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Thermodynamic and Kinetic 
Analyses of Iron Response Element 
(IRE)-mRNA Binding to Iron 
Regulatory Protein, IRP1
Mateen A. Khan1,2, William E. Walden3, Elizabeth C. Theil4,5 & Dixie J. Goss1

Comparison of kinetic and thermodynamic properties of IRP1 (iron regulatory protein1) binding to 
FRT (ferritin) and ACO2 (aconitase2) IRE-RNAs, with or without Mn2+, revealed differences specific to 
each IRE-RNA. Conserved among animal mRNAs, IRE-RNA structures are noncoding and bind Fe2+ 
to regulate biosynthesis rates of the encoded, iron homeostatic proteins. IRP1 protein binds IRE-
RNA, inhibiting mRNA activity; Fe2+ decreases IRE-mRNA/IRP1 binding, increasing encoded protein 
synthesis. Here, we observed heat, 5 °C to 30 °C, increased IRP1 binding to IRE-RNA 4-fold (FRT 
IRE-RNA) or 3-fold (ACO2 IRE-RNA), which was enthalpy driven and entropy favorable. Mn2+ (50 µM, 
25 °C) increased IRE-RNA/IRP1 binding (Kd) 12-fold (FRT IRE-RNA) or 6-fold (ACO2 IRE-RNA); enthalpic 
contributions decreased ~61% (FRT) or ~32% (ACO2), and entropic contributions increased ~39% (FRT) 
or ~68% (ACO2). IRE-RNA/IRP1 binding changed activation energies: FRT IRE-RNA 47.0 ± 2.5 kJ/mol, 
ACO2 IRE-RNA 35.0 ± 2.0 kJ/mol. Mn2+ (50 µM) decreased the activation energy of RNA-IRP1 binding 
for both IRE-RNAs. The observations suggest decreased RNA hydrogen bonding and changed RNA 
conformation upon IRP1 binding and illustrate how small, conserved, sequence differences among IRE-
mRNAs selectively influence thermodynamic and kinetic selectivity of the protein/RNA interactions.

Cellular iron homeostasis is accomplished by the coordinated and balanced expression of iron storage protein 
ferritin and the iron-uptake protein transferrin receptor. Post-transcriptional regulation of iron homeostasis pri-
marily occurs through the action of iron regulatory proteins, IRP1 and IRP2. IRPs coordinate iron-related gene 
expression by binding to iron responsive elements (IREs) located in the 5′ or 3′ untranslated regions of mRNAs 
encoding proteins for iron transport, storage, or utilization; binding blocks either mRNA translation (5′ localized) 
or degradation (3′ localized)1–3. IRPs are ubiquitously expressed, with IRP1 expression dominant in liver, kidney 
and brown fat, while IRP2 expression is dominant in the central nervous system4–6. IRP1 and IRP2 share signifi-
cant sequence homology7, 8 and bind the same family of IRE-mRNAs, but are regulated by iron through different 
mechanisms. IRP2 also has an additional cysteine rich 73 amino acid domain, the function of this domain is yet 
unknown9, 10. IRP1 is a bifunctional protein, having activity as the aforementioned IRE-RNA binding protein 
in its apo-form, and as cytosolic aconitase upon assembly of a [4Fe-4S] cluster3. Interconversion between these 
mutually exclusive activities, favoring the aconitase when iron is replete and the apo IRE-RNA binding form in 
low iron is the basis for gene regulation by IRP1. On the other hand, IRP2 is mono-functional, having activity 
only as an IRE-RNA binding protein. Iron controls IRP2 activity by regulating IRP2 protein stability. IRPs play an 
important role in maintaining iron level. Iron homeostasis is closely linked to many diseases such as Alzheimers’s, 
Parkinson’s, Diabetes, Cancer and Tuberculosis6, 11, 12.

Canonical IRE-RNAs are 28–30 nucleotide long stem-loop structures, with a conserved terminal loop 
sequence, 5′-CAGUGX-3′ (X = U, C, or A), and an unpaired C residue interrupting the stem 5-nucleotides to 
the 5′ side of the terminal loop sequence. The C and second G residues of the terminal loop sequence form a base 
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pair creating a pseudo-triloop –AGU- in IRE-RNAs2, 13. Binding of IRE-RNA with IRP1 occurs mainly through 
bonds made to the terminal loop and stem interrupting C through two separate binding sites2. Approximately 
two dozen RNA/protein bonds are distributed between the binding sites, giving high affinity and specificity to the 
interaction. It appears likely that IRP1 binds all naturally occurring IRE-RNA utilizing the same bonding pattern. 
The structure of the IRE-RNA bound to IRP1 differs from the predominant structure of the RNA in solution, 
underscoring the importance of conformational flexibility for this high affinity interaction, and raising the possi-
bility that affinity differences observed among these RNA/protein interactions depend in part on the IRE-RNA’s 
conformational flexibility.

