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Abstract: Hashimoto’s thyroiditis (HT) (autoimmune thyroiditis) is a clinicopathological entity
associated with chronic lymphocytic infiltration resulting in hypothyroidism. HT is a double-edged
sword that increases the risk of papillary thyroid cancer (PTC), yet it serves as a protective factor
for PTC progression. BRAF mutation in PTCs is associated with rapid cell growth, aggressive
tumor characteristics, and higher mortality rates. Here, we aimed to analyze the influence of HT
in patients with PTCs and its effect on lymph node metastasis (LNM) in BRAF mutant tumors.
Adults diagnosed with PTC between 2008 and January 2021 were retrospectively included. A total
of 427 patients, 128 of whom had underlying HT, were included. The HT group had significantly
higher rates of microcarcinoma (49.2% vs. 37.5%, p = 0.025) and less lateral LNM (8.6% vs. 17.1%,
p = 0.024). Interestingly, BRAF-mutated PTCs were found to have significantly less overall LNM
(20.9% vs. 51%, p = 0.001), central LNM (25.6% vs. 45.1%, p = 0.040) and lateral LNM (9.3% vs. 29.4%,
p = 0.010) in patients with HT when compared to those without underlying HT. HT was found to be
an independent protective predictor of overall and lateral LNM. Altogether, HT was able to neutralize
the effect of BRAF mutation and was determined to be an independent protective factor against LNM.
Specifically, our work may influence treatment-aggressiveness decision making for endocrinologists,
oncologists and surgeons alike.

Keywords: thyroid cancer; Hashimoto’s thyroiditis; lymph node metastasis; risk factor; protective factor

1. Introduction

Papillary thyroid carcinoma (PTC) makes up 90% of all thyroid cancers, making it
the most common endocrine malignancy [1]. As of 2013, thyroid cancer was the fastest
growing cancer in the United States [2]. With continued increased imaging studies and
genetic testing, allowing for increased diagnostic scrutiny, the prevalence of thyroid cancer,
including PTC, is expected to continue to increase [3,4]. Though PTC patients generally
have an excellent prognosis, the rate of recurrence can be as high as 30% [5], and conse-
quently factors which can predict PTC aggressiveness and recurrence are important. A
common risk factor is BRAFV600E mutation, which is prevalent in up to 51% of PTCs [6].
Mutation in the BRAF oncogene BRAFV600E is widely associated with advanced cancer,
lymph node metastasis (LNM), and decreased patient 10-year survival rate [7–9].

Hashimoto’s thyroiditis (HT) (also known as autoimmune thyroiditis) is the most
common thyroid-related autoimmune disorder characterized pathophysiologically by lym-
phocytic infiltration and a hypoactive thyroid gland [10]. HT is the leading cause of
hypothyroidism [11]. The co-occurrence of HT and PTC was first described in the 1950′s
and, considering their elevated concomitant prevalence (as high as 58%), are thought
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to influence one another [12]. Due to the nature of HT, however, as a disease that infil-
trates, destroys and replaces thyroid cells, the notion of less-aggressive-PTCs has been
suggested [12–14].

A recent work looking at HT and its ability to serve as a protective marker found that
the disease decreased primary PTC size and lymph node involvement [15]. Considering
this, along with the respectable prevalence of concomitant HT and PTC, we sought to
further investigate the protective effectiveness of HT in PTC patients. Specifically, we
aimed to analyze the influence of HT in patients with PTCs and its effect on LNM in BRAF
mutant tumors.

2. Methods
2.1. Study Design & Recruited Cohort

Following institutional review board approval at Tulane University, this retrospective
study was conducted. Patients diagnosed with PTC and undergoing thyroid surgery
between 2008 and 2021 were included. Surgical operations included hemithyroidectomy,
total thyroidectomy, total thyroidectomy with central lymph node dissection, and total
thyroidectomy with both central and lateral lymph node dissection. Patient demographics,
tumor cytopathological data, operative details, and pathological parameters of interest,
including tumor-nodal-metastasis (T-N-M) staging, extrathyroidal extension, and disease
recurrence, were collected.

