–Fab distance and flexibility, as defined by 
permissible and mean Fab–Fab angles (Figure 1), are also 
greater in IgG3 compared to the other IgG subclasses24 and 
have been found to directly correlate with upper hinge 
length.22 This flexibility results in distinctly different confor-
mational compositions,6 which could affect epitope accessibil-
ity and binding valency.

Such differences in flexibility and reach between Fab arms 
and the Fc domains among human IgG subclasses suggest that 
factors beyond intrinsic antigen and Fc receptor binding affi-
nities can affect antibody functionality. Specifically, differences 
in bivalent antigen-binding capacity have been suggested by 
a number of studies.25–27 Toward this end, the most intriguing 
evidence of the biological consequences of differing hinge 
composition can be found in the superior HIV-1 neutralization 
activity of polyclonal, serum-derived bivalent Fab fragments of 
different subclasses. Whereas equivalent neutralization 
potency was observed for monovalent IgG1 and IgG3 Fab 
fragments, suggesting equivalent intrinsic Fab neutralization 
potency, bivalent IgG3 Fab’2 demonstrated potentiated neutra-
lization relative to IgG1 Fab’2, pointing toward a key role for 
distinctions in hinge architecture in activities that do not 

require the Fc domain.28 Notably, multiple broadly neutraliz-
ing HIV-specific antibodies were discovered as IgG3s, particu-
larly those recognizing relatively poorly accessible epitopes on 
the envelope glycoprotein that are proximal to the 
membrane,29–31 and subclass switching experiments have 
demonstrated enhanced neutralization potency of IgG3 forms 
in a number of cases.25,32–34 Together, these isotype switching 
experiments suggest that factors other than Fab affinity con-
tribute to neutralization activity: the unique structure and 
sequence aspects that differentiate IgG3 from the other sub-
classes are thought to potentially affect avid viral recognition, 
a factor shown to be very important to neutralization potency 
in experiments with non-native linkers between Fab domains 
and with “unzipped” hinges in which disulfide bond cysteines 
have been deleted.33,35

In sum, Fab–Fab and Fab–Fc flexibility along with variable 
Fab-Fc length distinguish IgG3. Evidence suggests that the 
IgG3 hinge may allow targeting of antigens or epitopes less 
suited to ligation by other IgG types, with the potential to more 
effectively stimulate cellular activity via Fcɣ receptors.

Allotypic IgG3 diversity in humans

With 29 reported allelic variants (Table 1) defined to date, 
IgG3 is the most polymorphic of the human IgG subclasses 
(Figure 2).36,37 Unlike other subclasses that vary principally in 
terms of isolated amino acid substitutions, IgG3 also has 
structural allotypes that vary in the number of exon repeats 
(from 1 to 3) in the core hinge.38–41 While there is little to 
suggest direct functional relevance of most allotypic variation 

Table 1. Human IgG3 allotypes. Individual allelic positions are mapped against IGHG3*01 sequence by EU position number. The first listed accession number in the 
IMGT database is listed for each given allelic variant. Although several alleles contain synonymous polymorphisms, only non-synonymous SNPs are listed.

CH1 Hinge CH2 CH3+ CHS

Allele 176 192 193 274 291 292 296 309 327 339 379 384 387 392 397 419 435 436 Position 
(EU)

