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Abstract

Lung adenocarcinoma (ADC), the most common lung cancer type, is recognized increas-

ingly as a disease spectrum. To guide individualized patient care, a non-invasive means of

distinguishing indolent from aggressive ADC subtypes is needed urgently. Computer-Aided

Nodule Assessment and Risk Yield (CANARY) is a novel computed tomography (CT) tool

that characterizes early ADCs by detecting nine distinct CT voxel classes, representing a

spectrum of lepidic to invasive growth, within an ADC. CANARY characterization has been

shown to correlate with ADC histology and patient outcomes. This study evaluated the inter-

observer variability of CANARY analysis. Three novice observers segmented and analyzed

independently 95 biopsy-confirmed lung ADCs from Vanderbilt University Medical Center/

Nashville Veterans Administration Tennessee Valley Healthcare system (VUMC/TVHS)

and the Mayo Clinic (Mayo). Inter-observer variability was measured using intra-class corre-

lation coefficient (ICC). The average ICC for all CANARY classes was 0.828 (95% CI 0.76,

0.895) for the VUMC/TVHS cohort, and 0.852 (95% CI 0.804, 0.901) for the Mayo cohort.

The most invasive voxel classes had the highest ICC values. To determine whether nodule

size influenced inter-observer variability, an additional cohort of 49 sub-centimeter nodules

from Mayo were also segmented by three observers, with similar ICC results. Our study

demonstrates that CANARY ADC classification between novice CANARY users has an
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acceptably low degree of variability, and supports the further development of CANARY for

clinical application.

Introduction

Now that screening for lung cancer is nationally recommended in most guidelines, the inci-

dence of early lung cancer detection is likely to rise [1]. While this offers a remarkable oppor-

tunity to intervene early in the disease course, individualized management of lung cancer

therapy will require appropriate risk stratification. Given our evolving knowledge of lung can-

cer, and the increasingly frequent radiologic detection of tumors that are more indolent than

their clinically detected counterparts, over-diagnosis and over-treatment of clinically inconse-

quential disease are considerable problems. An estimated 20% of cancers diagnosed during the

National Lung Screening Trial (NLST) were felt to be slow growing and clinically insignificant,

and nearly all of those cancers belonged to the adenocarcinoma (ADC) classification [2–4].

Lung ADC is increasingly recognized as a disease spectrum with varying degrees of aggres-

siveness, ranging from minimally invasive adenocarcinoma (MIA) and adenocarcinoma in

situ (AIS) with nearly 100% post-resection survival to invasive adenocarcinoma (IA) that

behaves similarly to other non-small cell lung cancers [5]. Comprehensive semi-quantitative

histologic assessment of resected ADCs correlates well with patient outcomes, but cannot by

definition be used to guide non-invasive management. Non-invasive characterization of lung

ADCs using CT-based quantitative tools could be useful to individualize treatment of lung

ADCs.

Computer-Aided Nodule Assessment and Risk Yield (CANARY) is a novel computer soft-

ware that provides early ADC risk stratification based upon defined radiologic characteristics,

which correlate well with known histopathologic features [6,7]. The software detects nine dis-

tinct classes of nodule characteristics based on voxel histogram features within CT images of

pulmonary ADCs. These features are color coded as Violet (V), Indigo (I), Blue (B), Green

(G), Yellow (Y), Orange (O), Red (R), Cyan (C), and Pink (P). The V, I, R, and O (VIRO) clas-

ses represent more solid density voxels and are strongly associated with histologic invasion.

The B, C, and G classes represent ground-glass density and a spectrum of lepidic growth. Clas-

ses P and Y represent voxels categorized between lepidic and invasive growth. The relative

presence of these voxel classes within an ADC has been shown to correlate well with post-

resection survival, suggesting that non-invasive CANARY assessment could serve as a surro-

gate for the histologic examination of the tumor.