Facile conformation change is also important to IRP1 function, particularly its interconversion between cyto-
solic aconitase and IRE-RNA binding protein. This interconversion involves large scale domain repositioning and 
localized conformational changes to form the two RNA binding pockets. Notably, coordination of the iron-sulfur 
cluster prevents key local protein rearrangements necessary to form the terminal loop binding pocket. Iron regu-
lation of IRP1 function is based on such structural constraints.

Metal ions directly regulate the function of many RNA classes, e.g., tRNA14, 15, rRNA16, ribozymes17–21, 
riboswitches in bacterial mRNAs, where metals contribute to RNA function and metal sensing18, 22–25. Changes 
in translation of the iron responsive messenger RNAs, dependent on noncoding structures (IRE), are currently 
ascribed to iron effects on the IRP1 and IRP2, repressor protein, and translation initiation factor (eIF4F), that 
bind IRE-RNAs and which are modified or degraded by increases in cellular iron concentration26. IRE-RNA 
binds metal ions (Mg2+) at specific sites27 as do tRNAs, rRNAs, ribozymes and riboswitches. We have previ-
ously shown28, 29 that metal ions directly affect the IRE-RNA/IRP1 stability and the binding affinity favors ferritin 
IRE-RNA over aconitase IRE-RNA, illustrating the effects of phylogenetically conserved differences30 between 
the two RNAs. Further, Fe2+ (used anaerobically to prevent formation of insoluble hydroxides) could bind to 
IRE-RNA and act as a ligand to reduce IRP1 binding28. This ligand has a further positive effect by increasing bind-
ing of eIF4F31. Metal ion changes the conformation of ferritin IRE-RNA based on nuclear magnetic resonance32 
and IRE-RNA containing fluorescence 2-amino purine31. Conformational changes of the IRP1 after binding to 
IRE-RNA has been explain using crystal structure2, 33. However, metal ion induced conformational change of 
IRP1/IRE-RNA complex is not known.

The stability of the IRP1/IRE-mRNA complex is dictated by free energy change that involves both enthalpic 
and entropic contributions, and thus requires a thermodynamic approach. In this study, we show the effects of 
temperature on the equilibrium of IRE-RNA binding with IRP1 in the absence and presence of Mn2+; Mn2+ 
is an oxygen-stable analogue” for Fe2+. Kd values increased with an increase in temperature. Thermodynamic 
studies showed a lowering of enthalpy and free energy for the IRE-RNA/IRP1 complex formation in the presence 
of Mn2+, suggesting reduced hydrogen bonding and overall conformational rearrangement during IRE-RNA/
IRP1 complex formation. It has been shown from the 3-dimentional crystal structure that hydrogen-bonding 
and hydrophobic interactions contribute to the stabilization of IRP1/IRE-RNA complexes2. Hydrogen bonding 
contributes to the conformational stability of the molecule; change in the number of hydrogen bonds (Enthalpy 
change) can cause to conformational changes in the IRE-RNA/IRP1 complex. In order to understand more fully 
changes in IRE-RNA/IRP1 interactions, we investigated the effect of temperature on the kinetics of IRE-RNA 
binding with IRP1 in the absence and presence of Mn2+. Temperature dependent rate constant values were used 
to determine the activation energies for FRT and ACO2 IRE-RNA binding to IRP1. Significant decrease in activa-
tion energy for binding of FRT and ACO2 IRE-RNA with IRP1 was observed in the presence of Mn2+. Decreases 
in the enthalpic contribution, and lower activation energy for the IRE-RNA/IRP1 complex in the presence of 
Mn2+ provide a path with lower energy barrier.

Results
Effect of Temperature on the Interaction of Ferritin and mt-Aconitase IRE-RNA with IRP1.  
Figure 1 shows the representative temperature dependent fluorescence anisotropy measurements for the binding 
of FRT IRE-RNA and ACO2 IRE-RNA with IRP1. The equilibrium dissociation constants (Kd) for the interac-
tions of the two IRE-RNAs with IRP1 increased with an increase in temperature. Kd values for the binding of 
IRP1 to FRT IRE-RNA increased from 4.6 ± 0.2 nM to 19.2 ± 0.4 nM, and for ACO2 IRE-RNA from 55.9 ± 3 nM 
to 155 ± 4 nM at temperatures ranging from 5 °C to 30 °C (Table 1). Figure 2 shows a representative fluorescence 
anisotropy plot for the temperature dependent binding of FRT IRE-RNA and ACO2 IRE-RNA with IRP1 in 
the presence of metal ion (50 µM Mn2+). The dissociation constant for the FRT IRE-RNA-Mn2+/IRP1 complex 
increased from 83.3 ± 4 to 193 ± 5 nM while the dissociation constant of ACO2 IRE-RNA-Mn2+/IRP1 complex 
increased from 535 ± 33 nM to 801 ± 36 at temperatures ranging from 5 °C to 30 °C (Table 1). Addition of metal 
ion decreased the binding affinity of FRT and ACO2 IRE-RNA to IRP1 by 12- and 6-fold, respectively at 25 °C. 
Dissociation constants for FRT IRE-RNA/IRP1 and FRT IRE-RNA-Mn2+/IRP1 complex show a larger effect as 
compared to ACO2 IRE-RNA/IRP1 and ACO2 IRE-RNA-Mn2+/IRP1 complex at the same temperature.