Accession #’s

IGHG3*01 S S L H1+ H2+ H3+ H4 Q P R Y L A T V S P N M Q R F X03604
IGHG3*03 H1+ H3+ H4 V E X16110
IGHG3*04 H1+ H4 X99549
IGHG3*05 H1+ H2+ H3+ H4 AJ390236
IGHG3*06 H1+ H2+ H3+ H4 K AJ390237
IGHG3*07 H1+ H2+ H3+ H4 K AJ390238
IGHG3*08 H1+ H2+ H3+ H4 N AJ390241
IGHG3*09 H1+ H2+ H3+ H4 V AJ390242
IGHG3*10 H1+ H2+ H3+ H4 AL122127
IGHG3*11 H1+ H2+ H3+ H4 F AJ390247
IGHG3*12 H1+ H2+ H4 F AJ390252
IGHG3*13 H1+ H2+ H3+ H4 K E AJ390244
IGHG3*14 H1+ H2+ H3+ H4 L N Y AJ390254
IGHG3*15 H1+ H2+ H3+ H4 L N K Y AJ390260
IGHG3*16 H1+ H2+ H3+ H4 L A N Y AJ390262
IGHG3*17 N F H1+ H3+ H4 M K V H Y AJ390272
IGHG3*18 Y H1+ H3+ H4 W M K V H Y AJ390276
IGHG3*19 H1+ H3+ H4 W M K V H Y AJ390279
IGHG3*20 H1+ H2+ H3+ H4 L N R Y MG920256
IGHG3*21 H1+ H2+ H3+ H4 MG920255
IGHG3*22 H1+ H2+ H3+ H4 L N H Y MG920254
IGHG3*23 H1+ H2+ H4 W K V H Y MH025837
IGHG3*24 H1+ H2+ H3+ H4 N K Y MG920257
IGHG3*25 H1+ H2+ H3+ H4 K L N Y MG920258
IGHG3*26 H1+ H2+ H3+ H4 F G MG920259
IGHG3*27 H1+ H2+ H3+ H4 L N Y MG920260
IGHG3*28 H1+ H2+ H3+ H4 F MG786813
IGHG3*29 H1+ H2+ H3+ H4 L N Y MG920261
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among IgG subclasses,38 associations between IgG allotypes 
and a wide variety of infections, malignancies, and autoim-
mune conditions have been observed.42–48 In contrast, while 
IgG3 allotypes have likewise been associated with differences 
in other aspects of the immune response,49 both structure and 
sequence distinctions among allotypes of this subclass are 
known to affect antibody function.

The best-known example of a highly impactful IgG poly-
morphism is perhaps the R435H polymorphism observed 
among several G3m allotypes. This polymorphism alters pH- 
dependent binding to the neonatal Fc receptor (FcRn), which 
functions as a mucosal transport and systemic recycling recep-
tor. Whereas allotypes bearing an arginine at this position 
exhibit rapid clearance with a half-life of approximately 1 
week, substitution with histidine results in an extended 21- 
day IgG1-like half-life.50 This allotypic variant is quite preva-
lent in South Asian (10–25%) and African populations 
(30–60%),38,51 and has been associated with better transplacen-
tal transport of maternal antibody and resulting improvements 
in neonatal protection from malaria.51

Hinge length is a second functional consequence of allotypic 
variation in IgG3. Polymorphisms in hinge length have been 
observed primarily in sub-Saharan populations and can occur 

concurrently with other point mutations.4 For example, in the 
context of an HIV-neutralizing antibody, the IgG3*17 allotype, 
with a 47 rather than 62 amino acid-long hinge has been 
demonstrated to exhibit reduced neutralization potency and 
effector function.34 Beyond the shorter hinge, this allotype also 
has a lysine at position 392, which eliminates a glycosylation 
motif at a site that has been reported to contribute to molecular 
stability and affect interactions with FcɣRIIIa and antibody- 
dependent cell-mediated cytotoxicity (ADCC).34,52,53 Hinge 
exon deletions that mimic naturally occurring allotypes 
demonstrate an enhancing effect on complement activation 
and complement-mediated lysis,54,55 whereas extensions have 
been reported to enhance phagocytosis.56 Collectively, the 
impact of these genetic differences and potentially others that 
influence induction, persistence, biodistribution, and the func-
tion of IgG3s merits further study in the context of responses to 
infection or vaccination, as well as in antibody engineering.

IgG3 Glycosylation

Despite accounting for only 2–3% of the mass of an IgG 
molecule, glycans affect critical antibody functions such as Fc 
receptor binding.57 N-glycosylation of a conserved site in the 

Figure 2. Sites of amino acid polymorphisms in IgG3 CH2 and CH3 domains. Red amino acids indicate sites of amino acid sequence diversity among G3m allotypes. 
Brackets indicate recognition footprints of various human Fc receptors.
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CH2 domain is required for antibody binding to Fc receptors, 
and the specific composition of the glycoform incorporated 
alters some antibody activities by more than an order of 
magnitude.58 While the human subclasses show diverse inher-
ent effector function, the impact of different Fc glycoforms 
appears to be consistent across subclasses. For example, the 
enhanced FcγRIII binding imparted by afucosylated glycans is 
maintained for IgG3.59 Among naturally derived antibodies, 
IgG1 and IgG3 N-glycosylation patterns are similar in whole 
blood as well as among antigen-specific antibody 
subpopulations,60 but can differ when produced recombinantly 
using different cell lines.61