While CANARY utilizes semi-automatic segmentation based on seed-voxel growing fea-

tures to isolate an ADC from normal lung parenchyma, software users must verify and manu-

ally adjust the borders, particularly if normal solid tissue, such as large vessels, chest wall or

mediastinal structures are included in the segmentation. As manual border selection could

vary substantially from one software user to the next, the segmentation differences could intro-

duce enough variability to alter CANARY analysis and ADC characterization. Therefore, the

inter-observer variability of CANARY must be studied before it can be used clinically. To

determine the inter-observer variability of CANARY ADC characterization, three novice soft-

ware users from two different institutions segmented 95 primary lung ADCs independently

and compared outcomes of CANARY characterization. To determine whether smaller nodules

were more susceptible to inter-observer variability, segmentations of 49 sub-centimeter nod-

ules from Mayo were also evaluated.
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Materials and methods

Study subjects

All cases were provided retrospectively from ongoing IRB-approved studies at Vanderbilt

University Medical Center (VUMC), Nashville Veterans Administration Tennessee Valley

Healthcare System (TVHS), and the Mayo Clinic (Mayo). This study was approved by the

institutional review boards at both institutions (IRB numbers 000616 for VUMC, 030763 for

TVHS, and 14–000666 for Mayo Clinic, Rochester, MN). The Mayo IRB waived the require-

ment for informed consent. VUMC/TVHS patients provided written consent to have data

from their medical records used for research purposes. Inclusion criteria were patients over

age 18 with lung nodule size between 4 and 30 mm identified by low dose chest computed

tomography (CT) scan and lung ADC confirmed on pathology from biopsies or surgical resec-

tions. Imaging studies were exchanged via institutional computer servers. All imaging studies

and clinical data were de-identified before the any of the study researchers accessed the data.

Table 1 shows the demographics and tumor staging for the cohort examined in this study.

CT image acquisition

For the 50 patient cohort who had CT scans performed at VUMC or TVHS, scans were per-

formed between 2009 and 2015. All of the lung nodules were confirmed to be ADC after surgi-

cal resection. ADCs greater than 3cm were excluded from this study. CT reconstruction

algorithms varied by scanner brand/model and included both smooth (soft tissue) and high-

resolution (lung) filtered back-projection algorithms. The TVHS CT scanner was a 64-slice

helical VCT from GE Medical Systems (Waukesha, WI, USA). The VUMC CT scanner was an

8-slice helical STE scanner from GE Medical Systems (Waukesha, WI, USA). CT Imaging

from both scanners was acquired at 120 KVP, with automatic adjustment of milliampere-sec-

onds (range 30–400) to minimize radiation dose. Images on these scanners were reconstructed

using a 512-matrix with slice thickness 1.25–2.5 mm and field of view adjusted for each patient

to include the entirety of the chest wall and both lungs.

All patients from Mayo had CT scans performed between 2009 and 2015. The Mayo CT

images were obtained through a variety of scanners: including GE Medical Systems LightSpeed

Ultra, LightSpeed VCT, or LightSpeed Pro 16 (Waukesha, WI, USA); Toshiba Aquilion

Table 1. Patient demographics, smoking status, and tumor stage.

Demographics VUMC/TVHS

(n = 50)

Mayo

(n = 45)

Mean age at diagnosis 67 68.6

Male Gender, n (%) 37 (74) 18 (40)

Smoker, n (%)

Current 15 (30) 8 (17)

Former 31 (62) 36 (80)

Never 4 (8) 6 (13)

TNM stage, n (%) 26 (52) 32 (71)

IA 8 (16) 5 (11)

IB 2 (4) 1 (2)

IIA 2 (4) 2 (4)

IIB 1 (2) 4 (9)

IIIB 1(2) 1 (2)

IV 0 0

https://doi.org/10.1371/journal.pone.0198118.t001
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(Tustin, CA); Siemens Sensation 16 and Sensation 64 (Malvern, PA). CT reconstruction algo-

rithms varied by scanner brand/model and included both smooth (soft tissue) and high-reso-

lution (lung) filtered back-projection algorithms. Images on these scanners were reconstructed

using a 512-matrix with slice thickness 1.25–2.5 mm and field of view adjusted for each patient

to include the entirety of the chest wall and both lungs.

