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Abstract: Cu2ZnSn(S,Se)4 (CZTSSe) solar cells with low cost and eco-friendly characteristics are
attractive as future sources of electricity generation, but low conversion efficiency remains an issue.
To improve conversion efficiency, a method of inserting intermediate layers between the CZTSSe
absorber film and the Mo back contact is used to suppress the formation of MoSe2 and decomposition
of CZTSSe. Among the candidates for the intermediate layer, graphene oxide (GO) and reduced GO
have excellent properties, including high-charge mobility and low processing cost. Depending on the
type of GO, the solar cell parameters, such as fill factor (FF), were enhanced. Thus, the conversion
efficiency of 6.3% was achieved using the chemically reduced GO intermediate layer with significantly
improved FF.

Keywords: Cu2ZnSn(S,Se)4; thin-film solar cells; graphene oxide; intermediate layer; back contact

1. Introduction

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has been continuously studied in recent years to
overcome the limitations of Cu(In,Ga)Se2 (CIGS), which consumes rare elements. CZTSSe
has the advantages of optimal bandgap (1.0–1.5 eV), high absorption coefficient (>104 cm−1),
and non-toxicity [1–9]. However, the power conversion efficiency (PCE) of the CZTSSe solar
cells is still lower (13%) than those of competitors such as CIGS (23.35%) [10,11]. This is due
to the resistive MoSe2 layer formed between the CZTSSe layer and the Mo back contact,
the decrease in carrier collection, and the increase in defect states due to the decomposition
of CZTSSe. These defect states lead to more Shockley–Read–Hall recombination and
degrade device performance. To improve the interface properties of the CZTSSe solar
cells, several studies reported intercalating an intermediate layer between the CZTSSe and
Mo layers [12–21]. For example, patterned Al2O3 [18], carbon [19], Al-doped ZnO [20],
CuAlO2 [21], etc. have been proposed as intermediate layer materials. Among these, when
the Al-doped ZnO layer was inserted into the interface, the decomposition reaction of
the Cu2ZnSnS4 (CZTS), and the formation of the MoS2 layer were prevented. However,
the excessive thickness of the Al-doped ZnO layer led to the formation of the ZnS secondary
phase, resulting in poor performance.

In addition, graphene oxide (GO) is attractive as an intermediate layer material and is
particularly favorable for use as an intermediate layer in solar cells due to characteristics
such as high-charge mobility (2 × 105 cm2 V−1 S−1), chemical stability, low processing
cost, and high transmittance [22–26]. Due to its outstanding properties, it is also used
in optoelectronic devices, such as light-emitting diodes, as well as in solar cells [27–29].
In the case of the CZTSSe solar cells, for example, Kim et al. conducted measurements to
analyze the effect of the GO intermediate layer on the CZTSSe solar cells and reported that
it reduces the series resistance and photon loss by preventing MoSe2 formation [26].
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In this study, we used not only GO but also reduced GO intermediate layers, and ana-
lyzed their effects on the CZTSSe solar cells. The reduced GO is more similar to graphene in
physical and chemical properties, and is promising as the intermediate layer. The CZTSSe
solar cells fabricated using the GO intermediate layers showed better device performance
with the thinner MoSe2 layer, depending on the GO deposition conditions. We also ana-
lyzed the structural disorder according to the reduction of the GOs.

2. Materials and Methods
2.1. Graphene Oxide Intermediate Layer

Mo back contact layers of 1-µm thickness were deposited on soda-lime glass (SLG,
Taewon Scientific Co, Seoul, Korea) substrate using the DC magnetron sputtering system
(RSP-5000, SNTEK, Suwon, Korea). Three types of GO samples were obtained by coating
GO on the Mo/SLG substrate under different conditions. GO flakes were obtained through
the modified Hummers’ method using KMnO4, H2O2, and H2SO4 [30]. Next, the GO
solution was prepared by mixing 30 mg of GO flakes with 10 mL deionized (DI) water.
Using a micropipette and spin coater, the 0.5 mL GO solutions were spun once at 3000 rpm
for 20 s on the Mo/SLG substrate and dried in air (GO sample). A chemically reduced
GO (CrGO) solution was prepared via the chemical reduction of the GO solution [31].
The process involved adding 5 g of p-Toluenesulfonyl Hydrazide (97%, Sigma-Aldrich,
St. Louis, MO, USA) to 30 mL of the GO solution and stirring for 24 h at 60 ◦C. The obtained
solution was then filtered and washed with DI water and N,N-Dimethylformamide (99.8%,
Sigma-Aldrich, St. Louis, MO, USA). Subsequently, the filtered wet powder was dispersed
in isopropyl alcohol. This CrGO solution was coated on the Mo/SLG substrate five times
under the same condition as the GO (CrGO sample). Finally, a thermally reduced GO
(TrGO) sample was prepared by subjecting the GO sample to rapid thermal annealing
(RTA) at 600 ◦C for 300 s in an N2 atmosphere (TrGO sample).