In contrast to Fc domain-N-glycosylation, the effect of anti-
body O-glycosylation on function is less well documented, despite 
being observed within the hinge region. Only a few antibody 
classes contain O-glycosylation sites within their hinge regions, 
including human IgA1,62 human IgD,63 human IgG3,64 and 
mouse IgG2b.65 The presence of the O-glycan has been hypothe-
sized to provide proteolytic resistance, but glycosylation sites are 
only partially occupied in both serum and recombinant IgG3.64 

Whether the presence of O-glycans in the hinge affect structure or 
function has yet to be thoroughly studied, but may represent 
another important means to modify antibody bioactivity.

Subclass and hinge diversity across species

IgG subclasses are not clearly conserved in terms of arrange-
ment, sequence, structure, or activity between humans, non- 

human primates (NHP), or mice (Figure 3). In fact, because the 
subclass naming convention typically follows serum prevalence 
rather than sequence or functional homology, subclass num-
bers between species have highly divergent properties. For 
instance, both mouse IgG2 and IgG3 are capable of activating 
complement,66 but mouse IgG2 and its isoforms can addition-
ally activate the immune system through FcγR signaling, and 
IgG1 lacks or shows dramatically reduced effector 
function.67–69 Mice also lack an IgG4 or an analogue, which 
in humans is capable of undergoing Fab arm exchange. In 
humans, IgG1 and IgG3 are capable of both potent FcɣR 
signaling as well as complement activation, and IgG2 and 
IgG4 tend to be more functionally inert. Such broad, over-
arching differences in IgG subclass characteristics are then 
compounded by species-specific differences in FcɣR properties 
and expression profiles, which pose substantial challenges 
when trying to recapitulate the human immune response in 
animal models.

Activity and receptor affinity differences are more limited 
among macaque IgG subclasses compared to human and 
mouse IgG subclasses, whose activity and FcR ligation proper-
ties vary by orders of magnitude. In rhesus macaques, all four 
IgG types have high sequence homology to human IgG1.70 

Neither mice nor NHP possess a subclass with an extended 
human IgG3-like hinge, and differences in Fab arm exchange 
of IgG4 also exist between species.71

Beyond these fundamental differences in subclass profiles 
between species, the considerably extended four-exon IgG3 

Figure 3. Human IgG responses over time and IgH locus arrangement in human, mouse, and rhesus. Top: Schematic of subclass composition over time for 
human IgG. IgG3 appears early and wanes over time. IgG1 additionally increases early and titer remains high. IgG2 and IgG4 appear later in infection. Affinity increases 
over time during infection due to somatic hypermutation. Bottom: IGHC locus arrangement across species. Subclass naming convention is based on serum prevalence 
rather than genetic similarity.

MABS e1882028-5



hinge is a feature that is only currently known to exist in humans 
(Table 2). Neither rhesus macaques (Macaca mulatta), nor chim-
panzees (Pan troglodytes), nor baboons (Papio cynocephalus anu-
bis) have IgGs with extended hinges,70,72,73 though the 
chimpanzee IgG3 amino acid hinge, which has only one core 
hinge region, aligns perfectly with the human IgG3 upper hinge. 
Among other species, camelid IgG2a contains a 35 amino acid 
long hinge that has only three inter-chain disulfide bonds, which 
are situated toward the CH2 domain resulting in a more “open” 
configuration.74–76 While the impact of this hinge extension on 
camelid IgG function is unclear, its existence suggests that length 
polymorphisms can arise in other species, and may be an example 
of convergent evolution, as diversification of the Ig locus results in 
sampling of different sequence-function profiles. Overall, the 
unique attributes of the human IgG3 hinge in antigen recognition 
and effector function suggest the existence of a blind spot that may 
arise from trying to model human responses in animal models.

The IgH locus is variably arranged across species 
(Figure 3)77,78 (IMGT Repertoire (IG and T cell receptors) 
http://www.imgt.org/IMGTrepertoire/). Direct comparison 
across species is much more complex than simply com-
paring antibodies with similar functions. Certain sub-
classes share similar effector activity, such as mouse 
IgG2a and human IgG1, but human Igs do not have the 
same splicing complexity as mouse. While the exact same 
process in different species generates similar molecules, 
each animal has a unique fingerprint to their Ig 

repertoires in terms of composition, concentration, and 
timing of Ig molecules.