CANARY observers

Authors ECN, MPF, and TFJ served as the three observers who evaluated CT images of ADCs

and performed CANARY analysis upon the cohort of 50 patients from VUMC/TVHS and 45

patients from Mayo. ECN was a second-year Internal Medicine resident at VUMC, and she

had received introductory radiology training as a medical student. MPF was a fourth-year

undergraduate student at Vanderbilt University, and had no prior radiology training. TFJ was

a thoracic radiology fellow in the sixth year of his radiology training. SR, BJB, and RK seg-

mented independently an additional cohort of 49 nodules from Mayo that were less than 1

centimeter. All three of these authors have extensive experience in thoracic radiology.

Nodule definition, localization and segmentation

The location of each ADC was confirmed by one radiologist (TFJ) and one pulmonologist

(FM), and a screenshot of the nodule was shared amongst the three software users (TFJ, ECN,

MPF). Two observers at VUMC/TVHS and two of the CANARY developers at Mayo estab-

lished a user standard operating procedure (SOP, S1 File) as they learned to use the software.

The SOP was then shared with the third observer at Mayo. The SOP provided instructions for

consistent ADC identification in all three CT views (axial, coronal, and sagittal), use of image

zooming features, and most importantly for adjustment of the ADC border. When a nodule

abutted the chest wall, mediastinal structures, or large blood vessel, the observer was instructed

to draw an exclusionary line or use a “nudge” tool to exclude this tissue as the observer saw fit.

If the observer judged that CANARY’s automated segmentation involved the nodule alone, the

automated nodule borders were not adjusted.

Five randomly selected ADCs from the VUMC/TVHS cohort were segmented by the three

observers according to the SOP. Segmentation data from these five ADCs was shared amongst

the observers to confirm similar results of segmentation according to the SOP prior to further

segmentation of the entire study cohort. Data from these five ADCs was included in the final

study. The software users were blinded to patient outcomes prior to segmentation. Fig 1 illus-

trates the process of segmentation with an example case.

CANARY analysis

Once the observer confirmed or adjusted the ADC borders, CANARY classification of the

ADC was performed. This method has been published previously [6,7]. Briefly, CANARY

analysis was developed using machine learning techniques based upon the analysis of 37 histo-

logically proven lung ADCs that had pre-surgical, volumetric, non-contrast high-resolution

CT data obtained for clinical reasons. These nodules had various degrees of histologic inva-

sion, and CT characteristics spanning the spectrum of pure groundglass opacity through fully

solid density. 774 volumes of interest (VOI) of 9x9 voxels within the 37 nodules were arbi-

trarily selected, and histogram/texture characteristics of these VOIs were compared using pair-

wise similarity metrics. Affinity propagation, an unsupervised clustering algorithm, and

pairwise similarity metrics identified radiologically similar VOI clusters and the centroid of

these clusters was established as the phenotype of each cluster/characteristic. These classes

were color coded as Violet (V), Indigo (I), Blue (B), Green (G), Yellow (Y), Orange (O), Red
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Fig 1. CANARY segmentation process. CT scans from a cohort of biopsy-confirmed ADCs from VUMC/TVHS

(n = 50) and Mayo (n = 45) were analyzed by three independent software users from two institutions using CANARY

segmentation. All ADCs were<3 cm, according to previous CANARY studies. A pulmonologist and radiologist

confirmed nodule location prior to segmentation. A. Once the observer had identified the nodule on the CT scan,

placing the pointer over the nodule established a volume of interest around the nodule. B. Next, CANARY defined the
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(R), Cyan (C), and Pink (P). The imaging classifications represented a spectrum of histologic

features of malignancy from predominantly lepidic growth to invasive ADC.

