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The chemokine receptor CXCR3 and associated CXC chemokines have been extensively

investigated in several inflammatory and autoimmune diseases as well as in tumor

development. Recent studies have indicated the role of these chemokines also in

cardiovascular diseases. We aimed to present current knowledge regarding the role of

CXCR3-binding chemokines in the pathogenesis of atherosclerosis and during acute

myocardial infarction.

Keywords: inflammation, chemokine, I-TAC, atherosclerosis, coronary artery disease, myocardial infarction

INTRODUCTION

Atherosclerosis is a chronic inflammatory disease, with immune cells and their effector molecules
initiating and maintaining the progression of atherosclerotic lesion formation, accompanying
and also precipitating acute coronary events and the following reparatory processes (1, 2).
Chemotactic cytokines, or so-called chemokines have been shown to facilitate leukocyte migration
during inflammatory responses to various stimuli, including their recruitment to the sites of
atherosclerotic lesions (3).

Several chemokines have been associated with cardiovascular inflammatory changes.
Chemokines CCL2, CCL5, CCL20, CXCL1, MIF (migration inhibitory factor), and CX3CL1 play
a role in monocyte mobilization and recruitment (4). Monocyte binding to endothelial cells and
their diapedesis into the subendothelial space is promoted by chemokine heterodimers CXCL4-
CCL5. CXCL4 also affects monocyte differentiation into M4 macrophages, predominantly present
in the adventitia and intima (5). Recruitment and survival of neutrophils is facilitated by CCL2,
CCL3, CCL5, and CXCL1; (4) they also interact with CXCL4 (6) and CXCL12 (7).

Activated T lymphocytes (primarily Th1 cells) accumulate early and abundantly in the
atherosclerotic lesions and are present in the plaques at all stages (3, 8). The Th1 cells recruited to
the lesion recognize LDL as antigen and produce proinflammatory mediators such as interferon-
gamma (IFN-γ) and tumor necrosis factor (TNF) (3, 8, 9). IFN-γ is the major proatherogenic
cytokine, promoting local expression of adhesion molecules, cytokines and chemokines such as
CXCL9, CXCL10, and CXCL11 and their main receptor CXCR3 by macrophages and endothelial
cells (10). Chemokine signaling through CXCR3 facilitates recruitment and selective homing of
active Th1 cells to the site of plaque development or rupture (Figure 1) (10–12).
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The present review focuses on the role of the IFN-
γ inducible chemokines and their receptor CXCR3 in the
development of atherosclerosis and consequent coronary artery
disease. Possible clinical implications of the presented findings
are not entirely clear, but the currently available clinical
studies suggest that this might be a promising area of
intervention in the future of cardiovascular therapy and
prevention (13).

BIASED SIGNALING THROUGH CXCR3

CXCR3 is a 7-transmembrane spanning (7-TMS) G-protein-
coupled cell surface receptor that allows functional selectivity
on tissue, receptor as well as ligand levels (6). It binds
three inflammatory chemokines CXCL9, CXCL10, and CXCL11
(14, 15). It was also shown to weakly bind CXCL4 (platelet
factor 4), with questionable in vivo significance (16). CXCR3
has three alternative splice variants: CXCR3A, CXCR3B, and
CXCR3Alt that activate different intracellular signaling pathways,
depending also on the ligand they bind (14). For example,
Gαi heterotrimeric G protein activation and β-arrestin 1 and
2 recruitment was shown after stimulation with CXCL10 and
CXCL11 on CXCR3A, however on CXCR3B it was shown only
after stimulation with CXCL11 in high doses and was not
detectable on CXCR3Alt. ERK1/2 phosphorylation and receptor
internalization occurred on all three variants after stimulation, its
intensity and signal duration depending on the chemokine ligand
and splice variant assessed (14).

