
ORIGINAL RESEARCH
published: 03 August 2021

doi: 10.3389/fneur.2021.692126

Frontiers in Neurology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 692126

Edited by:

Hongliu Sun,

Binzhou Medical University, China

Reviewed by:

Azeez Adebimpe,

University of Pennsylvania,

United States

Amanda E. Hernan,

University of Vermont, United States

Kang Min Park,

Inje University Haeundae Paik

Hospital, South Korea

*Correspondence:

Xiaoshan Wang

lidou2005@126.com

Specialty section:

This article was submitted to

Epilepsy,

a section of the journal

Frontiers in Neurology

Received: 07 April 2021

Accepted: 07 June 2021

Published: 03 August 2021

Citation:

Zhang K, Sun J, Sun Y, Niu K,

Wang P, Wu C, Chen Q and Wang X

(2021) Pretreatment Source Location

and Functional Connectivity Network

Correlated With Therapy Response in

Childhood Absence Epilepsy: A

Magnetoencephalography Study.

Front. Neurol. 12:692126.

doi: 10.3389/fneur.2021.692126

Pretreatment Source Location and
Functional Connectivity Network
Correlated With Therapy Response in
Childhood Absence Epilepsy: A
Magnetoencephalography Study

Ke Zhang 1, Jintao Sun 1, Yulei Sun 1, Kai Niu 1, Pengfei Wang 1, Caiyun Wu 1, Qiqi Chen 2 and

Xiaoshan Wang 1*

1Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing,

China, 2MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China

Objective:This study aims to investigate the differences between antiepileptic drug

(AED) responders and nonresponders among patients with childhood absence epilepsy

(CAE) using magnetoencephalography (MEG) and to additionally evaluate whether the

neuromagnetic signals of the brain neurons were correlated with the response to therapy.

Methods: Twenty-four drug-naïve patients were subjected to MEG under six frequency

bandwidths during ictal periods. The source location and functional connectivity were

analyzed using accumulated source imaging and correlation analysis, respectively. All

patients were treated with appropriate AED, at least 1 year after their MEG recordings,

their outcome was assessed, and they were consequently divided into responders

and nonresponders.

Results: The source location of the nonresponders was mainly in the frontal cortex at

a frequency range of 8–12 and 30–80Hz, especially 8–12Hz, while the source location

of the nonresponders was mostly in the medial frontal cortex, which was chosen as the

region of interest. The nonresponders showed strong positive local frontal connections

and deficient anterior and posterior connections at 80–250 Hz.

Conclusion: The frontal cortex and especially the medial frontal cortex at α band

might be relevant to AED-nonresponsive CAE patients. The local frontal positive epileptic

network at 80–250Hz in our study might further reveal underlying cerebral abnormalities

even before treatment in CAE patients, which could cause them to be nonresponsive

to AED. One single mechanism cannot explain AED resistance; the nonresponders may

represent a subgroup of CAE who is refractory to several antiepileptic drugs.

Keywords: childhood absence epilepsy, antiepileptic drug responders, antiepileptic drug nonresponders, ictal

periods, source location, functional connectivity
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INTRODUCTION

Childhood absence epilepsy (CAE) is the most common
idiopathic, generalized nonconvulsive epilepsy caused by
multiple genetic etiologies, representing approximately 10% of
pediatric epilepsy. This disease is characterized by brief moments
of impaired consciousness and often occurs between the age of
3 and 8, affecting girls more than boys (1, 2). The typical ictal
electroencephalography (EEG) shows 3- to 4-Hz generalized
synchronous bilateral spike–wave discharges (GSWDs) (3).

CAE is recently considered as a network disorder, and the
GSWDs are probably generated through the interconnection
between the cortex and thalamic neurons (4). Furthermore,
different changes in brain network among CAE patients occur,
involving the default mode network (DMN), attention network,
and salience network (5–7).

CAE patients are often treated with ethosuximide (ESM),
lamotrigine (LTG), and valproic acid (VPA). Currently, ESM
has class I evidence for CAE, and it is considered as the
first line of treatment to cure it compared to LTG and VPA;
however, ESM is unfortunately not available in China (8, 9).
Although about two-thirds of patients recover completely, some
continue to experience seizures or other psychosocial deficits
into adulthood (10–12). Thus, early identification is necessary
to plan a replacement therapy, patient counseling, individual
support, and early referral. Despite many studies predicting the
treatment outcome and prognostic factors in CAE patients (13–
16), the reasons why some patients respond well to the treatment
while others do not remain poorly understood. Potential causes
of intractability include the induction of drug efflux transporters
on the blood–brain barrier and the alteration of both the
neurotransmitter receptors and target ion channels (17–19).