Thermodynamic parameters of Ferritin and mt-Aconitase IRE-RNA complexes with IRP1.  The 
temperature dependence of dissociation constant for the binding of FRT and ACO2 IRE-RNA with IRP1 (Table 1) 
were used to determine the thermodynamic parameters. Thermodynamic parameters, enthalpy (ΔH), entropy 
(ΔS) and free energy (ΔG) obtained from van’t Hoff plots of - ln Keq versus reciprocal of temperature (T−1) are 
shown in Fig. 3 and Table 2. Thermodynamic data showed that binding of FRT and ACO2 IRE-RNA with IRP1 
was enthalpy driven and entropy favorable. Addition of metal ion (Mn2+) significantly changed the enthalpic 
and entropic contributions for the binding of FRT IRE-RNA and ACO2 IRE-RNA with IRP1. The ∆H and ∆S 
values for the binding of the FRT IRE-RNA with IRP1 were −38.4 ± 2.4 kJ/mol and 21.1 ± 1.3 J/mol/K, respec-
tively, whereas for binding of FRT IRE-RNA to IRP1 in presence of Mn2+ the values were −23.6 ± 1.3 kJ/mol and 
51.0 ± 3.3 J/mol/K, respectively. The thermodynamic analyses in the absence of Mn2+ showed that the binding 
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of FRT IRE-RNA to IRP1 is 88% enthalpically driven and 15% entropy favorable with a 73% greater enthalpic 
contribution to ∆G at 25 °C. Similarly, the binding of ACO2 IRE-RNA with IRP1, showed 71% enthalpically and 
29% entropically favorable with a 42% greater enthalpic contribution to ∆G at 25 °C. Addition of Mn2+ decreases 
the enthalpic contribution to about 61% and increases the entropic contribution to about 39% for FRT IRE-RNA 
binding to IRP1. Further, Mn2+ decreases the enthalpic contribution to about 32% and increases the entropic 
contribution to about 68% for ACO2 IRE-RNA binding to IRP1. These data suggest that metal ion induces a con-
formational change in FRT and ACO2 IRE-RNA/IRP1 complexes resulting in reduced hydrogen bonding. The 
∆G values at 25 °C were calculated from Eq. 3. The free energy value for the binding of FRT IRE-RNA is higher 

Figure 1.  Temperature dependent binding plots for the interaction of IRP1 to IRE-RNA. Panel A, temperature 
affects the binding affinity of FRT IRE-RNA with IRP1 repressor protein. Anisotropy values of FRT IRE-RNA 
at 10 °C (‒○‒) and 25 °C (–⦁‒) with IRP1 protein are shown. Panel B, temperature affects the binding affinity 
of ACO2 IRE RNA with IRP1 repressor protein. The anisotropy values of ACO2 IRE-RNA at 10 °C (‒∆‒) and 
25 °C (‒▲‒) with IRP1 protein are shown. The fluorescein tag IRE-RNA concentration was 50 nM in titration 
buffer. The excitation and emission wavelength were 490 and 520 nm, respectively. The curves were fit to obtain 
dissociation constant (Kd) as described in Experimental Procedure. The solid lines are the fitted curves.

Complex

Kd (nM)

5 °C 10 °C 15 °C 20 °C 25 °C 30 °C

FRT IRE-RNA/IRP1 4.6 ± 0.2 7.0 ± 0.2 8.6 ± 0.3 11.7 ± 0.4 14.2 ± 0.3 19.2 ± 0.4

FRT IRE-RNA-Mn2+/IRP1 83.3 ± 4 102 ± 6 112.4 ± 5 137.4 ± 6 174 ± 4 193 ± 5

ACO2 IRE-RNA/IRP1 55.9 ± 3 69.6 ± 5 89 ± 3 101 ± 7 129 ± 3.3 155 ± 4

ACO2 IRE-RNA-Mn2+/IRP1 535 ± 33 593 ± 29 648 ± 35 701 ± 31 750 ± 32 801 ± 36

Table 1.  Temperature dependent equilibrium dissociation constants (Kd) for the interaction of FRT IRE-RNA 
and ACO2 IRE-RNA with IRP1 protein in the absence and presence of 50 µM Mn2+.
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than ACO2 IRE-RNA with IRP1. Addition of Mn2+ further decreased in ΔG value for FRT IRE-RNA and ACO2 
IRE-RNA binding to IRP1 (Table 2).