2.2. Fabrication of the CZTSSe Solar Cells

Zn, Sn, and Cu metallic precursors were sequentially deposited on the Mo/SLG sub-
strate with various GO intermediate layers via DC (for Zn and Cu layers) and RF magnetron
(for Sn layer) sputtering at 1.1 W/cm2 of power. The purity values of the sputtering targets
for Mo, Zn, Sn, and Cu were 99.5%, 99.95%, 99.95%, and 99.95%, respectively (Taewon
Scientific Co, Seoul, Korea). An Ar atmospheric pressure was maintained at 0.4 Pa during
the precursor sputtering. The individual sputtering time were determined as the Zn-rich
and Cu-poor compositional ratios of the CZTSSe absorber films. The precursors were
heated in a graphite box with 0.5 g Se and 0.02 g SeS2 powders using RTA system. The RTA
chamber with the graphite box was maintained under vacuum for 15 min and then filled
with Ar gas to atmospheric pressure. After that, the samples were heated from room
temperature to 300 ◦C in 1000 s, maintained at 300 ◦C for 1500 s, heated from 300 to 550 ◦C
in 1000 s, and then maintained at 550 ◦C for 1100 s. Next, to remove unwanted secondary
phases, the CZTSSe absorber films were immersed in a 0.05 M KCN aqueous solution for
5 min and cleaned with DI water. A 70-nm CdS buffer layer was deposited by chemical
bath deposition at 80 ◦C, followed by 50-nm intrinsic ZnO and 350-nm aluminum-doped
ZnO layers via RF magnetron sputtering at room temperature and 150 ◦C, respectively.
50-nm Ni, 500-nm Al electrodes were deposited through a shadow mask with an electron
beam evaporator. Finally, a 105-nm-thick MgF2 layer was deposited as an anti-reflection
coating using electron beam evaporator.

2.3. Characterization

Scanning electron microscopy (SEM, S-4700, Hitachi, Tokyo, Japan) and atomic force
microscopy (AFM, XE-100, Park Systems, Suwon, Korea) were conducted for the surface
analysis of the GO coated Mo back contacts and the cross-sectional analysis of the CZTSSe
solar cells. Raman scattering measurements (InVia, Renishaw, Gloucestershire, UK) were
performed at a 514-nm laser excitation wavelength. The electrical property of the GO coated
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Mo back contacts was measured using a 4-point-probe (FPP-RS8, Dasol Eng., Cheongju,
South Korea). Energy-dispersive X-ray spectroscopy (EDX, S-4700, Hitachi, Tokyo, Japan)
was performed for compositional analysis of the CZTSSe absorber films. External quantum
efficiency (EQE, QEX7, PV Measurements, Boulder, CO, USA) measurements were per-
formed to estimate the bandgap energies of the CZTSSe solar cells. The device parameters
of the CZTSSe solar cells were measured with a class AAA solar simulator (WXS-155S-L2,
Wacom, Tokyo, Japan) under conditions of AM 1.5 G, 100 mW/cm2, and 25 ◦C.

3. Results

Figure 1 shows the surface scanning electron microscopy images of the Mo back
contacts with different intermediate layers using a GO. If there is no GO, the Mo back
contact shows gaps between the hills (Figure 1a). On the other hand, the sample with
GO on the Mo back contact had partially filled gaps, as shown in Figure 1b. It occurred
because the gap was covered by GO, and the covering ratio would be controlled depending
on the concentration of GO solution and the number of deposition cycles. The CrGO
sample did not show the covering, which seems to be due to the low concentration of the
CrGO solution. The TrGO sample obtained by annealing of GO at 600 ◦C showed a similar
covering ratio, because the same concentration of GO solution was used.

Figure 1. Surface scanning electron microscopy (SEM) images of the Mo back contacts with different
intermediate layers: (a) no graphene oxide (GO), (b) GO, (c) chemically reduced GO (CrGO), and (d)
thermally reduced GO (TrGO).

The results of AFM measurement of the Mo back contacts with various GO interme-
diate layers are shown in Figure 2. In the absence of the GO, a root-mean-square (RMS)
roughness of 7.46 nm was obtained from the Mo layer. On the other hand, the RMS rough-
ness was decreased to 5.88 nm and 5.14 nm when GO and TrGO covered the Mo layer,
respectively. As confirmed by the SEM analysis, it is expected that the CrGO was not thick
enough to cover the Mo gap due to the low concentration of the CrGO solution. Therefore,
the RMS roughness was similar to that of the No GO sample (5.14 nm).
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Figure 2. Atomic force microscopy (AFM) images and root-mean-square (RMS) roughness of the Mo
back contacts with different intermediate layer: (a) no graphene oxide (GO), (b) GO, (c) chemically
reduced GO (CrGO), and (d) thermally reduced GO (TrGO).