CANARY analysis of a nodule was performed by assessing each voxel in the nodule seg-

mentation with its surrounding 80 voxels (a 9 x 9 voxel) sequentially. The histogram features

of this voxel were classified as one of the nine defined classes based on similarity. The relative

representation of each voxel class within the entire nodule establishes the parametric signature

of the entire nodule, which has been shown to correlate with both histology and patient out-

comes. Fig 2 shows the CANARY voxel class composition within an ADC as well as the overall

prognostic characterization (Good (G), Intermediate (I), and Poor (P)) established by the

ADC composition. This prognostic characterization was established in previous CANARY

publications, and relates to overall postoperative survival.

Statistical analysis

The primary goal of this study was to assess the variability in CANARY analysis between three

different observers. The detection of the individual nine CANARY classes and the cumulative

composition of a whole ADC were compared between observers’ segmentations. The variance

of each CANARY class was calculated to assess the deviation of each observer’s segmentation

from the mean of the three observers’ segmentation. Intraclass Correlation Coefficient (ICC)

is the ratio of the between-nodule variance to the total variance, where the total variance is the

sum of between-nodule variance, between-observer variance and unexplained variation. As

between-nodule variance increases, the relative contribution of between-observer variance to

the total variance decreases. Using a linear mixed effect model, the ICC was calculated to eval-

uate reproducibility of each voxel class detected within CT images of ADCs. Additionally, the

Dice similarity coefficient (DSC) was calculated to compare the similarity of segmentations

between any two observers for each ADC examined. Kruskal-Wallis test was performed to

determine whether there was a significant difference in ICC results when CT scans were cate-

gorized by slice thickness. Fleiss kappa coefficient was used to assess the agreement of

CANARY prognostic characterizations for ADCs among three observers. Statistical calcula-

tions were performed in R 3.3.2 (R Foundation for Statistical Computing; Vienna, Austria).

Results

Inter-observer agreement of classes detected in CANARY segmentation

For each segmentation, CANARY provided a tally of segmented voxels categorized under each

class and the total segmented voxel count. The percentage of each class within an ADC estab-

lished the ADC’s prognostic characterization. Therefore, differences in the relative composi-

tion of an ADC based upon an observer’s segmentation could have significant clinical

implications for a given lesion.

Variance analysis was performed to assess how the observers’ segmentations, the ADCs, or

intrinsic variability contributed to differences in the percentage of each voxel class within an

ADC. Variance was calculated for each class as well as for classes V, I, R, and O (VIRO) collec-

tively, which represent the most invasive nodule features identified on CT. Fig 3 shows the

contributions of the observer, the ADC nodule, and intrinsic residual variability to the vari-

ance of each CANARY voxel class. Differences in the ADCs’ voxel class composition generated

nodule border (red area) on each CT slice. C. If the border appeared inconsistent with the perceived nodule edge (i.e.

extension into vasculature or chest wall), the observer adjusted the nodule borders by using an eraser tool (dotted

yellow circle).

https://doi.org/10.1371/journal.pone.0198118.g001
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the greatest source of variance (between-nodule variance), while the individual observer seg-

mentations contributed minimally to variance.

Next, to assess the reproducibility of CANARY class voxel counts between observer seg-

mentations, the ICC was calculated for each class and VIRO based upon the percentage of

each class within the entire ADC. Table 2 shows the ICC values for individual CANARY clas-

ses, the VIRO group, and the average of all classes. The averaged ICC for all of the classes was

Fig 2. ADC characterization based upon the CANARY class composition. CANARY detected nine unique voxel

characteristics within CT image data, which were color coded as CANARY classes: Violet (V), Indigo (I), Blue (B),

Green (G), Yellow (Y), Orange (O), Red (R), Cyan (C), and Pink (P). Voxels of class V, I, R, and O (VIRO) were

associated with invasion, while the classes B, C, and G represented lepidic growth. P and Y class voxels were between

lepidic and frankly invasive growth, such those found in MIA or AIS. The composition of each class within the total

ADC voxels was used to define overall ADC risk characterization as Good (G), Intermediate (I), or Poor (P). Above are

three ADCs at the completion of CANARY analysis and characterization. A, B, and C are examples of G, I, and P

nodule characterizations respectively.

https://doi.org/10.1371/journal.pone.0198118.g002
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0.828 (95% CI 0.76, 0.895) for the VUMC/TVHS cohort, and 0.852 (95% CI 0.804, 0.901) for

the Mayo cohort. The G class had the lowest ICC score of the nine classes.