Magnetoencephalography (MEG) is a non-invasive method
to detect the neuromagnetic signals of brain neurons, which
is gradually applied in clinical practice (20, 21). MEG can
localize epileptic activities and provide a dependable location
in the cerebral cortex (22). Compared with functional magnetic
resonance imaging (fMRI), MEG can measure at millisecond
temporal resolution, which is useful for exploring epileptic
neuromagnetic activities (23, 24). Different frequencies provide
various temporal windows for processing, and various rhythms
are correlated with distinct spatial scales (25). Sources in various
frequency bands may uncover distinct corticothalamic networks
in CAE patients (26).

Thus, based on the aforementioned background, in this work
MEG was firstly used to study the ictal periods of absence
epilepsy in untreated CAE patients, and then after the therapy,
they were grouped according to their outcome, with the purpose
of exploring the differences between antiepileptic drug (AED)
responders and nonresponders. MEG was used to analyze the
source location and functional connectivity network changes
from low to high frequency in 24 drug-naïve CAE patients
during ictal periods to investigate whether these alternations were
correlated with the response to treatment. This study reveals
new potential mechanisms involved in the treatment response
of CAE patients, providing an indication for clinical treatment
and prognosis.

MATERIALS AND METHODS

Participants
A total of 46 CAE patients were monitored from 2014 to 2020.
However, five patients were lost to follow up, 13 were treated
with AEDs before the first MEG inspection, and four had no
absence seizures during MEG recordings. Thus, 24 CAE patients
were finally included in this study. All patients were accompanied
by their parent or guardian who provided the informed consent
on behalf of the child. The inclusion criteria were the following:
(1) diagnosis of CAE by pediatricians according to the 2017
International League Against Seizure Classification (27), (2) an
EEG showing 3 to 4Hz GSWDs with at least 3 s of typical
absence seizures, (3) head movement <5mm during MEG
recording, (4) normal neurological and physical condition, and
(5) no history of AED treatment. The excluded criteria were
the following: (1) presence of metal implants, (2) dramatic
head movement and untypical absence seizures during MEG
inspection, and (3) history of other neurological, psychiatric,
or severe illnesses. During MEG recordings, eight patients were
subjected to hyperventilation to evoke absence seizure, whereas
the remaining patients had spontaneous absence seizures. A total
of 24 patients with typical absence seizures were included in the
subsequent analysis after removing inaccurate and incomplete
seizures. All participants started the treatment with AEDs after
the first MEG recordings as prescribed by the doctors of the
Nanjing Children’s Hospital in China. Clinical outcomes were
evaluated at least 1 year after diagnosis by the parents’ reports or
EEG scans. The patients were then divided into two groups: one
group consisting of AED-responsive patients and another group
consisting of AED-nonresponsive patients. An AED-responsive
patient was defined as one who had no clinically observed
absence seizures and electroclinical discharges during video EEG
recording along the follow-up. An AED-nonresponsive patient
was defined as one who still had seizures after adequate doses
of AEDs or who became seizure-free after the administration of
more than two types of AEDs. Patients who became seizure-free
after the administration of different types of AEDs due to adverse
effects were considered as AED-responsive patients. The criteria
were according to previously published papers (28, 29).

MEG
The research data were acquired using the CTF-275-channel
whole-head MEG system (VSM Medical Technology Company,
Canada) at the magnetic shielding examination laboratory.
Before collecting the MEG data, three coils were connected to
the bilateral preauricular and nasion area, and the head location
procedure was conducted before and after each collection to
determine the patient’s head locations, matching the MEG
sensors prior to inspections. The audiovisual system was applied
in monitoring the process. The sampling rate was 6,000Hz, and
the data were collected with noise elimination of third-order
gradients. At least six epochs with a period of 2minwere collected
for each patient, and then the patients were told to close their
eyes and remain still during the scan. Head movement for each
collection was restricted to 5mm. If no ictal data were captured,
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FIGURE 1 | Schematic diagram of magnetoencephalography (MEG) data analysis. MEG data were acquired, and we chose >3 s ictal periods for analysis. (A) Ictal

periods. (B) The beam-former was applied to cast sensor-level signals to the anatomical brain regions according to individual MR images at the source level.