Effect of Temperature on the Kinetics of Ferritin and mt-Aconitase IRE-RNA Binding to 
IRP1.  We have previously29 determined the kinetic rates for the binding of FRT and ACO2 IRE-RNA with 
IRP1 in the absence and presence of metal ion. Here, we further examine the effect of temperature on the kinetic 
rate of FRT and ACO2 IRE-RNA binding with IRP1 in the absence and presence of Mn2+ by stopped-flow 
(rapid-mixing) experiments; they were conducted using high concentration of IRP1 and limiting concentrations 
of FRT IRE RNA and ACO2 IRE RNA to ensure that the bimolecular combination of IRP1 and FRT and ACO2 
IRE RNA was pseudo-first order. Stopped-flow data for a typical reaction of IRP1 binding to FRT or ACO2 
IRE-RNA were plotted as the anisotropy change versus time are shown in Fig. 4. The kinetic data were fitted 
to a single-exponential equation using nonlinear regression analysis as described in Experimental Procedures. 
Reaction were consistent with single-exponential fitting over the entire time course of the measurements, as 
described previously29. Analyses of the data using a double exponential components did not improve the fit-
ting results (not shown). The values of the observed rate constants for complexes of IRP1 with FRT or ACO2 
IRE-RNA increased with an increase in temperature (Table 3). The residuals representing the deviation between 
the calculated and experimental data (Fig. 4, bottom panel) indicate that the single-exponential function fits the 
points over the entire time course of measurements. The kinetic data showed that FRT IRE-RNA/IRP1 binding 
rate (k2 = 397 ± 8.5 s−1) and ACO2 IRE-RNA/IRP1 binding rate (k2 = 53 ± 2.4 s−1) at 25 °C were ~4.0- and 2.5-fold 
faster than at 5 °C (FRT IRE-RNA/IRP1, k2 = 98 ± 4.4 s−1 and ACO2 IRE-RNA/IRP1, k2 = 20 ± 1.8 s−1; Table 3). 

Figure 2.  Temperature affects the binding affinity of FRT IRE-RNA with IRP1 repressor protein in presence 
of metal ions (Mn2+). Panel A, Anisotropy values of FRT IRE-RNA at 10 °C (‒○‒) and 25 °C (‒⦁‒) with IRP1 
protein plus Mn2+. Panel B, the anisotropy values of ACO2 IRE-RNA at 10 °C (‒∆‒) and 25 °C (‒▲‒) with IRP1 
protein plus Mn2+. The fluorescein tag IRE-RNA concentration was 50 nM and Mn2+ was 50 µM in titration 
buffer. The excitation and emission wavelength were 490 and 520 nm, respectively. The curves were fit to obtain 
dissociation constant (Kd) as described in Experimental Procedure. The solid lines are the fitted curves.
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The stopped-flow kinetic data revealed that at all five temperatures FRT IRE-RNA had the higher rate constants 
compared to the ACO2 IRE-RNA binding to IRP1. FRT IRE-RNA/IRP1 binding had a rate constant 4–8-fold 
higher than that of ACO2 IRE-RNA/IRP1 (Fig. 4). Figure 5 shows the temperature dependent change in kinetic 
rates for the binding of FRT and ACO2 IRE-RNA with IRP1 in the presence of Mn2+. In order to determine the 
activation energy (Ea) of the FRT and ACO2 IRE-RNA binding to IRP1 in the absence and presence of Mn2+, the 
temperature dependent rate constant (Table 3) values were used to construct Arrhenius plots (Fig. 6) according 
to Eq. 5. The activation energies were obtained from the slope of the linear fit of the plot of ln k versus 1/T. The 
activation energies for IRP1 binding to FRT and ACO2 IRE-RNA were 47 ± 2.5 and 35 ± 2.0 kJ/mol, respec-
tively. Addition of Mn2+ lowers the activation energies for the FRT IRE-RNA/IRP1 and ACO2 IRE-RNA/IRP1 
complexes to 29.0 ± 1.6 and 25 ± 1.2 kJ/mol, respectively (Table 3). The overall lower activation energy for FRT 
IRE-RNA/IRP1 and ACO2 IRE-RNA/IRP1 complexes in the presence of Mn2+ binding suggests that metal ion 
succeeds in conformational alteration of the IRE-RNA/IRP complex, causing release of IRP1 repressor protein 
and allows translation initiation factor binding and an increase in protein biosynthesis31.