Fig 3. Observer segmentation differences contribute minimally to the variance of CANARY classes. The variance

between observer segmentations was calculated for each CANARY class and the V, I, R, O (VIRO) classes collectively.

CANARY classification variance was compared between the individual ADCs (red), inter-observer segmentations

(green), or residual intrinsic variability (blue).

https://doi.org/10.1371/journal.pone.0198118.g003

Table 2. Intra-class correlation coefficient (ICC) is highest amongst the CANARY classes representing most invasive ADC features. Intra-class correlation coeffi-

cient (ICC), a measure of agreement of quantitative assessments made by different observers evaluating the same quantity, was calculated for each CANARY class, the

VIRO group, and the average (Avg.) of all classes. An ICC of 0.8–1 reflects high agreement between users. These calculations were performed for the VUMC/TVHS and

the Mayo cohorts, as well as for each subgroup of patients scanned by a particular CT scanner (GE Medical Systems, Philips, and Siemens). ICCs and 95% CI for each

voxel class are shown below. The number of patients within each cohort is listed in parentheses.

Avg. V I B G Y O R C P VIRO

All cases

VUMC/TVHS 0.828 0.925 0.795 0.91 0.467 0.827 0.864 0.977 0.868 0.778 0.865

(50) (0.76,

0.895)

(0.891,

0.959)

(0.71, 0.88) (0.87,

0.951)

(0.302,

0.632)

(0.754,

0.901)

(0.804,

0.923)

(0.966,

0.988)

(0.81,

0.926)

(0.687,

0.869)

(0.805,

0.924)

Mayo 0.852 0.953 0.871 0.963 0.151 0.881 0.965 0.99 0.939 0.866 0.942

(45) (0.804,

0.901)

(0.93,

0.976)

(0.811,

0.931)

(0.945,

0.981)

(-0.035,

0.338)

(0.826,

0.937)

(0.947,

0.982)

(0.985,

0.995)

(0.909,

0.969)

(0.804,

0.928)

(0.913,

0.97)

GE Medical Systems

VUMC/TVHS 0.737 0.923 0.736 0.492 0.275 0.822 0.906 0.872 0.646 0.863 0.835

(25) (0.608,

0.866)

(0.874,

0.973)

(0.588,

0.884)

(0.264,

0.72)

(0.275,

0.529)

(0.715,

0.928)

(0.847,

0.966)

(0.793,

0.952)

(0.463,

0.83)

(0.779,

0.948)

(0.735,

0.935)

Mayo 0.851 0.939 0.833 0.991 0.195 0.858 0.972 0.983 0.951 0.857 0.933

(22) (0.778,

0.924)

(0.897,

0.981)

(0.725,

0.94)

(0.984,

0.997)

(-0.075,

0.465)

(0.764,

0.951)

(0.952,

0.992)

(0.97,

0.995)

(0.916,

0.985)

(0.763,

0.951)

(0.887,

0.979)

Philips

VUMC/TVHS

(24)

0.831 0.929 0.829 0.921 0.464 0.841 0.798 0.976 0.92 0.747 0.883

(0.736,

0.926)

(0.882,

0.976)

(0.724,

0.934)

(0.869,

0.973)

(0.226,

0.703)

(0.743,

0.94)

(0.677,

0.919)

(0.96,

0.992)

(0.868,

0.973)

(0.601,

0.893)

(0.809,

0.958)