2.2. Determination of BRAF Mutation and Hashimoto’s Thyroiditis Status

All patients were evaluated for BRAF mutation and HT status. Evaluation for genetic
mutation status was conducted either preoperatively via fine-needle aspiration (FNA)
sampling and/or core needle biopsy (CNB) or postoperatively via tumor specimen analysis.
Preoperative biopsy cytology was analyzed using Interpace ThyGenX/ThyraMIR (Inter-
pace Biosciences, Parsippany, NJ, USA) or Afirma Thyroid FNA Analysis (including both
GEC and GSC; Veracyte Inc., San Francisco, CA, USA). The majority of nodules were evalu-
ated twice preoperatively, although a small minority were analyzed only once. Surgical
specimen BRAFV600E mutational analysis was performed by the University of Pittsburgh
Medical Center and analyzed by real-time polymerase chain reaction (PCR). DNA extrac-
tion from formalin-fixed, paraffin-embedded frozen sections proceeded using a Qiagen
EZ1 tissue kit (Qiagen, Hilden, Germany) and was subject to a validated BRAF mutation
kit (EntroGen, Woodland Hills, CA, USA) with a sensitivity of 1–5% in a background of
wild-type genomic DNA.

The diagnosis of HT was made in the following scenarios: (A) either overt or subclini-
cal hypothyroidism with sonographically moderate or prominent heterogenous thyroid
gland as well as anti-thyroglobulin (TgAb) >40 U/mL, and/or anti-thyroid peroxidase
antibody (TPOAb) > 50 U/mL, (B) Histopathological diagnosis defined by existence of
diffuse lymphocytic infiltration with lymphoid follicles formation and the presence of
reactive germinal centers among patients with hypothyroidism or euthyroid status.

2.3. Statistical Analysis

Descriptive statistics summarizing patient demographics, operative details, and patho-
logical parameters of interest were sub-grouped by patient underlying HT status. Subse-
quently, univariate analyses sub-grouped by patient underlying HT status were conducted
to determine the effect (protective or risk) of LNM incidence in wild-type BRAF PTCs and
BRAF mutant PTCs. Subsequently, a multivariate analysis was conducted to determine
independent predictors of LNM in BRAF mutant PTCs.

3. Results
3.1. Characteristics of the Study Population

The total number of patients with PTC who had undergone thyroid surgery was
427. The number of patients who did and did not have underlying HT was 128 (30.0%)
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and 299 (70.0%), respectively (Table 1). The number of patients below the age of 55 years
did not differ between the two cohorts (p = 0.11). With respect to both race and sex,
the number of Whites and females with HT in our study population was significantly
greater than those without HT (p = 0.007; p = 0.029; respectively). These differences were
expected, considering that autoimmune disease is more prevalent in both white and female
populations [16]. A total of 145 patients had BRAF mutations, including 102 (34.1%) patients
without underlying HT and 43 (33.6%) patients with underlying HT (p = 0.92).

Table 1. Baseline characteristics of thyroid cancer patients who underwent thyroid surgery.

Characteristics Levels Total No Hashimoto
Thyroiditis

Hashimoto
Thyroiditis p-Value

Number 427 299 128

Demographic data

Age
<55 years 248 (58.1) 166 (55.5) 82 (64.1) 0.11

≥55 years 179 (41.9) 133 (44.5) 46 (35.9)

Sex
Female 334 (78.2) 225 (75.3) 109 (85.2) 0.029

Male 93 (21.8) 74 (24.7) 19 (14.8)

Race

White 283 (66.3) 186 (62.2) 97 (75.8) 0.007

African
American 144 (33.7) 113 (37.8) 31 (24.2)

Pathological data

microPTC T1a 175 (41) 112 (37.5) 63 (49.2) 0.025

T stage

T1 309 (72.4) 214 (71.6) 95 (74.2) 0.11

T2 54 (12.6) 34 (11.4) 20 (15.6)

T3 56 (13.1) 43 (14.4) 13 (10.2)

T4 8 (1.9) 8 (2.7) 0 (0)

N stage
N0 321 (75.2) 216 (72.2) 105 (82) 0.037

N1 106 (24.8) 83 (27.8) 23 (18)

Compartment

Central
LNM 103 (24.1) 80 (26.8) 23 (18) 0.06

Lateral
LNM 62 (14.5) 51 (17.1) 11 (8.6) 0.024

M stage
M0 413 (96.7) 286 (95.7) 127 (99.2) 0.07

M1 14 (3.3) 13 (4.3) 1 (0.8)

Focality
Unifocal 250 (58.5) 182 (60.9) 68 (53.1) 0.16

Multifocal 177 (41.5) 117 (39.1) 60 (46.9)

Laterality
Unilateral 312 (73.1) 224 (74.9) 88 (68.8) 0.19

Bilateral 115 (26.9) 75 (25.1) 40 (31.3)