Different chemokines binding to CXCR3 appear to have
slightly different roles in T cell trafficking. CXCL10 is abundantly
expressed by all atheroma-associated cells such as T cells
and monocytes and is supposed to facilitate T cell retention
within the lesion (15, 17). CXCL11 interacts with CXCR3 with
higher affinity and is a stronger agonist, demonstrated by its
ability to mobilize intracellular calcium and also chemotactic
migration of CXCR3+ cells. It is not active on resting or
naïve T cells suggesting that CXCL11 does not play a role
under normal conditions only during IL-2 stimulated T cell
response (17, 18). CXCL11 was shown to be the physiologic
inducer of CXCR3 down-regulation on the cellular surface after
T cell contact with IFN-activated endothelial cells (19). This
might serve as an arrest signal for the activated T cells and
lead to restraining inflammatory responses (8). Besides CXCR3,
CXCL11 also binds to receptor CXCR7 (ACKR3), whichmay also
be a possible regulation point for CXCR3-mediated responses
(16, 20). CXCL11 also has an antagonistic effect on CCR5,
counteracting its inflammatory activities in leukocyte activation
(21).

Biased signaling on CXCR3 results in different effect of
its ligands during inflammatory events. It seems that CXCL9
and CXCL10 promote inflammation through inducing T cell
polarization into Th1/Th17 cells, while CXCL11 drives the
development of regulatory T cells (Treg) cells which play a role
in restraining inflammation (22). Based on the above, CXCR3
may be hypothesized to play a dual role by mediating both
proinflammatory and anti-inflammatory pathways.

CXCR3 BINDING CHEMOKINES IN
ATHEROMA DEVELOPMENT

Experimental data demonstrated that targeted deletion or
pharmacological inhibition of CXCR3 results in reduced plaque
formation, which is accompanied by reduced recruitment of
Th1 cells and increased migration of regulatory T-lymphocytes
to lesions in apoE–/– mice (23, 24). In line, Apoe–/– /Cxcl10–
/– mice showed reduced atherogenesis with enhanced numbers
and activity of Treg cells (25). Moreover, antibody-mediated
CXCL10 inhibition resulted in a more stable plaque phenotype
in a vulnerable plaque mouse model (26).

High levels of IFN-γ induced chemokines CXCL9, CXCL10,
and CXCL11 can be detected in human atheromas throughout
all stages of plaque development (7). Niki et al. found
elevated CLXCL10 levels to be associated with coronary
atherosclerosis (27), while Segers et al. revealed a close correlation
between high local concentrations of CXCL10 and unstable
plaque characteristics by analyzing human carotid plaque
specimens (26). CXCL4 and CXCL12 were also detected within
atherosclerotic lesions (7, 28). CXCL12 was suggested to mediate
anti-inflammatory action through neutrophil cells (7). CXCL4
is produced by platelets and plays a role in T cell-platelet
interactions (29). Its levels were found to be correlated with the
histological and clinical severity of atherosclerosis (28).

CXCR3 BINDING CHEMOKINES IN
ANGINA PECTORIS

There is an increased systemic inflammatory activity present
in patients with coronary artery disease, characterized by
an increased proportion of IFN-γ positive Th1 lymphocytes.
In patients with stable angina pectoris, enhanced systemic
expression of CXCL9, CXCL10, and CXCR3 can be observed.
Interestingly, lower levels of these chemokines and CXCR3 were
found in the peripheral cells of patients with acute coronary
syndrome, which indicates a sequestering of circulating CXCR
positive cells from blood to the site of infarction via an intense
in situ release of these chemokines (10, 11). Plasma levels of
CXCL12 are decreased in patients with stable and unstable
angina compared with healthy controls. CXCL12 thus might
have a protective effect in unstable angina through stabilizing the
atherosclerotic plaque (7).

Other anti-inflammatory molecules known for their
protective effect in cardiovascular diseases were found to
influence T cell trafficking through the chemokine system.
Adiponectin was shown to inhibit CXCR3 ligand production in
macrophages, while heparin competes for binding with CXCL9,
CXCL10, and CXCL11 on endothelial cells (30, 31).

CXCR3 BINDING CHEMOKINES IN
MYOCARDIAL INFARCTION

It has been reported that CXCL10 and CXCR3 mRNA levels
are up-regulated in the infarcted murine myocardium, with a
marked increase in the number of CXCR3+/CD45+ leukocytes,
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FIGURE 1 | Development and progression of the atherosclerotic lesion.