Siemens

Mayo (21) 0.853 0.966 0.903 0.942 0.124 0.9 0.958 0.999 0.93 0.862 0.945

(0.784,

0.921)

(0.941,

0.991)

(0.837,

0.97)

(0.901,

0.983)

(-0.146,

0.394)

(0.83,

0.969)

(0.927,

0.988)

(0.999, 1) (0.881,

0.979)

(0.763,

0.955)

(0.905,

0.984)

https://doi.org/10.1371/journal.pone.0198118.t002
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Given the potential impact of different CT scanner manufacturer settings, the cohort data

was separated according to the CT scanner manufacturer, and the ICCs for each CANARY

class, the average, and VIRO group were calculated (Table 2). Two patients from Mayo and

one patient from VUMC/TVHS were scanned on Toshiba scanners, and separate ICC calcula-

tions were not performed for this small cohort. The ICC for each of the three CT manufacturer

subgroups revealed the same pattern as for the cohort as a whole: the ICC was consistently

>0.9 in the VIRO group, and>0.7 in the average of all CANARY classes. Voxel class G had

the lowest ICC in all manufacturer subgroups.

The impact of different CT slice thicknesses upon observers’ segmentations was also con-

sidered. The CT scans were sorted by slice thickness, ranging from 1.0 to 2.5mm, and the ICCs

for each CANARY voxel class were calculated (S1 Table). Five of the 95 CT scans from Mayo

and VUMC/TVHS, obtained at 3mm (n = 3) and 5mm (n = 2) thickness, were excluded from

analysis due to low samples size that those thicknesses. Kruskal-Wallis test revealed that there

was not a significant difference in ICCs when the CT scans were categorized by slice thickness

(H = 2.421, p = 0.659).

DSC values, which assessed the segmentation uniformity between observers, further dem-

onstrated inter-observer consistency of CANARY analysis. Four of the VUMC/TVH cases

did not generate the proper files required for DSC calculation after they were segmented

in CANARY, and these were excluded from statistical analysis. The mean DSC for the 46

VUMC/TVH cases was 0.793 (standard deviation 0.125, 95% CI 0.772, 0.814); for the 45 Mayo

cases, the mean DSC was 0.812 (standard deviation 0.103, 95% CI 0.795, 0.829). DSC > 0.7

indicates strong overlap and is used in segmentation validation literature as a threshold for

acceptable reproducibility [8]. Fig 4 compares CANARY ADC characterization assignment

based upon the three observer segmentations of the same case as an example.

To determine whether smaller nodule size influenced inter-user variability, an additional

cohort of 49 nodules from Mayo, all less than 1cm in diameter, was segmented and ICCs calcu-

lated for the voxel classes (Table 3). Again, the ICC of the voxel class average was greater than

0.8, and the VIRO group had the highest ICC of all classes.

Significant inter-observer agreement of CANARY risk stratification

Based upon an ADC’s relative composition of the nine classes, CANARY generates a prognos-

tic characterization of good (G), intermediate (I), or poor (P) based upon Kaplan-Meier sur-

vival curves from initial CANARY studies [9], as shown in Fig 2. Fleiss Kappa, a measure of

chance-adjusted measure was applied to the prognostic characterizations generated by the

observers’ segmentations. A Kappa score of 0.61–0.8 represents substantial agreement, and a

score of 0.81–1.0 represents perfect agreement. For the VUMC/TVHS cohort, the Kappa score

was 0.75 (95% CI 0.62, 0.88); for the Mayo cohort, the kappa score was 0.82 (95% CI 0.7, 0.94).

Discussion

By characterizing the distributions of nine distinct radiologic voxel classes within ADC nod-

ules, CANARY analysis has been shown to correlate well with histology and patient outcomes

in previous studies [6,9], and could prove useful for the objective analysis of these radiologic

opacities. Our study demonstrated low inter-observer variability with nodule analysis per-

formed by three novice CANARY users, indicating that the CANARY results published previ-

ously could be generalized to users with limited software experience, and establish CANARY

as a valuable tool to characterize early lung ADCs.