Discussion
In this study, we have examined the detailed temperature dependent equilibria and kinetics for complex forma-
tion of ferritin and mitochondrial aconitase IRE-RNAs binding to IRP1. Previously28 we had shown that the IRP1 
complex with ferritin and mitochondrial aconitase IRE-RNAs is destabilized by metal ions, particularly Fe2+ 
and Mn2+. Using fluorescence anisotropy measurements, we have shown that equilibrium dissociation constant 
increased with an increase in temperature in absence and presence of metal ions. Thermodynamic parameters 
showed that FRT and ACO2 IRE-RNA binding to IRP1 is enthalpy driven with a large negative ∆H and a small 
positive ∆S, whereas addition of Mn2+ decreased the enthalpic contribution and increased the entropic contri-
bution for both FRT and ACO2 IRE-RNA binding to IRP1. The decrease in enthalpy and increase in entropy 
contribution for the two IRE-RNA/IRP1 complexes in the presence of metal ion suggest reduced hydrogen bond-
ing. Binding of FRT and ACO2 IRE-RNA to the IRP1 is characterized by both favorable enthalpy and favorable 
entropy in the temperature range studied (Table 2). An enthalpy decrease resulting from a comparison of the 
binding enthalpies for FRT/IRP1 and FRT-Mn2+/IRP1, equals ΔHFRT/IRP1 − ΔHFRT-Mn

2+
/IRP1 = −14.8 kJ/mol, and 

for ACO2/IRP1 and ACO2-Mn2+/IRP1 equal ΔHACO2/IRP1 − ΔHACO2-Mn
2+

/IRP1 = −16.7 kJ/mol. These enthalpy 

Figure 3.  van’t Hoff plots for the interaction of FIIRE-RNA with IRP1 repressor protein in the absence and 
presence of Mn2+. The data are indicated as FRT IRE-RNA (‒○‒), FRT IRE-RNA + 50 µM Mn2+ (‒⦁‒), ACO2 
IRE-RNA (‒∆‒) and ACO2 IRE-RNA + 50 µM Mn2+ (‒▲‒) with IRP1 protein. Enthalpy and Entropy were 
determined from the slope and intercept of the temperature dependent equilibrium binding measurements, 
respectively.

Complex ΔH (kJ/mol) ΔS (J/mol/K) ΔG (kJ/mol)

FRT IRE-RNA/IRP1 −38.4 ± 2.4 21.1 ± 1.3 −44.0 ± 2.8

FRT IRE-RNA-Mn2+/IRP1 −23.6 ± 1.3 51.0 ± 3.3 −38.0 ± 2.1

ACO2 IRE-RNA/IRP1 −27.9 ± 1.4 38.5 ± 2.7 −39.3 ± 1.9

ACO2 IRE-RNA-Mn2+/IRP1 −11.2 ± 0.6 79.7 ± 4.8 −34.0 ± 2.2

Table 2.  Thermodynamic parameters of enthalpy (ΔH), entropy (ΔS) and free energy change (ΔG) for the 
interactions of FRT and ACO2 IRE-RNA with IRP1 protein in the absence and presence of 50 µM Mn2+.
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differences are comparable for the enthalpy change per hydrogen bond, ΔHB ~ −13 kJ/mol, which is a typical 
value for hydrogen bonds34. This observation can serve as an indicator of decrease in hydrogen bonding for 
the IRE-RNA-IRP1 interactions with decrease in enthaply. Our enthalpy data is further supported by the free 
energy data for the contribution of hydrogen bonding between IRE-RNA and IRP1 protein. Addition of metal 
ion decreased binding free energy, ΔG, of about −6.0 kJ/mol and the binding affinity for FRT IRE-RNA/IRP1 
complex by 12-fold. Similarly, Mn2+ decreased free energy, ΔG, of about −5.0 kJ/mol and the binding affinity by 
6-fold for ACO2 IRE-RNA/IRP1. This difference corresponds to the free energy difference of about 5–6 kJ/mol,  
which is a typical value of a single hydrogen bond or a salt bridge formed between a protein and RNA35, 36. This 
force (hydrogen bonding) contributes to the conformational stability of the molecule. IRP1 contains two binding 
pockets that make 22 bonds with IRE-RNA. The conversion of IRP1 from an aconitase to an IRE-RNA/IRP1  

Figure 4.  Stopped-flow kinetic measurements of binding of FIFRT IRE-RNA and FIACO2 IRE-RNA with IRP1 
protein. Representative kinetic data show the time-dependent increase in anisotropy after (A) FRT IRE-RNA 
and (B) ACO2 IRE-RNA had been mixed with IRP1 at temperature 25 °C and 10 °C. FRT and ACO2 IRE-RNA 
concentrations was 50 nM (final) and the IRP1 concentration was 1 µM (final). The solid line represents the 
fitted curve drawn through the data points was fit by assuming a single-exponential process. Residuals for the 
exponential fits are shown in the bottom panels. The experimental conditions are described in Experimental 
Procedures.