CXCR3+/CD3+ T lymphocytes and CXCR3+ myofibroblasts
(32, 33). Although CXCR3 is well-known to activate pro-
inflammatory Th1 lymphocyte responses, deficiency of CXCR3
did not affect post-infarction cardiac remodeling (34). In
contrast, Cxcl10–/– mice subjected to myocardial infarction
were characterized by enhanced adverse ventricular remodeling,
early expansion of the fibrotic scar, and increased neutrophil
infiltration with marked reduction of recruitment of CXCR3
expressing leukocytes and T cells (33). Notably, CXCR3-
independent proteoglycan signaling may mediate the anti-
fibrotic effects of CXCL10 in the infarcted heart (34). In contrast
to CXCL10, the role of CXCL9 and CXCL11 in infarct healing is
not known.

Through receptor CXCR3, CXCL9, and CXCL10 promote
T cell polarization into effector Th1/Th17 cells releasing pro-
inflammatory mediators. Meanwhile, CXCL4 and CXCL11
promoted the differentiation of T cells into Treg1 cells,
responsible for restraining the inflammatory response through
IL-10, TGF-β and contact dependent pathways (22, 35, 36).
Platelet surface expression of CXCR4 and CXCR7 receptors is
elevated in acute coronary syndrome compared to stable angina.

High CXCR7 levels are also associated with better improvement
of left ventricular function after myocardial infarction. CXCR7
expression might contribute to regenerative function of platelets
following acute coronary events (37).

Timely resolution of cardiac inflammatory responses plays
a pivotal role in optimal tissue reparation (38, 39). Excessive,
prolonged or inadequately contained inflammation can cause
several complications such as cardiac rupture or dilatative
ventricular remodeling and may lead to impaired cardiac
function. Activation of pro-apoptotic pathways can cause
unnecessary loss of cardiomyocytes and the extension of the
inflammation to the non-infarcted area results in enhanced
fibrosis and increased infarct size (38–40). Blockade of leukocyte
related inflammatory mediators was shown to cause a marked
reduction in infarct size and prevented the extension of ischemic
cardiomyocyte injury following reperfusion in experimental
studies (38).

During myocardial infarction, the dual role of CXCR3 in
inflammatory processes might enable CXCR3+ cells to set
off an appropriately rapid and robust inflammatory response
in the beginning (1). Also, it might contribute to the
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timely resolution of symptoms by restraining the inflammation
afterwards. It seems that the activation of the plaque rather
than the degree of coronary stenosis precipitates ischemia and
infarction. Endothelial erosion or plaque rupture was found to be
responsible for the majority of coronary thrombotic events (1, 9)
(Box 1).

CLINICAL EXPERIENCE WITH CXCR3
BINDING CHEMOKINES IN ISCHEMIC
HEART DISEASE

The clinical relevance of CXCR3 binding chemokines in ischemic
heart disease is not fully understood. As summarized in
Table 1, clinical studies to date aimed to find an association
between plasma levels of different cytokines and several
aspects of coronary events. It seems that complex patterns
rather than individual changes in plasma chemokine levels
might be associated with cardiovascular risk (50, 53, 59).

Box 1 | Chemokines, CXCR3, and CXCL9 (Mig), CXCL10 (IP-10), and

CXCL11 (I-TAC)

Chemokines

Chemokines are a structurally related superfamily of more than 50

small signaling proteins (cytokines) that were originally named after their

chemotactic effect on leukocytes. They all share a conserved cysteine motif

in the mature sequence of the chemokines. Based on the number and

arrangement of the N-terminal cysteine residues in this motif, chemokines

can be divided into four families (CXC, CC, C, and CX3C) (41, 42). Besides

regulating leukocyte migration and degranulation, chemokines take active

part in a number of complex processes like angiogenesis or hematopoiesis

and were found to participate in several diseases related to the immune

system such as atherogenesis, multiple sclerosis, asthma, HIV-infection or

cancer (7, 18, 41–43).

Chemokines bind to 7-TMS G-protein-coupled cell surface receptors.

The activation of chemokine receptors can be followed by one of several

signaling pathways, including inhibition of adenylate cyclase, activation of

phosphoinositol 3-kinase, phospholipase C and D, protein kinase C and A,

inositol triphosphate generation and transient calcium influx (44). More than

20 chemokine receptors have been discovered so far; their names mirror the

nomenclature of chemokine family names (CXCR1-7, CCR1-10, etc.) (45).