The collective VIRO classes had the highest ICC amongst all classes in both institutional

cohorts. VIRO are detected in invasive ADCs based upon histologic comparison. Our findings
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Fig 4. CANARY class patterns between observers. Two ADC cases are shown with the segmentations as completed

by the three observers. The segmentations numbered 1 and 2 for each case were performed by a VUMC/TVH

observer, while segmentation numbered 3 was performed by the Mayo observer. A. The VUMC/TVHS observers and

the Mayo observer segmented different portions of this nodule while following the standard operating procedure

(SOP), yet this had minimal impact upon the nodule class composition as shown by the high percentage of the R class

in the nodule. B. A representative case showing low segmentation variability between observers.

https://doi.org/10.1371/journal.pone.0198118.g004
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indicate that CANARY can identify more aggressive ADCs consistently when nodules are seg-

mented by different individuals. For CANARY classes B and C, which represent lepidic growth

patterns, as well as for classes P and Y, which correlate to tissue that is between invasive and

lepidic growth, ICC values also met criteria for acceptably high reproducibility. The influence

of manually adjusting ADC borders therefore had minimal impact overall upon CANARY

analysis in a diversity of ADC phenotypes.

The G class, representing the most lepidic features on CT, had the lowest ICC value in both

institutional cohorts. There are two potential explanations for this low reproducibility between

observer’s segmentations. First, few of the ADCs in our cohorts contained a significant per-

centage of G class voxels, magnifying any relative difference in the measurement of G voxels in

our cohort. 89% of ADC segmentations from all three observers had<5% of their voxels classi-

fied as G. This was a limitation of our study. Secondly, the low reproducibility of the G class

quantification between users may also be a consequence of the challenges in defining lepidic

tissue borders, which are found in ground glass opacities (GGOs). Proper border delineation

of pulmonary lesions containing lepidic growth may require greater radiology expertise to

achieve low inter-user variability, however it is acknowledged amongst experienced radiolo-

gists that establishing borders for these lesions is challenging. There are no universal guidelines

at present for defining GGO borders [10], which can represent the AIS and MIA subclasses of

ADCs. Assessing CANARY inter-observer variability in a retrospective analysis of AIS and

MIA nodules that tend to contain G class voxels could refine our SOP. Ultimately, these dis-

crepancies may in fact have minimal clinical implications given that the distribution of

CANARY classes representing histologic invasion appear to have the greatest impact upon

ADC prognosis, and the detection of these classes had low variability and high reproducibility

between users.

Our findings help to advance the application of radiomics in the field of early lung cancer

assessment. Radiomics, the extraction and analysis of data from medical images to guide clini-

cal decision making, is being applied to prostate, liver, and breast cancer assessments. Textural

analysis of diffusion and T2-weighted magnetic resonance images (MRI) in patients with pros-

tate cancer has been shown to help distinguish cancerous from noncancerous tissues. This

method has also been shown to improve differentiation of prostate cancer with Gleason scores

of 6, which may only require active surveillance, from malignancies with Gleason scores of 7,

which may require more aggressive intervention [11–13]. Kuo et al examined imaging from

patients with hepatocellular carcinoma, and identified CT phenotypes that correlated with a

doxorubicin drug-response gene expression program, suggesting these imaging phenotypes

could guide individualized treatment [14]. Teruel et al applied textural analysis to dynamic

contrast enhanced breast MRI, and found that this assessment could provide prediction of a

patient’s response prior to receiving neoadjuvant chemotherapy [15].

The accuracy and reliability of radiomics methods when applied to images collected by dif-

ferent machines or by the same machine under slightly different settings has been an area of

concern and ongoing investigation within this field [16,17]. It is generally accepted that CT

Table 3. Intra-class correlation coefficient (ICC) amongst CANARY voxel subtypes from nodules less than 1cm in diameter. Avg. is the average of all voxel classes.