Extrathyroidal
extension Positive 51 (11.9) 41 (13.7) 10 (7.8) 0.09

Angioinvasion Positive 30 (7) 24 (8) 6 (4.7) 0.22

Perineural invasion Positive 5 (1.2) 3 (1) 2 (1.6) 0.62

Capsular invasion Positive 94 (22) 66 (22.1) 28 (21.9) 0.96

Extranodal extension Positive 38 (8.9) 32 (10.7) 6 (4.7) 0.046
Data is presented as number (percentage) or median and interquartile range (IQR). Two-sided Chi-square and
Mann–Whitney U tests were used. p-values in bold are those which were significant.
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With respect to the pathological data, significant differences were seen between the
two groups. Patients with HT were more likely to have tumors diagnosed as microPTCs
(HT: 49.2%; no HT: 37.5%; p = 0.025). In addition, HT patients were less likely to have
any lymph node involvement (HT: 18%; no HT: 27.8%; p = 0.037), lateral lymph node
involvement (HT: 8.6%; no HT: 17.1%; p = 0.024), and extranodal extension (HT: 4.7%; no
HT: 10.7%; p = 0.046). Extrathyroidal extension (p = 0.09), multifocal disease (p = 0.16) and
metastasis (p = 0.07) tended to occur less frequently in the cohort of HT patients.

3.2. Association of HT with Lymph Node Metastasis

A total of 106 patients presented with LNM at the time of diagnosis (24.8%). 61 (57.5%)
had BRAF mutation. Of those with BRAF mutation (N = 61), only 9 (14.8%) were in patients
with underlying HT. Altogether, 103 (24.1%) patients and 62 (14.5%) patients had central
and lateral cervical compartment infiltration, respectively. The location and frequency of
cervical LNM stratified by the presence and/or absence of HT, as well as the presence
and/or absence of BRAF mutation, are depicted in Figure 1. The frequency of LNM was
highest in patients harboring BRAF mutant PTCs but without HT (49.1%). When LNM
was stratified by compartment, HT continued to display a protective effect. Patients with
BRAF mutant PTCs without underlying HT had higher rates of central (45.1% vs. 25.6%,
p = 0.027) and lateral LNM (29.4% vs. 9.3%, p = 0.009) when compared to patients with
HT. Similarly, patients with wild-type BRAF PTCs without underlying HT had higher rates
of central (17.3% vs. 14.1%; p < 0.001) and lateral LNM (10.7% vs. 8.2%; p < 0.001) when
compared to patients with HT.
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Figure 1. Frequency of lymph node metastasis (LNM) according to patient Hashimoto’s thyroidi-
tis (HT) and BRAF mutation status. (A) Number of LNM overall. (B) Frequency of LNM by
cervical compartment.

The univariate risk analysis for the incidence of LNM at the time of presentation is
depicted in Table 2. In general, HT patients were less likely to present with LNM (Odds
ratio (OR) = 0.57, 95%CI = 0.34–0.95, p = 0.033). When analyzing only wild-type BRAF
PTCs, however, HT elected neither a protective nor adversative effect in the risk of LNM
incidence (OR = 1.06, 95%CI = 0.53–2.10, p = 0.87). When considering BRAF mutant PTCs,
HT was associated with a 75% reduced risk of lymph node infiltration when compared
to patients without underlying HT (OR = 0.25, 95%CI = 0.11–0.58, p = 0.001). Specifically,
HT patients harboring BRAF mutant PTCs were less likely to develop central (OR = 0.42,
95%CI = 0.19–0.92, p = 0.030) and lateral LNM (OR = 0.24, 95%CI = 0.08–0.75, p = 0.014)
compared to the patient cohort without underlying HT.
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Table 2. Univariate risk analysis for developing LNM at the time of presentation.