(C) Accumulated source imaging was generated by spatially overlying the source MEG data and exhibiting the predominant source location. (D) Functional

connectivity network was obtained by correlation analysis, and the significant network was acquired at a predefined threshold.

another recording was performed after subjecting the patients to
hyperventilate to trigger extra absence seizures.

MRI
All patients were subjected to a T1-weighted image with a
3.0-T system magnetic resonance imaging (MRI) examination
(Siemens, Germany). The parameters were as follows: the flip
angle was 9◦, the field of view was 250× 250mm, and the matrix
was 512 × 512. We acquired 176 sagittal slices of each subject.
The MRI marks were placed in the same position as those used
in the MEG inspection for a precise co-registration of the MEG
and MRI datasets. All the anatomical parts in the MRI could be
recognized in the digital MEG images.

MEG Data Analysis and Signal Processing
Technology
MEG data were filtered by a 1–4-Hz band pass filter after
removing noticeable magnetic artifacts and noise (amplitude
>6 pT). The selection of ictal periods was based on 3-Hz GSWDs
shown in MEG and clinically observed symptoms. The clinical
manifestations were observed by the audiovisual system. The
epileptic waveforms were recognized by a specialist neurological
physician. The first spike wave and the last slow wave in GSWDs
were defined as the beginning and the ending of the seizure
separately. An ictal segment of more than 3 s for data processing
was chosen (Figure 1). The MEG signals of predefined six
frequency bands at 1–4, 4–8, 8–12, 12–30, 30–80, and 80–250Hz
were analyzed, and the power-line noise at 50Hz was avoided.

Source Localization
According to the previously published paper (30), accumulated
source imaging (ASI) technique was used to sum the volumes of
source activities over a period of timewith two-step beamforming
methods, which could quantitatively compare the neuromagnetic
activity between responders and nonresponders. The ASI was

applied in separating correlated sources with multiple source
beamformers. The sources were located by ASI using node-beam
lead fields. Because each node-beam lead field represented a form
of either subspace solution or source-beamformer (30), the entire
brain was scanned at a resolution 6mm (about 17,160 voxels per
magnetic source). ASI was obtained using the following formula:

Asi (r, s) =

t=n
∑

t=1

Q (r, t)

where Asi stands for the accumulative source strength at location
r, s represents time slice, t represents the time point of MEG
data, n stands for the entire time points of MEG data, and Q
is the source activity at the time point t and source r. Detailed
algorithms were described in the previously published paper (30),
and this method has been used in several research (31–36).

Functional Connectivity
According to previous studies (30, 35, 36), the ASI algorithms
and the correlation analysis were used to elaborate the functional
connectivity network between the responders and nonresponders
at the source level. The volumetric sources of activities in the
whole brain were firstly calculated using individual MR images
(31). The signal correlation of virtual sensors from two source
pairs was analyzed to estimate the neural networks during the
selected ictal period. The correlativity between the virtual sensor
signals from the two source pairs was analyzed by calculating
the correlation coefficient, and the correlation coefficient was
expressed as per the following formula:

R
(

xa, xb
)

=
C

(

xa, xb
)

SxaSxb

where R(xa, xb) represents the correlation between two magnetic
sources at position “a” and “b,” xa, and xb are the signals from
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the pairedmagnetic sources to calculate the correlation, C(xa, xb)
represents the average value of the signals from the paired
magnetic sources, and Sxa and Sxb are the standard deviations
of two source signals.

All possible links between every two source pairs were
evaluated at the source level to avoid bias, and the neural network
distribution was superimposed on the individual MR images
(30, 31). Individual MR images were spatially normalized using
an MRI template (37, 38), and the neural networks were overlaid
on individual MR images. Then, the MEG–MRI data were
spatially normalized to the MRI template. The medial frontal
cortex (MFC) was specially selected as the region of interest
(ROI). The ROI was firstly defined visually and then verified
with coordinates through theMRI template. The neural networks
between responders and nonresponders were visually recognized
in MRI views and displayed in the coronal, axial, and sagittal
positions. The midpoint of the right and left preauricular points
was the original point (x = 0, y = 0, and z = 0). The blue
and red colors indicated the negative and positive connections,
respectively. Our MEG processor software could segment and
visualize the brain regions in 2D and 3D views.