CXCR3

CXCR3 is a chemokine receptor expressed by activated T lymphocytes,

including CD4+ T helper 1 (Th1) cells, CD8+ cytotoxic T lymphocytes

(CTL), and CD4+ and CD8+ memory T cells, as well as monocytes,

M1 macrophages, natural killer (NK) cells, leukemic B-cells, eosinophils,

mast cells, plasmocytoid dendritic cells, endothelial cells (ECs) and vascular

smooth muscle cells (SMCs) (44, 46). Up-regulation of CXCR3 has been

described in multiple sclerosis and transplant rejection (47). CXCR3 is also

expressed by various tumor cells (48).

CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-TAC)

These three non-ELR chemokines are on the same branch of the

phylogenetic tree and consequently share common characteristics. Their

main receptor is CXCR3, but they can also act as antagonists for CCR3.

They are constitutively expressed at low levels in normal tissues including

thymus and spleen, where they are probably involved in activated (CXCR3+)

T cell trafficking. Their expression is strongly induced by IFN-γ and they

are produced in a wide variety of cell types, including atheroma-associated

endothelial cells and macrophages (7, 17, 41, 44).

Ardigo et al. found that when using a combined multimarker
chemokine model (including CXCL10), serum concentrations
of the chemokines were differentially regulated in individuals
with clinical coronary artery disease compared with subjects
with no such history. Their findings suggest that chemokine
profile models using multiple chemokines may represent a strong
signal of coronary artery disease with even higher specificity than
traditional risk factors (49).

In a large case-control study of 312 patients with coronary
heart disease and 472 controls, a significant association of
increased serum CXCL10 was found with the risk of coronary
heart disease. Higher CXCL10 levels were also found to
be independently correlated with established laboratory risk
markers of coronary heart disease such as acute-phase proteins
and inflammatory cytokines (50).

In patients with stable angina pectoris, Fernandes et al. found
significantly higher levels of CXCL9, CXCL10, and CXCR3
compared to healthy controls (11). In patients with unstable
angina, increased inflammatory activity was confirmed compared
to stable angina patients by elevated high sensitivity C-reactive
protein and serum amyloid A protein levels. However, the levels
of CXCL9, CXCL10, and CXCR3 remained low in patients
with unstable angina, comparable to the control group and
significantly lower than in patients with stable angina. The
authors suggested local release and intense uptake of these
molecules by circulating leukocytes migrating to the site of
active inflammation, which would explain their lower levels in
the peripheral blood. Blood samples were drawn within 48 h
of the index consultation of the unstable patients, and it was
hypothesized that samples taken in a different time frame might
capture serum elevations in CXCR3 and related chemokines (11).

Safa et al. (51) in a larger study in 260 patients and 100
healthy controls managed to capture elevated CXCL10 levels
in patients with unstable angina. In this study the serum
levels of CXCL10 were measured at the time of admission and
were found to be elevated both in patients with stable and
unstable angina pectoris. CXCL10 was also elevated in acute
myocardial infarction, measured 3–5 days after admission. The
study also confirmed the correlation of tradition risk factor
with CXCL10, as mean serum levels of CXCL10 in patients
with hypertension, dyslipidemia, obesity, diabetes and smoking
were significantly higher as compared to the control group
(51).

While elevated serum CXCL10 was found to be significantly
associated with increased risk of coronary heart disease, it
was not an independent risk factor for future coronary events
in population-based case-control studies (52, 53). CXCL10
modestly correlated with traditional cardiovascular risk factors
in the PRIME study (49). Age was found to be the strongest
positive confounder in the MONICA/CORA Augsburg cohort,
with the levels of circulating immune mediators increasing
with age (52). The investigators of the Tromsø Study found
that higher CXCL10 levels were protective for women when
assessing the 10-year risk of incident myocardial infarction. In
the multivariable model, the composite risk of 6 biomarkers
including CXCL10 improved the traditional risk factor model by
14% (54).
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TABLE 1 | Clinical studies with CXCR3 binding chemokines in coronary artery disease.

Study Molecules/

Receptor

n Disease/Intervention Description Results

Ardigo et al.

(49)

CXCL10

CCL11/eotaxin-1

CCL2/MCP-1

CCL3

CCL7

CCL8

CCL13

(CXCL8 and

CCL5/RANTES not

analyzed)

50 patients

48 controls

CAD, incident AMI Cross-sectional study of a

multidimensional approach, utilizing

profiles of several inflammatory

biomarkers.