Characteristics Total No Hashimoto’s
Thyroiditis

Hashimoto’s
Thyroiditis p-Value OR (95%CI) p-Value

BRAF Wild Type

Overall LNM
Negative 237 (84) 166 (84.3) 71 (83.5) 0.86 Reference

Positive 45 (16) 31 (15.7) 14 (16.5) 1.06 (0.53–2.1) 0.87

Central LNM
Negative 236 (83.7) 163 (82.7) 73 (85.9) 0.60 Reference

Positive 46 (16.3) 34 (17.3) 12 (14.1) 0.79 (0.39–1.61) 0.51

Lateral LNM
Negative 254 (90.1) 176 (89.3) 78 (91.8) 0.66 Reference

Positive 28 (9.9) 21 (10.7) 7 (8.2) 0.75 (0.31–1.84) 0.53

BRAF mutant type

Overall LNM
Negative 84 (57.9) 50 (49) 34 (79.1) 0.001 Reference

Positive 61 (42.1) 52 (51) 9 (20.9) 0.25 (0.11–0.58) 0.001

Central LNM
Negative 88 (60.7) 56 (54.9) 32 (74.4) 0.040 Reference

Positive 57 (39.3) 46 (45.1) 11 (25.6) 0.42 (0.19–0.92) 0.030

Lateral LNM
Negative 111 (76.6) 72 (70.6) 39 (90.7) 0.010 Reference

Positive 34 (23.4) 30 (29.4) 4 (9.3) 0.25 (0.08–0.75) 0.014

Data is presented as count (percentage). Two-sided Chi-square tests were performed for the comparison of
frequency. Binary logistic regression analysis was carried out to identify the univariate risk of LNM in the
presence of HT. Odds ratios (OR) and 95% confidence intervals (CI) were estimated. p-values in bold are those
which were significant.

3.3. Independent Predictors of Lymph Node Metastasis in BRAF-Mutated Tumors

Three predictors of LNM were determined, one of which was a risk factor and two of
which were protective factors. The independent predictors of LNM are depicted in Figure 2.
Patients with BRAF mutant PTCs were more than four times as likely to be male (OR = 4.55,
95%CI = 1.68–12.3; p < 0.01). Interestingly, microPTCs or the presence of underlying HT
had 91% (OR = 0.09, 95%CI = 0.02–0.41; p < 0.001) and 76% (OR = 0.24, 95%CI = 0.08–0.78;
p < 0.01) decreased odds of developing LNM in patients with BRAF mutant PTC. These findings
were carried over when analyzing LNM by cervical compartment. Specifically, male sex
(OR = 4.72, 95%CI = 1.83–12.19; p < 0.01) and microPTC (OR = 0.13, 95%CI = 0.05–0.35; p < 0.001)
continued to serve as risk and protective factors, respectively, for central LNM. With regards
to lateral LNM, both HT (OR = 0.24, 95%CI = 0.08–0.78; p < 0.05) and microPTC (OR = 0.09,
95%CI = 0.02–0.41; p < 0.01) continued to be independent predictors of protection.
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Figure 2. Multivariate logistic regression analysis for determining independent predictors of lymph
node metastasis (LNM) in patients with BRAF mutant PTCs. (A) LNM overall. (B) Central LNM
(CLNM). (C) Lateral LNM (LLNM). * indicated p < 0.05; ** indicated p < 0.01; *** indicates p < 0.001.

4. Discussion

PTC comprises the vast majority (90%) of thyroid malignancies and is the fastest
growing cancer in the United States [2]. In BRAF mutant PTCs, patient prognosis is
significantly worse, leading to decreased patient survival rates as well as increased LNM,
increased extrathyroidal extension, and more advanced cancer stage [7,8]. While several
studies have demonstrated the risk-reducing effect of HT in PTCs, this work looked to put
into perspective its protective ability via its potential to mitigate BRAF-mutated PTC risk.
Overall, we found HT to be an independent protective factor in PTC, able to neutralize the
adverse consequences associated with the BRAF mutation.

Several works have described the co-occurrence of PTC and HT, yet there remains debate
with respect to both the pathophysiological mechanism of action of their relation and the
significance of one on the other. One hypothesis suggests that diffuse lymphocytic infiltration
of the thyroid gland prior to tumor formation results in inflammation and dysregulation of
thyroid follicular cells, thereby promoting a trophic tumorigenic effect [17,18]. In a similar
sense, some studies suggest that elevated TSH levels secondary to HT-induced hypothy-
roidism promote follicular epithelial proliferation [19–21]. On the other hand, it could be the
case that malignancy induces and/or triggers an immunologic response, thereby bringing
about HT [22–24]. With respect to their concomitant prevalence, however, the literature
suggests a clear direct correlation between the two [15,21,24] as well as an overall protective
effect [15,25–27]. When comparing our HT patient cohort to those without underlying HT,
we found significantly reduced incidence rates of extranodal extension, overall LNM, and
lateral LNM. A 2016 meta-analysis of 2,334 cases found HT to be a significant protective factor
for central LNM [28]. Similarly, our study suggests that HT patients are almost half as likely
to have LNM. Notably, lateral LNM places a patient at considerably more risk of distant
metastasis than central LNM, suggesting a respectable improvement in patient prognosis.