The threshold was defined as a checkpoint to guarantee the
data quality. The t values for the entire magnetic source pairs
were used to identify the threshold for the connection and
calculated using the following equation:

Tp = R

√

K − 2

1− R2

where Tp represents the t value of a correlation, R stands for
the correlation of magnetic source pairs, and K represents the
number of connected data points. This study specifies the Tp
value when p < 0.05 was defined as the threshold of functional
connectivity network within the two groups.

The algorithms discussed above were analyzed through MEG
Processor software (http://sites.google.com/site/braincloudx/).
The detailedmathematical algorithms were described in previous
studies (30, 31), and thismethod has been used in several research
(35, 36, 39).

Statistical Analyses
The magnetic source location and functional connectivity
under six frequency bandwidths were compared between AED-
responsive patients and AED-nonresponsive patients using
Fisher’s test. The clinical data of the patients (age of onset, average
age, follow-up time, and duration of absence seizures during
MEG recording) between responders and nonresponders were
analyzed using two-tailed t-test, and the results were represented
as mean ± SD. The types of AED between the two groups were
analyzed using Fisher’s test. A value of p < 0.05 was considered
statistically significant. Multiple comparisons were corrected by
Bonferroni-corrected methods [i.e., for six frequency bands, p
< 0.0083 (0.05/6 = 0.0083)]. Controlling the false discovery
rate could be utilized to solve the problem of type 1 errors
(40). Statistical analysis was performed by SPSS 25.0 (IBM SPSS
Inc., USA).

RESULTS

Subject Characteristics, Therapy, and
Therapeutic Response
The gender ratio among patients was 4:20 (male/female).
Thirteen patients were responsive, and 11 were nonresponsive.
Among the responders, LTG was administered to nine patients,
and VPA was administered to the other four. All the responders
became seizure-free. Among the nonresponders, LTG was
administered to two patients, VPA was administered to five,
and a combination of VPA–LTG was administered to the other
four. The seven nonresponders treated with monotherapy still
had seizures, whereas the four treated with combination therapy
became seizure-free. The average age of the 24 patients was
10.28 ± 2.82 years; the onset age was 6.29 ± 1.33 years, with a
mean duration of the seizure of 14.10 ± 4.70 s and a follow-up
time of 28.67 ± 22.07 months. The clinical characteristics of the
responders and nonresponders were not significantly different
(onset age, average age, age at the time of diagnosis, gender,
seizure durations, follow-up time, and types of AEDs). The
clinical data are shown in Table 1.

Source Location
The source location of the nonresponders was mainly in the
frontal cortex at 8–12 and 30–80Hz, especially 8–12Hz. The
source location of the nonresponders was mostly in the medial
frontal cortex, which was chosen as the region of interest (p
= 0.005, p < 0.0083; Figure 2 and Table 2). In addition, it
is important to note that majority of the areas of MFC were
the medial prefrontal cortex (MPFC) and dorsal medial frontal
cortex (DMFC) (Figure 3), while in the other four frequency
bands, the two groups were not statistically different.

Functional Connectivity
Because the source location of the nonresponders was mainly
located in the MFC at 8–12Hz, our hypothesis was that the
network involving MFC could be different between the two
groups. Thus, MFC was chosen as the ROI. The results were
co-registered to each patient’s brain MR images using the three
fiducial points, and visual inspection was conducted in both
2D and 3D views by two specialist neurological physicians
independently. Both excitatory and inhibitory connections
were analyzed. The functional connectivity was significantly
different between the responders and nonresponders (p <

0.0001; Figure 4) at 80–250Hz. At 80–250Hz, the nonresponders
showed strong positive connections in the frontal cortex
(excluding other brain areas) compared with the responders.
Nevertheless, both the responders and nonresponders showed
excitatory connections between the anterior and posterior brain
areas in the other five frequency bandwidths, and no significant
differences were observed between the two groups in these
frequency bands.

DISCUSSION

Our study using MEG revealed that the differences in
pretreatment source location and functional connectivity
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TABLE 1 | Characteristics of the patients.