Models using multiple chemokines

more accurately distinguished cases

and controls compared with models

using traditional risk factors.

Rothenbacher

et al. (50)

CXCL10

IL-8

RANTES/CCL5

MCP-1/CCL2

MIP-1α

312 patients

472 controls

Stable CAD Case-control study investigating the

association of chemokines with the

risk of stable coronary heart disease.

Serum levels of CXCL10 and IL-8

were higher, and serum levels of

RANTES were lower in CHD patients

when compared with age- and

gender-matched controls.

Fernandes et

al. (11)

CXCL9

CXCL10

CXCR3

IL-12

IFN-γ

50 patients

10 controls

Stable or unstable

angina pectoris

To explore whether this increase in

Th1 activity could also be detected in

circulating cells indicating a systemic

activation.

Serum IL-12 and intracellular

expression of IFN-γ were significantly

elevated in patients with unstable

angina. An enhanced expression of

IFN-γ chemokines IP-10, Mig and

CXCR3 in patients with stable angina

was also observed.

Safa et al. (51) CXCL10 300 patients

100 controls

Stable or unstable

angina pectoris

AMI

A comparative study to evaluate the

CXCL10, CCL20 and CCL22 levels in

patients with ischemic heart disease.

Serum levels of CXCL10 were

significantly higher in patients with

AMI, SA or UA as compared with the

healthy control group.

PRIME (52) CXCL10

RANTES/CCL5

MCP-1/CCL2

eotaxin-1/CCL11

621 patients

1242

controls

CAD To quantify the association between

systemic levels of chemokines with

future coronary heart disease and to

assess their usefulness for risk

prediction.

None of the chemokines were

independent predictors of CAD, either

with respect to stable angina or to

acute coronary syndrome.

MONICA/CORA

Augsburg (53)

CXCL10

MCP-1/CCL2

IL-8

381 patients

1977

controls

CAD To assess whether elevated systemic

levels of these chemokines precede

coronary events.

Elevated systemic levels of the

chemokines MCP-1, IL-8, and

CXCL10 precede CAHD but do not

represent independent risk factors.

The Tromsø

study (54)

CXCL10

apolipoprotein

B/apolipoprotein

A1 ratio

kallikrein

lipoprotein a

matrix

metalloproteinase 9

thrombospondin 4

419 patients

398 controls

AMI To survey multiple protein biomarkers

for association with the 10-year risk of

incident AMI and identify a clinically

significant risk model.

The protein biomarker model

improved identification of 10-year AMI

risk above and beyond traditional risk

factors with 14% better allocation to

either high or low risk group.

Ferdousie et

al. (55)

CXCL10

CXCL12

80 patients CAD/PTCA To evaluate the potential correlation

between serum levels of chemokines

CXCL10 and CXCL12 and the degree

of coronary artery occlusion.

A significant correlation between the

serum levels of CXCL10 and CXCL12

and the severity of coronary artery

occlusion was found.

Kawamura et

al. (56)

CXCL10

MCP-1

CCR2

CCR5

CXCR2

CXCR3

55 patients

20 controls

CAD/PTCA To investigate whether coronary

stenosis is associated with a

significant expression ofleukocyte

CXCL10 –CXCR3.

Increased plasma concentrations of

IP10 were accompanied by a

compensatory decrease in the

CXCR3 expression on lymphocytes,

but not monocytes.

Ørn et al. (57) CCL4

CXCL8

CXCL10

CXCL16

CCL3

CXCL7

42 patients AMI/PCI To assess the levels of selected

chemokines during AMI and the

subsequent 60 days.

After PCI, high levels of CCL4,

CXCL16, CXCL10 and CXCL8 within

the first week after PCI correlated

positively with the degree of

myocardial damage and infarct size

after 2 months.

(Continued)
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TABLE 1 | Continued

Study Molecules/

Receptor

n Disease/Intervention Description Results

Koten et al.

(58)

CXCL10 53 patients

20 controls

AMI/PCI stable

angina pectoris

To examine the serum levels of

CXCL10 in AMI.

The serum CXCL10 level was

increased in AMI, and a higher level of

serum CXCL10 before PCI may be

informative regarding infarct size.

Keeley et al.