Subclass switching over the course of an immune 
response

Class switching is a DNA recombination process characterized 
by double-strand breaks and deletion between “switch” regions 
driven by activation-induced cytidine deaminase (AID). As 
a result, while repeated recombination events can occur, they 
are restricted to downstream subclasses in a process linked to 
cell division and regulated by cytokines.79–82 The first IgG 
subclass in the human IGH locus, IgG3 is associated with 
potent acute responses, with waning levels often observed 
over time.83 Indeed, anti-HIV IgG3 responses peak before 
4-weeks post-infection84 and subsequently decline along with 
effector function.85 However, IgG3 responses can be persis-
tently elevated, such as in leprosy86 and tuberculosis.87 In 
contrast, IgG4, the least abundant IgG subclass, is often asso-
ciated with tolerance and has reduced hinge length and func-
tional monovalency in antigen recognition, as described above. 
In the context of HIV vaccines, repetitive protein boosting has 
been associated with increasing prevalence and levels of IgG4 
responses,88–90 a characteristic observed exceedingly rarely in 
natural infection.91 Given that sequential switching reactions 
are associated with greater mutation rates, relatively higher 
affinity and mutational loads are associated with distal IgG 

Table 2. IgG hinges of various species. Red lettering indicates disulfide bond positions.

Species Subclass Sequence (Upper, Middle)

Human 
Homo sapiens

IgG1 EPKSCDKTHTCPPCP
IgG2 ERKCCVECPPCP
IgG3 ELKTPLGDTTHTCPRCPEPSKCDTPPPCPRCPEPSKCDTPPPCPRCPEPSKCDTPPPCPRCP
IgG4 ESKYGPPCPSCP

Chimpanzee 
Pan troglodytes

IgG1 EPKSCDTTHTCPPCA
IgG2 ERKCCVECPPCP
IgG3 ELKTPLGDTTHTCPRCPEPKSCDTPPPCPRCP
IgG4 ESKYGPQCPSCP

Western Gorilla 
Gorilla gorilla

IgG1 EPKSCDTTHTCPPCA
IgG2 EPKCCVECPPCP
IgG3 ELKTPLGDTTHTCPQCPEPKSCDTSPPCPRCP
IgG4 ESKYGPPCPRCP

Rhesus Macaque 
Macaca mulatta

IgG1 EIKTCGGGSKPPTCPPCP
IgG2 GLPCRSTCPPCP
IgG3 EFTPPCDDTTPPCPPCP
IgG4 EFTPPCPPCP

Crab-eating Macaque 
Macaca fascicularis

IgG1 EIKTCGGGSKPPTCPPCP
IgG2 GLPCRSTCPPCP
IgG3 EFTRPCDDTTPPCPPCP
IgG4 EFTPPCPPCP

Pig Tailed Macaque 
Macaca nemestrina

IgG1 EIKTCGGGSKPPTCPPCP
IgG2 GRSTCPPCP
IgG3 EFTPSCDDPTPPCLPCP
IgG4 EFTPPCPPCP

Yellow Baboon 
Papio cynocephalus 
anubis

IgG1 EIKTCGGGSKPPTCPPCT
IgG2 GHPCRSTCPPCP
IgG3 EFTPSCDDPTPPCLPCP

House Mouse 
Mus musculus

IgG2a EPRGPTIKPCPPCKCP
IgG2b EPSGPISTINPCPPCKECHKCP
IgG2c EPRVPITQNPCPPLKECPPCA
IgG3 EPRIPKPSTPPGSSCP

Dromedary 
Camelus dromedarius

IgG1a ELKTPQPQSQPECRCPKCP
IgG2a EPKIPQPQPKPQPQPQPQPKPQPKPEPECTCPKCP
IgG2c AHHSEDPSSKCPKCP
IgG3 GTNEVCKCPKCP

Platypus 
Ornithorhynchs anatinus

IgG1 EPGPSNPPHCP
IgG2 GPRFPGSNSCP
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types.92–96 Reconstructed histories of CSR among B cell Ig 
lineages based on variable region sequencing have offered 
a view of commonly observed patterns of CSR.97 Among 
other observations, this work suggests that the proportion of 
direct switching from IgM or IgD follows position in the IgH 
locus, with all IgG3s resulting from direct switching, a majority 
of IgG1s, approximately half of IgG2s, and a minority of 
IgG4s.97 Further, consistent with linked induction observed 
in in vitro B cell-stimulation experiments,98,99 such sequence- 
based repertoire studies have shown that CSR to IgG3 is pre-
ferentially associated with subsequent switching to IgG1.97