Patient Gender/age (years) Onset age (years) Seizure durations (s) Follow-up time (months) Initial aed Aeds added Seizure-free

1a F/8 6 16.5 12 VPA N Y

2a F/9 6 10 23 LTG N Y

3a F/8 5 7.1 20 LTG N Y

4a F/9 6 7.2 20 LTG N Y

5a F/10 8 14.4 20 LTG N Y

6a F/13 7 15 68 LTG N Y

7a F/11 5 15.5 74 VPA N Y

8a F/8 6 5 23 LTG N Y

9a F/13 7 14.8 68 LTG N Y

10a F/8 7 24 13 LTG N Y

11a M/6 5 10.2 14 VPA N Y

12a F/7 6 14.7 13 LTG N Y

13a M/8 7 18 12 VPA N Y

14b M/14 6 20 24 VPA N N

15b F/15 8 18.5 25 LTG VPA Y

16b F/9 7 9.3 12 LTG N N

17b F/10 8 15 26 VPA N N

18b F/10 5 11.2 15 VPA N N

19b F/11 10 11.3 12 LTG N N

20b F/14 4 11.3 67 LTG VPA Y

21b M/11 6 18 23 LTG VPA Y

22b F/11 5 13 13 VPA N N

23b M/7 5 20.5 19 VPA N N

24b F/17 6 18 72 LTG VPA Y

F, female; M, male; Y, yes; N, no; aeds, antiepileptic drugs; LTG, lamotrigine; VPA, valproic acid.
amean responder.
bmean nonresponder.

network between AED responders and AED nonresponders
were frequency dependent, supporting the existence of new
mechanisms of AED response in CAE children. However,
the clinical characteristics between the responders and
nonresponders did not change significantly in our study.

Source Localization
Among the nonresponders, an evident frontal cortex source
location at 8–12 and 30–80Hz, especially the MFC (including
MPFC and DMFC) source location at 8–12Hz was found
compared with the responders.

The frontal cortex has numerous high-order functions (41–
43), and some studies reported that the orbital/lateral frontal
lobe may be of importance for CAE pathophysiology (44, 45).
The lower frontal myelin water content in CAE patients reflects
an altered neurodevelopment, and the frontal lobe regions are
most closely related to the cortical thickness of the entire brain
in CAE patients (46, 47). Moreover, to the best of our knowledge
and contrary to popular belief, cortical oscillations, instead of
sole thalamic rhythmicity, are pivotal in inducing epilepsy and
establishing a spike–wave discharge frequency (48), and the
frontal cortex is of great importance in initiating and spreading
absence epilepsy (44, 49–51).

However, the subgroups of CAE patients related to AED
response are insufficiently studied. A previous EEG study
revealed that the frontal onset of absence seizures is sometimes
harder to control with traditional AED monotherapy and can
be considered a special subtype (52). P. W. Carney used EEG–
fMRI to classify the diverse individual patterns of frontal cortical
activation associated with absence seizures, and they postulated
that the involvement of dorsolateral prefrontal cortex in this
disease is highly associated to cognitive impairment in CAE,
and the group with a primarily negative signal change in the
dorsolateral prefrontal cortex has a more benign phenotype
compared to the positive group (53).

Furthermore, in our study, the MFC mainly included MPFC
and DMFC. MPFC is an important hub of default mode network,
which is closely connected to the limbic system (54) and is
considered abnormal in CAE patients (5, 55). Thus, it is likely that
source locations involving these crucial hubs potentially reveal
dysfunctional intrinsic activities and can make CAE patients
become more intractable.

The frequency band where the source was located was mainly
at 8–12 and 30–80Hz, both expressing low-frequency brain
activities. The α rhythm (8–12Hz) is an obvious oscillation
during wakefulness and relaxation (56). A study has shown
that idiopathic, generalized epilepsy patients represent increased
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FIGURE 2 | Images of magnetic localization at 1–250Hz frequency band.

Significant differences were labeled with a green arrow. The location in the

nonresponders was mainly in the frontal cortex area at 8–12 and 30–80Hz,

especially at 8–12Hz, as opposite to the responders; the nonresponders

showed activation in the medial frontal cortex area.

functional connectivity in low-α frequencies (57). The γ rhythm
(30–80Hz) is important in information processing within
cortical networks (58). A research found that the shift in γ

power (30–80Hz) was associated with AED efficacy in two
absence epilepsy mouse models (59). Notably, we observed
nonresponders located in MFC at 8–12Hz compared with
the responders in our study. A previous study using EEG
found that α-power shifted in intractable epilepsy patients,
which might reflect dysfunction of a large-scale cortico-thalamic
network, including frontal cortex (60). Various frequency bands
prefer diverse sorts of connections and different spatial and
temporal information integrations. Low-frequency oscillators
include numerous groups of neurons in large cerebrum regions
as compared with high-frequency oscillators (HFOs) (61). Thus,
the source of low-frequency brain activity may not always result
in a description of potential epileptogenic zones (33).