Raman spectroscopy is an effective method for analyzing the structure of carbon
nanomaterials. Therefore, a Raman analysis was performed on the GO intermediate layers
and the results with the D-band intensity (ID)/ G-band intensity (IG) ratio are shown in
Figure 3a. Except for the No GO sample, all three GO samples showed D and G band at
1351 cm−1 and 1600 cm−1. The G band is related to the in-plane vibrations of the sp2 bond
of carbon atoms, and the D band is related to the out of plane vibrations associated with
structural defects [32,33]. The GO sample, which does not include the reduction process,
showed an ID/IG ratio of 1.18, while those of CrGO and TrGO samples showed 1.07 and
0.92 decreases, respectively. Thus, it is expected that the structural disorder of the reduced
GO samples (CrGO and TrGO) decreased compared to the GO sample. It was confirmed
that the GO layer also exists on the Mo back contacts [30,33]. In addition, the result of
4-point-probe measurement for the GO coated Mo back contacts is shown in the Figure 3b.
Since GO layer is very thin and partially covered, the sheet resistance would have been
contributed by the Mo layer. Note that the TrGO sample shows the highest sheet resistance
(0.547 Ω/sq.). Mo has the characteristic that it is easily oxidized, and it is expected that the
RTA process at 600 ◦C deteriorates the Mo layer.

The CZTSSe absorber films were fabricated using various substrates with GO inter-
mediate layers, and their Raman analyses and EDX analyses results are shown in Figure 4
and Table 1. The CZTSSe absorber films mainly showed Cu2ZnSnSe4 (CZTSe)-like peaks
at 175 and 194 cm−1 and CZTS-like peaks at 324 and 338 cm−1 [34]. The intensities of
the CZTSe-like peaks were higher than those of the CZTS-like peaks, which is consis-
tent with the results of EDX analysis that the Se content is higher than the S content.
However, the CuSe peak was larger than CZTSSe-related peaks in the TrGO sample, which
is assumed to be because the degraded Mo layer prohibits the formation of the CZTSSe.
The secondary phase, for instance CuSe, is a conductive shunting path, and the electrical
potential difference between the positive and negative electrodes disappears due to the
shunting path. Therefore, even if the charge carriers are excited inside the absorber film,
the carriers cannot be collected. Furthermore, the GO and CrGO samples showed peak shift
compared to the No GO samples, which may be due to incorporation of carbon atoms [35].
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The incorporation will change the bonding between the atoms in CZTSSe, resulting in the
peak shift.

Figure 3. (a) Raman spectra and (b) sheet resistances of the various graphene oxide intermediate
layers on the Mo back contact.

Figure 4. Raman spectra of the CZTSSe absorber films fabricated with the various graphene oxide
intermediate layers.

Table 1. Elemental composition and compositional ratios of the CZTSSe absorber films fabricated
with the various graphene oxide intermediate layers.

Elemental Composition (at %) Compositional Ratios
CZTSSe
Sample Cu Zn Sn S Se Zn/Sn Cu/

(Zn + Sn) Se/S (Se + S)/
Metal

No GO 20.53 16.79 11.2 10.28 41.21 1.50 0.73 4.01 1.06
GO 21.12 16.25 11.26 7.09 44.28 1.44 0.77 6.25 1.06

CrGO 20.35 16 11.32 10.93 41.4 1.41 0.74 3.79 1.10
TrGO 20.92 15.83 10.67 11.57 41 1.48 0.79 3.54 1.11

Figure 5 shows the results of cross-sectional SEM analysis on the completed CZTSSe
solar cells. All samples showed about 1-µm thickness of the CZTSSe absorber film because
their process condition was the same. On the other hand, the thicknesses of MoSe2 layer
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showed different values due to the various GO intermediate layers, and were obtained as
1124, 337, 941, and 693 nm, respectively. Interestingly, GO samples inhibited the formation
of the MoSe2 layer more than other samples. As confirmed by the surface SEM analysis in
Figure 1, this seems to be due to the high covering ratio of the GO sample. In the case of the
CrGO, the effect of the inhibiting the formation of MoSe2 layer was insignificant because
the concentration of the CrGO solution was lower than that of the GO, and the Mo back
contact was hardly covered.

Figure 5. (a–d) Cross-sectional SEM images and (e) schematic of the CZTSSe solar cells fabricated
with different graphene oxide intermediate layers.