Interestingly, human IgG subclasses are generally arranged 
from greater to lesser inflammatory potential (Table 3). This 
ordering suggests the hypothesis that evolutionary pressures 
have resulted in an arrangement that supports rapid and 
potent initial responses that can be dampened by subsequent 
switching – a scheme that may balance the need for inflam-
matory acute responses with a means to reduce the conse-
quences of autoimmune antibodies, while still providing long- 
term protection. Early IgG3 antibodies might be key for 
enhancing opsonization of pathogenic particles and traffick-
ing to germinal centers, where subsequent B cell somatic 
hypermutation and affinity maturation feedback loops then 
allow for the generation of antibodies with greater potency in 
antigen recognition if not effector function.100,101 Mature 
memory B cells tend to skew toward IgG and IgG4 expres-
sion, while naïve memory B cells tend toward more IGHM 
proximal subclasses IgG1 and IgG3.96 While this locus 
arrangement – coupled with the low serum proportion of 
IgG3, its rapid clearance, and waning prevalence after acute 
responses – may suggest possible downsides to the inflamma-
tory potential of IgG3, there are many human observational 
studies that suggest its beneficial contributions to protection 
from infection.

Natural infection histories

Classically, IgG3 has been grouped with IgG1 in terms of 
immune function because both bind-activating FcɣR well and 
primarily target protein antigens.1,102–104 As might be expected 
given their linked induction in in vitro CSR experiments,98,99 

IgG1 and IgG3 responses have been observed to be 
correlated.105,106 Between them, however, IgG3 has often been 
reported to demonstrate enhanced phagocytosis2,56,107–109 and 
complement deposition, particularly 108, 109, 110in the context of 
low-density target antigen.110–112

Consistent with this enhanced functional potency, induc-
tion of IgG3 can be a key marker for protection, whereas its 
absence is associated with infectious disease susceptibility. 
Adults and children with otherwise normal total IgG levels 
and functional B cell compartments but IgG3 subclass defi-
ciency tend to present with recurrent upper respiratory tract 
infections.113–116 These individuals tend to respond well to 
intravenous Ig treatment,117–120 suggesting that their antibody 
repertoires are relatively functionally naïve toward common 
pathogens despite multiple encounters. Whether IgG3 is 
directly responsible for pathogen sequestration or contributes 
to the development of other protective antibodies is unclear 
and merits further consideration.

In support of potential mechanistic relevance, IgG3 
responses have been associated with better outcomes across 
diverse infectious pathogens in the setting of both natural 
infection and vaccination. For instance, IgG3 responses against 
the HIV V1/V2 loop regions in the RV144 HIV vaccine trial 
correlated with decreased infection risk.88,89,121 Early IgG3 
responses against chikungunya virus infection are associated 
with more rapid viral clearance and a reduction in long-term 
arthralgic sequelae,122 and in clearance of acute hepatitis 
C virus infection.123 A number of studies have reported that 
IgG3 responses induced by infection are associated with 
reduced risk of malaria disease. Interestingly, IgG3 responses 
increase with age, as does clinical immunity.124 Associations 
between IgG3 and better outcomes are also observed in 
children.125–127 In the context of the IgG3-H435 polymorph-
ism that leads to better transport and recycling by FcRn, IgG3 
responses have even been linked to infant protection through 
enhanced placental transfer of maternal antibody.51 In con-
trast, immunity to influenza from vaccination wanes with 
age,128 along with a corresponding reduction in the prevalence 
and magnitude of flu-specific IgG3,129–131 among many other 
parameters.

In contrast, in other settings, antibodies can increase infec-
tion risk or disease severity by facilitating viral uptake into host 
cells that express antibody receptors. In these cases, the 
enhanced ability of IgG3 to ligate antigen and interact with 
FcɣR has the potential to exacerbate disease. As examples, IgG3 
antibodies against Ebola, Zika, and enterovirus have been 
shown to exhibit higher levels of antibody-dependent enhance-
ment (ADE) of infection in vitro than other subclasses.132–134 

The most compelling evidence of the relevance of ADE to 
infection in vivo comes from dengue, in which severity of 
secondary infection is associated with levels and types of virus- 
specific antibodies present in serum. Subneutralizing 
quantities,135 but more concerningly, effective FcγR ligation 
associated with relatively high IgG1/IgG2 ratios and 
afucosylation136,137 have been associated with disease enhance-
ment, though correlation between IgG3 responses and severe 
disease has not been described.