95% CI is shown in parentheses below the ICC.

Avg. V I B G Y O R C P VIRO

Mayo

(49)

0.849 0.93 0.855 0.87 0.584 0.788 0.942 0.98 0.85 0.783 0.907

(0.787,

0.911)

(0.898,

0.962)

(0.792,

0.919)

(0.813,

0.928)

(0.438,

0.729)

(0.7,

0.877)

(0.915,

0.969)

(0.97,

0.989)

(0.785,

0.916)

(0.693,

0.873)

(0.864,

0.949)

https://doi.org/10.1371/journal.pone.0198118.t003
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slice thickness for lung nodule evaluation is optimal at 1–2.5mm, and 90- of the total 95 CT

scans in our study met that criteria [18]. While greater slice thickness reduces nodule resolu-

tion, this metric did not have a significant upon inter-observer agreement of ADC composi-

tion by CANARY voxel type. When our cohort data was categorized by CT manufacturer, the

ICC values for each scanner type followed the same pattern as the cohort as a whole with the

most invasive voxel classes having the highest ICC, and the G class having the lowest ICC. This

subgroup analysis demonstrates that within this cohort and amongst these CT scanners,

CANARY classifications of ADCs have low inter-observer variability. This finding has impor-

tant clinical implications as medical centers evaluating patients with early lung ADC use a vari-

ety of CT scanners and reconstruction settings. Differences in the radiomics metrics utilized

for CANARY ADC classification do not appear to influence inter-observer agreement

significantly.

Radiomic applications to risk stratify lung ADCs may play a fundamental role in precision

oncologic care for the most common lung malignancy. Current standard of care strategies for

early stage lung ADC, if indiscriminately applied, almost certainly result in overtreatment of

indolent tumors that patients, particularly those with extensive comorbidities, are more likely

to die with than from. The increasing awareness of an aggressiveness spectrum within the

ADC landscape is driving interest in alternative therapeutic strategies such as limited resec-

tions, stereotactic body radiation therapy, and even active surveillance for the most indolent

lesions [19–22]. As other non-invasive methods of ADC characterization are developed, such

as additional imaging techniques or liquid biopsy, comparing or combining these methods

with CANARY may strengthen diagnostic sensitivity and specificity [23]. On a molecular

level, the relationship between tumor biology and radiologic features should be assessed by

investigating the presence of protein or genetic markers that correlate with nodule radiology

findings. While this research is in its initial phase, non-invasive biomarkers that could facilitate

ADC characterization could prove invaluable, and are generating considerable interest among

investigators.

Further validations of CANARY as a clinical tool include prospective testing of CANARY

analysis to determine whether there is a relationship between CANARY-derived prognostic

stratification. This study demonstrates that CANARY analysis is reliable between observers,

and serves as an important step in moving CANARY closer to clinical application.
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S1 File. Standard operating protocol. This document provided step by step instruction on

ADC segmentation using CANARY software. This document provides step-by-step instruc-

tions for nodule segmentation using CANARY software. It was developed by authors ECN,

MPF, TFJ, RK, and SR. The SOP is also available at protocols.io under the title, “CANARY Seg-

mentation of Lung Adenocarcinoma”, and may be found at dx.doi.org/10.17504/protocols.io.

mrcc52w.

(PDF)

S1 Table. CT scan slice thickness does not impact intra-class correlation coefficients

(ICCs) of CANARY voxel subtypes. S1 Table shows the ICCs for each CANARY voxel type

when the CT scans were sorted by slice thickness, ranging from 1.0 to 2.5mm. Five of the 95

CT scans from Mayo and VUMC/TVHS, obtained at 3mm (n = 3) and 5mm (n = 2) thickness,

were excluded from analysis due to low samples size that those thicknesses. Kruskal-Wallis test

revealed that there was not a significant difference in ICCs when the CT scans were catego-

rized by slice thickness (H = 2.421, p = 0.659).
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