To estimate the bandgap energy, EQE measurements were performed on the CZTSS
solar cells using the various GO intermediate layers, as show in Figure 6. Both GO and
CrGO samples showed more improved EQE than the No GO sample in the 600–1100-nm
wavelength range. It seems that the MoSe2 layer suppressed by the GO intermediate layer
improved carrier collection. In addition, some studies have shown that light absorption and
short circuit current (JSC) are improved due to the mitigation of the interference between
incident and reflected light through the intermediate layer [26,36]. The TrGO sample
showed little carrier collection, and it seems that the conductive secondary phase acted as
shunting paths and prevented carrier collection. The bandgap energies of the No GO, GO,
and CrGO samples were 1.12, 1.08, and 1.09 eV, respectively.

Figure 6. (a) External quantum efficiency (EQE) curves of the CZTSSe solar cells and (b) the bandgap
energies (Eg) of the CZTSSe absorber layers obtained from the EQE data.

Figure 7 shows statistical box charts for solar cell parameters obtained from the CZTSSe
solar cells fabricated with various GO samples. The GO and CrGO samples showed average
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PCEs of 4.65% and 5.12%, respectively, which is higher than the No GO sample of 4.55%.
From Figure 7b–d, the PCE improvement of the GO sample was mainly contributed by
the VOC and JSC, while that of the CrGO sample was more significantly contributed by FF.
This difference was probably caused by the degree of covering of the GO intermediate layer.
When the passivation of the intermediate layer is excessive, the JSC and VOC can increase,
but the FF can decrease [37]. It is supposed that the FF decreases of the GO sample were
due to the high concentration of the GO solution and the relatively high sheet resistance
of the GO [38]. The high concentration of the GO solution strongly suppressed MoSe2
formation, but the GO layer acted as the electrical resistance. On the other hand, the CrGO
sample exhibited a relatively low concentration of GO solution and improved FF, resulting
in better performance (Table 2). Both samples using the GO intermediate layer showed
improvement in JSC and VOC, it is assumed that the JSC improvement is due to the reduced
interference between the incident light and the reflected light, as mentioned in Figure 6.
Moreover, the GO intermediate layer may restrain the decomposition of the CZTSSe, reduce
the defect state, and lead to the increase in the VOC.

Figure 7. Statistical box charts of (a) the power conversion efficiency (PCE), (b) open-circuit voltage
(VOC), (c) short-circuit current density (JSC), and (d) fill factor (FF) of the CZTSSe solar cells fabricated
with the various graphene oxide intermediate layers (n = 6).

Table 2. Solar cell parameters obtained from J-V curves and external quantum efficiency data of the
CZTSSe solar cells with different intermediate layers 1.

Sample PCE (%) VOC (V) JSC, J-V (mA/cm2) FF (%) JSC, EQE (mA/cm2) Eg (eV)

No GO 4.8 0.322 32.2 46.3 31.2 1.12
GO 5.6 0.360 33.6 46.0 33.3 1.08

CrGO 6.3 0.366 32.8 52.6 32.3 1.09
TrGO 0 0.018 0 21.0 0.7 –

1 The active area of each cell was 0.3 cm2. PCE, power conversion efficiency; JSC, short-circuit current;
VOC, open-circuit voltage; FF, fill factor; EQE, external quantum efficiency; Eg, bandgap energy.
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4. Conclusions

We demonstrated the effect of the GO and reduced GO intermediate layers on the
CZTSSe solar cells. The GO sample was produced using the modified Hummers’ method,
and the CrGO and TrGO samples were prepared through the chemical and thermal re-
duction of the GO. Prior to the analysis of solar cells, surface analyses were performed on
the Mo back contacts coated with various GO intermediate layers, and differences in the
covering ratios of the samples were verified via SEM and AFM measurements. In addition,
Raman spectroscopy confirmed that the ID/IG ratio of GO, CrGO, and TrGO decreased from
1.18 to 0.92 in, depending on the reduction condition. The CZTSSe solar cells fabricated us-
ing those GO samples showed relatively thin MoSe2 layers and improved carrier collection
in the EQE measurements. In particular, the GO sample made with high concentrations of
GO solutions showed significant improvements in VOC and JSC. However, the FF of the GO
sample decreased due to the high electrical resistance of the GO. On the other hand, the
CrGO sample showed significant enhancement in FF, owing to the moderate passivation.
As a result, the CZTSSe solar cell fabricated using the CrGO intermediate layer showed PCE
of 6.3%, VOC of 0.366 V, and JSC of 32.8 mA/cm2. To the best of our knowledge, this is the
first time that the effect of various GO intermediate layers on CZTSSe solar cells have been
analyzed. Thus, we believe that this study on the GO intermediate layers made through a
facile solution process may accelerate research into applying GO intermediate layers to the
CZTSSe solar cell.
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