In summary, it is clear that the potentiated effector function 
profile of IgG3 can be associated with enhanced protection, 
suggesting the contributions this unique subclass could make 
in the context of antibody therapeutics. In cases where IgG3 
responses may be causally linked to different infectious disease 
outcomes, diverse mechanisms are possible. Beyond expected 
differences in effector function, previous studies have linked 

Table 3. FcγR binding affinities of human IgG Subclasses. Some interactions 
were not measurable (n.m).

Affinities KA (x105 M−1) Reference
Receptor IgG1 IgG2 IgG3 IgG4 1

FcγRI 650 n.m. 610 340
FcγRIIA (H131) 52 4.5 8.9 1.7
FcγRIIA (R131) 35 1.0 9.1 2.1
FcγRIIB/C 1.2 0.2 1.7 2
FcγRIIIA (F158) 12.0 0.3 77 2
FcγRIIIA (V158) 20.0 0.7 98 2.5
FcγRIIIB (NA1) 2.0 n.m. 11 n.m.
FcγRIIIB (NA2) 2.2 n.m. 9 n.m.
FcγRIIIB (SH) 2.0 n.m. 11 n.m.
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this subclass to potentiated neutralization activity in polyclonal 
responses28 and among monoclonal antibodies.25,32,33,138 

Importantly, the neutralization enhancements observed for 
subclass-switched monoclonal antibodies imply that, beyond 
the well-known impact of subclass and glycosylation on FcR 
binding and effector function, structural differences between 
subclasses can affect other potentially protective antibody 
activities.

Lost in translation

Subclass selection represents a modular and predictable means 
to control antibody function, making it a key aspect of ther-
apeutic antibody development.139 Despite being perhaps the 
most functional subclass,1,53,140,141 there is a surprising lack of 
IgG3 antibodies among approved therapeutics, as well as 
a paucity among early clinical and pre-clinical candidates 
under evaluation. This absence can be attributed to four his-
torical factors: 1) greater allotypic variation among IgG3s, 
raising concern about potential immunogenicity;142 2) the 
reduced plasma half-life typical of IgG3, increasing the fre-
quency or level of dose required to achieve a given antibody 
concentration relative to IgG1;143 3) the absence of binding to 
protein A, eliminating this standard approach to antibody 
purification and requiring alternative and more costly 
approaches;144 and 4) the potential of proteolytic susceptibility 
of the extended hinge, raising concern about in vivo stability;139 

However, as discussed below, these perceived challenges now 
have simple solutions or new data suggest that they may not be 
sufficiently scientifically backed to cause concern.

As mentioned previously, a single, naturally polymorphic 
amino acid substitution improves the half-life and mucosal 
transport properties of IgG3 to those observed for IgG1.50 

Given the success of non-native Fc domains in the clinic, 
such as those engineered for extended half-life,145–147 selection 
of a H435-bearing IgG3 allotype to impart persistent plasma 
pharmacokinetics seems a simple and low risk means to elim-
inate what has likely been the single biggest barrier to clinical 
translation. Allotypic variability has not been associated with 
anti-drug antibody responses.148–150 In fact, a number of the 
polymorphic positions in IgG3 are “isoallotypes”, meaning that 
these substitutions are present in other subclasses and thus may 
not have a propensity to be immunogenic.

As to challenges in purification, other purification meth-
ods, such as protein G resin151 and CaptureSelect FcXL affi-
nity matrix are available, and have been used for commercial 
purification. Alternatively, the use of the same H435 IgG3 
allotype that extends half-life also allows for protein 
A binding,152 enabling the use of current standard industrial 
purification methods. Like other subclasses, IgG3 is suscepti-
ble to aggregation at low pH.153 IgG3 potentially has some-
what elevated susceptibility in this regard, including 
aggregation during expression, as compared to IgG1, but 
recent work has used sequence swapping to reduce this 
profile.154 In terms of thermal stability, IgG3 has been 
omitted from some studies given its absence from the 
clinic.155 However, it is likely that further improvements to 
expression, purification, and storage schemes will also 

provide value and help to smooth the path toward broader 
in vivo and clinical investigation.