Complex

Observed Rate Constant, k2 (s−1) Ea (kJ/
mol)5 °C 10 °C 15 °C 20 °C 25 °C

FRT IRE-RNA/IRP1 98 ± 4.4 178 ± 5.7 263 ± 6.5 319 ± 7.6 397 ± 8.5 47.0 ± 2.5

FRT IRE-RNA-Mn2+/IRP1 33 ± 2.1 46 ± 2.8 57 ± 3.0 69 ± 2.9 78 ± 3.6 29.0 ± 1.6

ACO2 IRE-RNA/IRP1 20 ± 1.8 26 ± 1.6 38 ± 2.0 45 ± 2.1 53 ± 2.4 35.0 ± 2.0

ACO2 IRE-RNA-Mn2+/IRP1 11 ± 0.7 14 ± 0.6 17 ± 1.4 20 ± 0.9 23 ± 1.7 25.0 ± 1.2

Table 3.  Temperature dependent kinetic rate constants for the interaction of FRT and ACO2 IRE-RNA with 
IRP1 in the absence and presence of 50 µM Mn2+.
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complex requires extensive changes in protein and RNA conformation2. The conformational change of the 
IRE-RNA/IRP1 complex may also be controlled thermodynamically as reported previously for RNA-protein 
interactions for U1A protein binding to stem/loop II of U1 snRNA37, 38. This conformational change most likely 
also plays a role in kinetics of the FRT and ACO2 IRE-RNA with IRP1 complexes.

The mechanism of the iron effect in cells is unknown; when cells or animals are treated with iron, usually as 
iron salts or heme, IRE-mRNAs are shifted to polysomes (e.g. ferritin) or degraded (e.g. transferrin receptor) 
along with degradation of RNA-free repressor proteins, and increased insertion of [4Fe-4S] clusters into the RNA- 
free form of one of the protein repressors (IRP1), which becomes cytoplasmic aconitase26, 39. In order to respond 
rapidly to changes in the cellular Fe2+ concentrations, repression and de-repression of IRE-mRNA must occur on 
a relatively rapid time scale and modulation of these rates can have important consequences for iron homeostasis. 
The kinetic rates for the interaction of FRT and ACO2 IRE-RNA with IRP1 follow a single, bimolecular binding 
step mechanism such as a fast binding followed by a conformational change. Kinetic mechanism is consistent 
with our previously determined rates of reaction for FRT IRE-RNA and ACO2 IRE-RNA with IRP129. Using 
stopped-flow kinetics, we have determined the kinetic rate at different temperature in the absence and presence of 
metal ion for the binding of FRT and ACO2 IRE-RNA with IRP1, which has not previously been measured. Metal 
ion affected both the association rate and the dissociation constant for IRP1 interaction with FRT and ACO2 
IRE-RNA. These results suggest the interactions with metal ions affect the intermediate conformational change 
in complex formation and reflect a direct sensing of the ion by IRE-RNA, analogous to a riboswitch. Metal ion 
destabilization of messenger IRE-RNA/protein repressor complexes competes with the stabilization conferred by 
the very large number of bonds between the protein and the IRE-RNA and the stability of the RNA fold. Selective, 
metal induced destabilization of IRE-RNA/repressor protein complexes as well as other selective, metal-RNA 
interactions22–25, 28, emphasize the sensitivity of RNA structure/function to the environment.

Figure 5.  Temperature dependent kinetics of IRP1 binding with FIFRT IRE-RNA-Mn2+ and FIACO2 IRE-
RNA-Mn2+. Representative kinetic data show the time-dependent increase in anisotropy after (A) FRT 
IRE-RNA-Mn2+ and (B) ACO2 IRE-RNA-Mn2+ had been mixed with IRP1 protein at temperature 25 °C 
and 10 °C. Concentration of Mn2+ was 50 µM. FRT and ACO2 IRE-RNA concentrations was 50 nM (final) 
and the IRP1 concentration was 1 µM (final). The solid line represents the fitted curve for single-exponential 
function. Residuals for the fits are shown in the bottom panels. The experimental conditions are described in 
Experimental Procedures.
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Methods
Preparation of Protein and RNA.  The recombinant rabbit IRP1 protein was expressed in yeast 
and isolated using methods as described previously29, 40. The concentration of protein was determined 
by a Bradford assay with bovine serum albumin as standard41 using a Bio-Rad protein assay reagent  
(Bio-Rad Laboratories, CA). RNA oligonucleotides labeled with fluorescein at the 5′ terminus (FIIRE-
RNA) were synthesized by Gene Link, Inc. Hawthorne, New York, U.S.A. The ferritin IRE-RNA (nucleotide,  
FI-GUUCUUGCUUCAACAGUGUUUGAACGGAAC) and mitochondrial aconitase IRE-RNA (nucleotide,  
FI-CCUCAUCUUUGUCAGUGCACAAAAUG GCG) were used for equilibrium and kinetic studies as described 
previously29. FRT IRE-RNA or ACO2 IRE-RNA was dissolve in buffer containing 40 mM HEPES/KOH, pH 7.2 
and RNA was melted and reannealed by heating to 85 °C for 15 min with slow cooling to 25 °C28, 42. The concen-
trations of FRT IRE-RNA and ACO2 IRE-RNA were determined spectrophotometrically using the absorbance 
at 260 of 40 µg/ml RNA as 1. The purity of synthesized RNAs were checked by measuring the absorbance ratio, 
A260/280 nm, and the absorbance ratio was 2.1.