While both the literature and current work suggest that HT mitigates PTC aggressive-
ness, there is limited work analyzing whether it can meaningfully ameliorate the effect of
known PTC recurrence risk factors, such as BRAF mutation. There is an abundance of liter-
ature that associates BRAF mutation with an increased risk of both LNM and malignancy
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recurrence [29,30]. A 2012 meta-analysis associated BRAF mutation with more malignant
cancers (i.e., advanced cancer diagnosis, LNM and extrathyroidal extension), accompanied
by a two-fold increased risk of recurrence or persistent disease [7]. One work that analyzed
the protective effect of HT in BRAF-mutated PTCs reported that patients had significantly
less extracapsular extension (57.6% vs. 29.6%, p = 0.001) and smaller tumor sizes (p = 0.028),
but similar rates of LNM (35.9% vs. 31.5%, p = 0.509) [31]. In line with HT serving as a
protective factor, but in contrast to the latter findings of Marotta et al., we found that HT
reduced the risk of overall LNM by 75% in patients with BRAF mutant PTCs. Specifically,
we found that HT patients harboring BRAF mutant PTCs were 58% and 75% less likely
to develop central and lateral LNM, respectively, when compared to patients without
underlying HT. This suggests that HT has the potential to mitigate PTC aggressiveness
and effectively neutralize the harmful effects of BRAF mutation. In univariate analysis,
however, HT had a neutral effect on wild-type BRAF PTC LNM. Therefore, the prognostic
value of HT and its protective ability are limited to BRAF mutated PTCs, which comprise
between 45% and 51% of all PTCs [6,32].

A positive lymph node count is a risk factor for PTC recurrence [33], emphasizing
the importance of determining predictors of LNM. Elucidating this association, as well as
establishing clinically relevant predictors, could assist surgeons in patient risk-stratification
and influence the extent of surgical resection. Predictors of LNM in PTC are well known,
including larger tumor size, extracapsular invasion, and BRAF mutation [28,34]. On the
contrary, little is known about the independent predictors of LNM in BRAF-mutated PTCs.
Our work could potentially be the first to determine the predictive factors of LNM in
patients presenting with BRAF mutant PTCs. We found that male sex increased the odds
of LNM by more than four-fold. microPTC and HT were both found to be protective
factors, reducing the odds of LNM by 88% and 74%, respectively. Furthermore, microPTC
and HT continued to minimize the risk of lateral LNM, with odds reduced by 91% and
76%, respectively. Altogether, HT appears to play a considerable role in ameliorating PTC
aggressiveness and improving patient prognosis. Moving forward, surgeons can recognize
HT as a protective factor in thyroid cancer and utilize it when considering patient risk.

Although the BRAF mutation itself is associated with disease progression and worse
patient prognosis, its incidence is also correlated with programmed death (PD) L1 and
PD-1 expression [35,36]). PD-L1 and PD-1 are prominent cell cycle regulators mediating im-
munosuppression [37] which are associated with LNM in patients with PTCs [38] and have
been suggested as potential prognostic biomarkers [36,39,40]. Since BRAF-mutated PTCs
also have higher incidences of radioiodine refraction [41,42], targeted immunotherapies
against PD-L1/PD-1 may be a potential avenue for investigation.

The current American Thyroid Association (ATA) guidelines recommend tumor BRAF
status to assist in thyroid cancer stratification, with its presence placing a patient at greater
risk of more aggressive disease [43]. Consequently, patients harboring BRAF mutated
PTCs are likely to receive more aggressive treatment and are therefore at greater risk of
nerve injury and postoperative complication [44]. Although our study is limited in its
retrospective nature, its long-term follow-up, adequate sample size, and racially diverse
sample population adequately suggest that HT was able to effectively neutralize the
adversative effect of BRAF mutation, potentially restoring patients with HT to their non-
BRAF mutation status. Furthermore, it could be the case that patients with HT and BRAF
mutated microPTC are at reduced levels of risk, which may allow them candidacy for
non-surgical management (active surveillance).

5. Conclusions

Overall, our work demonstrated that HT decreased LNM in BRAF-mutated PTCs and
served as an independent predictor of reduced LNM. When the fields of thyroidology and
oncology overlap, we suggest that HT be viewed as a protective marker that can improve
patient prognosis. Specifically, our work may influence treatment-aggressiveness decision
making for endocrinologists, oncologists and surgeons alike.
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