Lastly, despite greater sensitivity to enzymatic cleavage 
in vitro in intentional proteolysis experiments,156–158 hinge 
cleavage has not been reported to pose a barrier in vitro or 
in vivo. Further, as gene therapy tools advance, the prospects 
for vectored delivery159,160 of IgG3 could bypass concerns 
about clearance and stability. Collectively, new evidence and 
clinical experience suggest that the absence of clinically 
advanced IgG3 is a historical artifact, and lack of precedent 
need not be considered a barrier to their future use. Gaining 
regulatory agency and industry buy-in for development of the 
first IgG3 monoclonal treatment may be more a problem of 
changing minds than overcoming scientific barriers.

Forward toward the clinic: evaluation in animal 
models and the first human IgG3s tested in humans

A limited number of subclass switching experiments have been 
carried out that enable comparison of the in vitro and in vivo 
activities between subclasses. One study in mice described 
similar biodistribution but did not test in vivo efficacy.56 In 
another study, despite lower serum titers, the passive transfer 
of an HIV envelope glycoprotein variable loop-specific IgG3 
antibody was at least equally effective in preventing viral infec-
tion as IgG1 in an NHP model of HIV infection.161 In contrast, 
in a mouse model of melanoma, IgG3 against the TA99 target 
antigen was not superior to IgG1 at protecting against 
metastasis.162 Though generally supportive of the feasibility 
to clinically translate IgG3, these case studies do not reflect 
settings in which IgG3 antibodies were superior in their in vitro 
functions: the TA99-specific IgG3 was not superior to IgG1 
in vitro, and the HIV envelope variable loop-specific IgG3 
showed similar binding activity and phagocytic activity as 
compared to IgG1.109 This latter experiment was performed 
instead to investigate the basis of IgG3 responses to this epitope 
being correlated with reduced risk of infection in the RV144 
vaccine trial.

The strongest evidence in support of enhanced activity of 
IgG3 in vivo comes from the setting of antibodies to pneumo-
coccus. Here, a longer half-life allotype of IgG3 was shown to 
provide improved protection against pneumococcal pneumo-
nia, as defined by colony-forming units in lung, as compared to 
IgG1.50 Other contexts in which IgG3 is clearly more potent 
than IgG1, such as in the bactericidal activity of antibodies 
specific to meningococcal factor h binding protein,163,164 may 
provide further opportunity to better establish the ability of 
in vitro functional enhancements to improve in vivo protective 
activity. To this end, an anti-Protein A IgG2 antibody fragment 
isolated from a human donor via phage display was refor-
matted as an IgG3 and demonstrated strong activity against 
antibiotic sensitive and methicillin-resistant Staphylococcus 
aureus in vitro and was able to provide 60% protection from 
fatal S. aureus challenge in a mouse model.165 Other subclasses, 
however, were not evaluated in comparison. Nonetheless, the 
promising results of these limited in vivo studies and the more 
prevalent observations from natural infection correlates and 
in vitro studies in which subclass switching from IgG1 to IgG3 
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has enhanced desirable antibody activities suggest that further 
investigation in vivo is merited.

To our knowledge, two monoclonal IgG3 antibodies have 
been investigated clinically. A Phase 1/2 clinical trial 
(NCT02357966) evaluated the Protein A-specific IgG3 mono-
clonal (omodenbamab or 514G3) described above in the set-
ting of Staphylococcus aureus bacteremia with promising 
results. The IgG3 backbone was specifically chosen to avoid 
Fc interactions with protein A (SpA). Concluded in 2017, this 
clinical trial found that the IgG3 treatment was well tolerated 
and generated few severe adverse events.166 Efficacy data was 
self-reported by the sponsoring company (Xbiotech Inc.), but 
as of this time not peer-reviewed. The use of IgG3 to avoid 
protein A interaction is a good demonstration of utilizing 
subclass selection for therapeutic design, and its tolerability is 
encouraging from a safety standpoint.