Fluorescence Anisotropy Measurements.  Temperature dependent fluorescence anisotropy experiments 
for the binding of FRT and ACO2 IRE-RNA with IRP1 protein were performed using an L-format detection con-
figuration of a Spex Fluorolog τ2 Spectrofluorimeter equipped with excitation and emission polarizers. The ani-
sotropy values for each sample were monitored at an excitation wavelength of 490 nm and emission wavelength of 
520 nm. The excitation and emission slits were 4 and 5 nm, respectively. The excitation slits were chosen to avoid 
photo-bleaching, and the absorbance of the sample at the excitation wavelength was less than 0.02 to minimize 
the inner-filter effect. Emission spectra were corrected for the wavelength dependent lamp intensity and mon-
ochromator sensitivities. In order to study the temperature dependence of the FRT IRE-RNA/IRP1 and ACO2 
IRE-RNA/IRP1 complexes, samples were thermostatically adjusted at different temperatures (5, 10, 15, 20, 25 
and 30 °C), using a 10-mm path length quartz cuvette. 100 nM of 5′ fluorescein labeled FRT IRE-RNA or ACO2 
IRE-RNA was incubated with varying concentrations of IRP1 (0.0–1 mM) in the absence and presence of 50 µM 
Mn2+ (an O2-resistant surrogate) in the titration buffer, 40 mM HEPES/H+ , pH 7.2, 100 mM KCl. We use Mn2+ 
as an oxygen-resistant surrogate for Fe2+; in addition, Mn2+ has effects similar to Fe2+ for the IRP1/IRE-RNA 
complex formation28, to facilitate experiments in the presence of air43. All samples were pre-incubated for at 
least 15 minutes prior to the titration experiments. The FRT IRE-RNA/IRP1 and ACO2 IRE-RNA/IRP1 interac-
tion experiments were performed at temperatures, 5, 10, 15, 20, 25 and 30 °C; sample temperatures were meas-
ured using a thermocouple device inside the cuvette. Interactions of FRT IRE-RNA/IRP1 and ACO2 IRE-RNA/
IRP1 complexes were measured by the enhancement in FIIRE-RNA anisotropy. The anisotropy data were fitted to 
Equation (1) to determine the dissociation equilibrium constant44–46.

‐ ‐= + − − .br r {(r r )/(2x[ IRE RNA])}{ 4[ IRE RNA][IRP1] } (1)obs min max min
FI 2 FI 0 5

= + +‐Kb [ IRE RNA] [IRP1]d
FI , where robs is the observed anisotropy at any point in the titration curve, rmin is 

the minimum observed anisotropy in the absence of IRP1 protein, and rmax is the maximum anisotropy at satura-
tion; [FIIRE-RNA] and [IRP1] are the concentrations of these components. Kd is the equilibrium dissociation 

Figure 6.  Determination of activation energies for the interaction of IRP1 with FRT and ACO2 IRE-RNA in 
the absence and presence of Mn2+. Rate constant values for FRT IRE-RNA (‒○‒), FRT IRE-RNA-Mn2+ (‒⦁‒), 
ACO2 IRE-RNA (‒∆‒) and ACO2 IRE-RNA-Mn2+ (‒▲‒) with IRP1 protein at different temperatures were 
used to construct an Arrhenius plot according to Eq. 5. Concentration of IRE-RNA, IRP1 and Mn2+ were 
50 nM, 1 µM and 50 µM, respectively. The activation energy was calculated from the slope of the fitted linear 
plot of ln k versus 1/T (kelvin). Data points in the plot of ln k versus 1/T were obtained from three independent 
experiments and the average value of the experimental data is reported.
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constant. KaleidaGraph software (version 2.1.3; Abelbeck Software) was used to obtain the Kd values and standard 
errors for parameters using nonlinear least square fitting of the data. For all equilibrium measurements, three 
independent titration experiments were performed, and the value reported is the average.