(59)

CXCL1

CXCL5

CXCL8

CXCL9

CXCL10

CXCL11

CXCL12

156 patients Coronary artery

stenosis

To examine whether plasma levels of

angiogenic and angiostatic

chemokines are associated with of

the presence and extent of coronary

collaterals in patients with chronic

ischemic heart disease.

Plasma chemokine concentrations

are associated with the presence and

extent of spontaneously visible

coronary artery collaterals and may

be mechanistically involved in their

recruitment.

Kao et al. (60) CXCL11

CCR5

Transplant CAD To demonstrate that CXCL11 is

involved in the pathogenesis of

transplant CAD.

This study demonstrated a correlation

between circulating CXCL11

chemokine levels and development of

transplant CAD in humans.

A significant correlation was found between elevated serum
CXCL10 and CXCL12 levels and the severity of coronary
artery occlusion in patients with coronary heart disease
who underwent PTCA (55). In patients with restenosis after
PTCA, decreased concentrations of CXCL10 were followed by
the decrease of CXCR3 expression on lymphocytes but not
monocytes, suggesting a possible role of CXCL10 signaling
on monocytes in neointimal hyperplasia in patients with
restenosis (56).

CXCL8, CXCL10, and CXCL16 were found to be correlated
with maximum troponin T levels, infarct size and impaired
myocardial function assessed by cardiac magnetic resonance in
patients after successful PCI (57). Serum CXCL10 level before
PCI also proved to be an independent predictor of cumulative
CK release and was negatively correlated with infarct size, as
indicated by peak CK and CK-MB enzymes (58).

Better clinical outcome was found to be associated with
recruitment of coronary collaterals (61). This form of vascular
remodeling was shown to be accompanied by alterations in
chemokine levels (59). Higher levels of angiogenic ligands
CXCL5, CXCL8, and CXCL12 indicate the presence of collaterals,
while the concentration of the angiostatic CXCL11 was associated
with their absence. The higher extent of collateralization
was associated with increased CXCL1 and decreased CXCL9,
CXCL10, and CXCL11 (59).

Several chemokines have been linked to the development
of acute transplant rejection episodes and transplant coronary
artery disease in animals and also in human studies (60).
Following heart transplantation, elevated CXCL11 levels
have shown an association with the development of severe
transplant coronary artery disease (60). CXCR3 ligands have
also been studied in patients with left ventricular dysfunction
and heart failure (62–64). Circulating levels of CXCL9,
CXCL10, and CXCL11 were increased in subclinical as
well as symptomatic left ventricular dysfunction, reaching
statistical significance only in symptomatic patients (62).
Addition of these CXCR3 ligands to established risk factors
significantly improved the risk prediction models for left

ventricular dysfunction (63). In a pilot study by Altara et
al. levels of CXCL10 positively correlated with the severity
of heart failure, especially in patients with advanced heart
failure (64). Also, higher systemic levels of CXCL10 have been
demonstrated to be independent risk factors for ischemic
stroke (52).

CONCLUSIONS

The chemokine network specifically directs the trafficking
of immune cells in homeostasis and during inflammation.
Excessive or inappropriate chemokine expression can lead to
unnecessary leukocyte recruitment typical for autoimmune or
allergic diseases. Chemokines have been extensively studied in
diseases associated with T cell mediated inflammatory responses
like multiple sclerosis, asthma bronchiale, AIDS and also in
patients with transplant rejection (47, 60, 65).

Inflammatory processes in ischemic heart disease involve
intense chemokine signaling from the forming of the
atherosclerotic plaque and plaque destabilization to all
phases of acute coronary events and infarct healing (36).
IFN-γ inducible chemokines CXCL9, CXCL10, and CXCL11
attract activated T cells through CXCR3 receptor to the site
of infarction. Modulation of their action might prevent the
excessive recruitment of leukocytes to sites of inflammation and
consequently influence the clinical outcome of the disease (47).

CXCR3 binding chemokines might be promising biomarkers
for the risk assessment of coronary heart disease. Chemokine
levels however have a short half-life and may have high
intraindividual variability; (52) this results in difficulties in
estimating the best sampling time and may generate conflicting
clinical results.

CXCL10 is the most extensively studied of the three
chemokines in the clinical setting of ischemic heart disease; less
is known about the role of CXCL9 and CXCL11. New clinical
studies are needed to fill in the gaps and properly map the role
of alterations in chemokine levels in coronary artery disease and
during acute coronary events.
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