In the oncology space, one recent study of lung cancer 
patients found an IgG3 autoantibody against complement fac-
tor H (CFH) that was associated with early-stage disease and 
no evidence of metastasis. Single B cells producing the CFH- 
specific response were isolated from these patients, the Ig gene 
sequenced, and a series of preclinical studies then demon-
strated tumor cell killing with modulation of the adaptive 
immune response using the molecule GT103.167 

A recombinant CFH-specific monoclonal antibody, originally 
identified and formulated as an IgG3, has now been success-
fully manufactured on a large scale for clinical trial 
NCT04314089, which was initiated in June 2020. This human- 
derived antibody will be the first monoclonal therapeutic IgG3 
to be tested in humans against cancer and will certainly provide 
essential information about IgG3 as a viable therapeutic 
option.

Beyond natural Ig diversity

Cumulatively, natural histories and subclass switch experi-
ments also point to the potential value of IgG3-inspired engi-
neering of other subclasses. To this end, substantial work has 
already been invested in innovating on natural forms. 
Considering developability, IgG3 has been engineered for 
reduced aggregation and better tolerance of pH stress.154

Beyond correction of undesirable physicochemical attri-
butes, chimeric IgG3s have been advanced as molecules with 
enhanced functionality. For example, such chimeras have 
shown enhanced complement-dependent cytotoxicity, ADCC 
function, and target cell depletion in vivo in NHP.53,168 One 
such molecule is GSK2849330,169 an anti-HER3 glycoengi-
neered IgG1/IgG3 chimera investigated in two Phase 1 clinical 
studies to date: NCT02345174, initiated in 2015 and completed 
in 2016; and NCT01966445, initiated in 2013 and completed in 
2017. This molecule was engineered for enhanced ADCC and 
complement-mediated cytotoxicity by utilizing the IgG3 Fc, 
although the longer half-life amino acid allotype/point muta-
tion was not used. An imaging study of a radiolabeled form of 
this antibody showed good tumor uptake,170 and in a separate 
study of 29 individuals, one exceptional responder was 
noted.171 Accordingly, these and other such strategies may 
hold further promise in combination with existing glycan 

engineering and the wealth and diversity of amino acid point 
mutations developed to alter FcR and C1q interactions.172–174

Based on studies suggesting the significance of the IgG3 
hinge to its unique properties, non-native hinges have also 
been investigated. Constructs exploring alternative hinge 
topologies have included substitution with traditional, confor-
mationally flexible linkers such as repeating Gly4Ser 
subunits;175 “unzipped” native hinges, in which cysteines 
have been eliminated in an effort to increase the span between 
Fab domains;33 and hinge-length extension by repeating nat-
ural hinge exon subunits an unnatural number of times.56 

These approaches, which can enhance antibody function by 
orders of magnitude, are thought to work by enhancing bind-
ing to low abundance, poorly exposed, or distantly spaced 
target epitopes. Collectively, these results suggest that beyond 
translation of natural IgG3 constant domains, antibody engi-
neering based on the unique structural and functional attri-
butes of IgG3 holds promise in improving the potency or 
activity of IgG1-based therapies.

Conclusion

In summary, considerable epidemiological data suggest that 
relative to their serum prevalence, IgG3 antibodies make an 
important contribution to effective humoral immune 
responses. Extensive subclass switching experiments in vitro 
point to the potential mechanistic relevance of associations in 
these cohort studies, with IgG3 often inducing elevated phago-
cytosis and greater complement activation. Albeit limited, the 
in vivo studies conducted to date comparing IgG3 and IgG1 
antibodies suggest that IgG3 results in equivalent or superior 
outcomes, supporting further exploration of this subclass in 
early preclinical studies for applications where its structural 
and functional distinctions may prove advantageous. These 
applications include those where antibody effector function is 
desirable, where antigenic epitopes may be sparse or difficult to 
access, and in the settings in which cohort studies have asso-
ciated IgG3 responses with improved outcomes. That IgG1 
allotypic diversity does not appear to lead to increased immu-
nogenicity risk and non-native Fcs are now commonly 
employed in the clinic suggest that a high level of concern 
about elevated anti-drug antibodies against IgG3 is unwar-
ranted. With the ability to extend the half-life, and produce, 
purify and manufacture IgG3 on a large scale, fundamental 
arguments against clinical translation of IgG3-based or IgG3- 
inspired interventions have been successfully resolved. Further 
experimental data to support IgG3 as a potent therapeutic 
antibody in cases where enhance effector function and its 
altered structural characteristics might provide therapeutic 
advantages, and results from clinical trials to show efficacy 
could open the door toward additional development of this 
subclass as an important tool to treat a spectrum of human 
diseases.
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