Thermodynamic Analyses of FRT IRE-RNA and ACO2 IRE-RNA Binding to IRP1.  In order to 
study the temperature dependence of FRT IRE-RNA and ACO2 IRE-RNA interaction with IRP1 in the absence 
and presence of 50 µM Mn2+, the samples were thermostatically adjusted at different temperatures, 5, 10, 15, 20, 
25 and 30 °C, respectively. The temperature dependent Keq was used to determine enthalpy (ΔH), entropy (ΔS), 
and free energy (ΔG) of FRT and ACO2 IRE-RNA binding to IRP1 in the absence and presence of Mn2+. The 
thermodynamic parameters of FRT IRE-RNA and ACO2 IRE-RNA binding to IRP1 were analyzed according to 
the van’t Hoff equation.

R K H ST ln T (2)eq− = ∆ − ∆

G R KT ln (3)eq∆ = −

where R and T are the universal gas constant and absolute temperature, respectively. Keq, the equilibrium con-
stant, was determined as a function of temperature. ΔH and ΔS were obtained from the slope and intercept of the 
plot of lnKeq versus 1/T (kelvin). ΔG was determined at 25 °C using Equation 3.

Stopped-Flow Anisotropy Measurements.  Temperature dependent kinetic measurements of FRT 
IRE-RNA and ACO2 IRE-RNA interactions with IRP1 protein at temperatures, 5, 10, 15, 20 and 25 °C were 
performed on an OLIS RSM 1000 stopped-flow spectrometer with polarizers. The dead time of the instruments 
was 1-ms. Excitation wavelength was 490 nm and emission wavelength was 520 nm for fluorescein labeled FRT 
IRE-RNA and ACO2 IRE-RNA. In each experiment, 1000 pairs of data points were collected throughout the 
reaction. Anisotropy changes were examined up to 150 ms. In order to determine the temperature dependent 
association rate constants, the temperature of the flow-cell and solution reservoir were maintained using a tem-
perature controlled circulating water bath. IRP1 protein binding induced an increase in FIIRE-RNA anisotropy. 
After rapid mixing of 0.1 µM (0.05 µM final) FRT or ACO2 FIIRE-RNA with 1 µM (final) of IRP1 protein, the 
time course of the anisotropy change was recorded by computer data acquisition. Samples were degassed prior 
to loading into the syringes. All measurements were performed in titration buffer containing 40 mM HEPES/H+, 
pH 7.2, 100 mM KCl. The stopped-flow traces shown under “Results” are the average of 5–7 individual shots to 
improve the signal-to-noise ratio. Each averaged set of stopped-flow anisotropy data was then fitted to nonlinear 
analytical equations using GlobalWorksTM analysis software (OLIS).

In order to measure the effect of Mn2+ on the temperature dependent FRT and ACO2 IRE-RNA binding 
with IRP1, 50 µM Mn2+ was added to both IRE-RNA and protein solutions, at the same concentration, and the 
solutions were incubated separately for 15 min before adding to titration buffer containing the same metal ion 
concentration as the IRE-RNA and protein solutions (50 µM Mn2+). Experiments were performed as described 
above. Kinetic data were evaluated by fitting to the single-exponential functions as described elsewhere29, 47–49 and 
further analyzed as described below.

Curve Fitting and Stopped-flow Kinetic Data Analyses.  Temperature dependent stopped-flow traces 
representing binding of FRT IRE-RNA or ACO2 IRE-RNA with IRP1 protein were analyzed using a curve-fitting 
program, Global analysis software as described previously47, 50, 51. Data were fit to the single-exponential func-
tions. Fitted curves correspond to the following single-exponential equation,

− = ⋅−r r Ae t (4)k
(t) f obs

where r(t) is the observed anisotropy at any time, t, and rf is the final value of anisotropy, and A is the ampli-
tude. kobs is the observed first order rate constant. The reaction was consistent with a single-exponential process. 
An assessment of each fit was made from the residuals, which measure the difference between experimental 
data and the calculated fit. The program KaleidaGraph version 2.1.3 (Synergy Abelbeck Software) was used for 
least-squares fitting of data with linear equations and determination of standard errors for parameters obtained 
from the fits.

To determine the activation energy of the complexes, FRT or ACO2 IRE-RNA with IRP1 protein in the 
absence and presence of Mn2+, the fitted rate constants were used to construct Arrhenius plots according to the 
equation

k E R Aln ( / T) ln (5)a= − +

where Ea is the activation energy, k is the rate constant, R is the universal gas constant, T is the absolute tempera-
ture, and A is the Arrhenius pre-exponential factor. The activation energies were calculated using the slopes of the 
fitted linear plot of ln k versus 1/T (kelvin).
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