Overall, our results made preliminary assumptions that the
frontal lobe and especially themedial frontal lobe at α bandmight
be relevant to AED-nonresponsive CAE patients.

Network Pattern
Notably, the source location does not represent the aberrant
brain tissue but indicates the area involved in a dynamic

network of discharges (62). Epileptic seizures reflect aberrant
synchronization, which can only be learnt at the level of
neuronal networks (63). Functional connectivity is considered
the statistical dependencies among distant neurophysiology
events (64). The network perspective assists in understanding the
epileptogenesis of epilepsy, which may result in the progression
and maintenance of intractable or chronic epilepsy (65).

Therefore, given the importance of MFC that we discovered
initially and the advantages of functional connectivity networks,
the dynamics of functional connectivity networks involving the
MFC were specially studied.

Our results identified a stronger positive functional
connectivity in local frontal cortex at 80–250Hz in
nonresponders. Fair DA supposed that, as the brain grows,
the connections between the anterior and posterior cortices are
strengthened (66). However, the increased connection within the
frontal cortex and the decreased connection between the anterior
and posterior cortex might not simply be due to immature brain
development. A previous study has demonstrated increased
functional connectivity within the orbitofrontal cortex in CAE
patients (67). Moreover, the network-involved MFC presented
decreased connections with other regions. The MFC was a hub
of DMN, which was revealed to be abnormal in CAE patients
(5). A previous study revealed reduced DMN connectivity
in treatment-resistant idiopathic, generalized epilepsy (68).
Intractable epilepsy may arise from the start rather than evolve
over time, and clinical symptoms are obvious in the early stage
of the disease (69). Thus, we speculated that this local frontal
connection found in our study might be caused by underlying
cerebral abnormalities even before treatment in CAE patients,
potentially leading to them to become AED nonresponders, but
in our study, given the small sample size of the two groups, we
could not definitely extend our results to the entire CAE patient
population. Further study is needed in the future.

In our study, the CAE patients were treated with VPA or
LTG rather than ESM because ESM is not available in China.
The mechanisms used by VPA and LTG to resolve CAE were
unclear. Previous studies concluded that T-type calcium channels
in nucleus reticularis and cortical neurons are vital in absence
seizure expression, which is consistent with the gain-of-function
mutation of the Cav3.2 subtype of T-type calcium channels
appearing in some CAE patients (70, 71). This evidence might
explain the weak and non-selective action of VPA on these
channels, which leads to its ineffectiveness (72). In addition,
LTG is generally considered as a member of the sodium channel
blockers of AEDs, but this mechanism is not explaining its
current clinical effect on controlling absence seizures (73, 74).
Overexpression of drug efflux transporters in epilepsy, mostly
P-glycoprotein, at the blood–brain barrier can be involved in
LTG resistance (75, 76). However, the relationship between
the pretreatment neural network during ictal periods found in
our study and the molecular mechanisms discussed above is
unknown. Thus, further studies are needed to investigate the
underlying connections between them.

A study speculated that the receptors used by VPA to exert
its effect are spread in all parts of the corticoreticular network,
potentially explaining the effect of this AED (77). A previous
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TABLE 2 | Magnetic location in the brain of the responders and nonresponders.

Frequency band (Hz) 1–4 4–8 8–12 12–30 30–80 80–250

Group N R N R N R N R N R N R

FC 4 3 4 1 7* 0* 3 2 10* 1* 3 1

(MFC) 3 3 4 1 7* 0* 3 2 5 0 3 0

(LFL) 1 0 0 0 0 0 0 0 5 1 0 1

TC 1 0 1 0 1 2 0 2 0 3 3 6

TPJ 1 2 0 0 0 3 0 1 0 0 0 1

POT 6 5 4 2 2 2 3 2 0 0 0 0

Pc 0 3 1 0 0 1 2 3 1 1 0 0

PCC 0 2 0 0 0 0 2 0 0 1 0 0

PL 1 1 2 1 2 1 1 0 0 0 0 0

MOC 2 4 0 2 1 2 1 2 0 1 0 0

TH 0 3 1 4 1 1 3 3 2 7 1 1

CE 0 0 1 0 0 0 0 0 0 0 1 2

DBA 0 1 0 2 0 2 1 0 3 1 4 3

N, nonresponders; R, responders; FC, frontal cortex; LFL, lateral frontal lobe; MFC, medial frontal cortex; TPJ, temporal–parietal junction; POT, parietal–occipital–temporal junction; pC,

precuneus; PCC, posterior cingulate cortex; PL, parietal lobe; MOC, medial occipital cortex; TH, thalamus; CE, cerebellum; DBA, deep brain area.

*p < 0.05.

FIGURE 3 | Source location in the dorsal medial frontal cortex (patient 1),

medial prefrontal cortex (patients 2 and 4), and lateral frontal cortex (patient 3)

in four typical nonresponders at 8–12 and 30–80Hz.

study evaluating the therapy outcome in CAE demonstrated that
the involvement of post-dorsal lateral medial frontal cortex in
CAE patients may be the reason of the initial LTG therapy failure,
and VPA effectiveness can be associated with the complexity of
the neural network (78). Furthermore, a study using a combined
EEG–fMRI and MEG analysis revealed that CAE nonresponders
have a pretreatment increased connectivity in the frontal cortex,
potentially leading to the absence of the effect of ESM on the
thalamus in comparison with the effect of ESM treatment in
responders (29).

Whereas, in our study changes in the local medial
frontal cortex network were discovered in nonresponders,
independently on the type of AED the children received,
our results potentially suggest that the pretreatment network
differences between responders and nonresponders were not

specific to one single AED but represented a subgroup of CAE
who was refractory to any medical treatment, an aspect that is in
agreement with the previous study discussed above (29).

The significant changes of functional connectivity networks
were at 80–250Hz. HFOs are usually divided into ripples (80–
250Hz) and fast ripples (250–500Hz), which are appropriate for
detecting adjacent and strongly connected neural connections
and may offer accurate spatial information about cortical
malfunction (61). It has been uncovered that ictal HFOs are
produced by the disorganization of neural firing, which are highly
located in epileptogenic zones (79). Tenney indicated that ictal
HFOs prominently appeared in the frontal area in CAE patients
(26), and a previous study of our group reported that the ictal
HFOs reflected the severity of absence seizures (33). HFOs might
also serve for monitoring AED response (80).

To sum up, our results display the abnormal dynamic
networks involving the MFC in nonresponders at 80–
250Hz, which might further reveal underlying cerebral
abnormalities even before treatment in CAE patients, leading to
nonresponsive AEDs.

Nevertheless, the response ratio of the treatment in CAE
patients varied from 60 to 95%, which was depending on different
factors, including the studied population, the measurement of
the outcomes, the length of the follow-up, pretreatment EEG
semiology, genetic abnormalities, and different AEDmechanisms
(15, 16, 81–83). It is probably an understatement to assume that
AED resistance was caused by a single mechanism because it
could be due to multiple factors coexisting in the same patient.

LIMITATIONS

Our research has certain limitations. Firstly, the clinical data
were provided by the parents, potentially resulting in inexact
information. Secondly, given the strict inclusion criteria, our
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FIGURE 4 | Typical predominant functional connectivity networks at 1–250Hz.

Nonresponders showed a significantly altered functional connectivity network

at 80–250Hz as compared to the responders, represented by local frontal

connections and deficient anterior–posterior connections, which were

indicated by yellow arrows.

analysis is limited to a relatively small sample size; thus, it is not
possible to draw any definitive conclusions, and further studies
are needed to confirm our results. Thirdly, the relationship
between cortical multi-frequency pretreatment neuromagnetic
activities and the underlying molecular mechanisms remained
unknown. Finally, the repeatability and reliability of our
measurements remain to be proven. Therefore, further research is
needed to confirm the underlying mechanisms of AED response
in CAE patients.

CONCLUSIONS

Our study demonstrated the pretreatment source location and
functional connectivity network associated with the different
treatment responses in CAE patients. The frontal cortex
and especially the MFC at α band might be relevant to

AED-nonresponsive CAE patients. The local frontal positive
connection at a high-frequency range in our study might be
probably caused by underlying cerebral abnormalities even
before treatment in CAE patients, leading to nonresponsive
AEDs. It is probably an understatement to assume that one
single mechanism was responsible for AED resistance; the
nonresponders might represent a subgroup of CAE who were
refractory to several antiepileptic drugs. Thus, the specific
mechanisms underlying the treatment response need to be
further investigated.
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