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The interhemispheric CA1 circuit governs rapid
generalisation but not fear memory

Heng Zhou'?, Gui-Jing Xiong', Liang Jing"3, Ning-Ning Song#10, De-Lin Pu!, Xun Tang?, Xiao-Bing He>,
Fu-Qiang Xu>?®, Jing-Fei Huang’, Ling-Jiang Li®, Gal Richter-Levin3, Rong-Rong Mao,
Qi-Xin Zhou', Yu-Qiang Ding4'8'10 & Lin Xu® 12689

Encoding specificity theory predicts most effective recall by the original conditions at
encoding, while generalization endows recall flexibly under circumstances which deviate from
the originals. The CA1 regions have been implicated in memory and generalization but
whether and which locally separated mechanisms are involved is not clear. We report
here that fear memory is quickly formed, but generalization develops gradually over 24 h.
Generalization but not fear memory is impaired by inhibiting ipsilateral (ips) or contralateral
(con) CA1, and by optogenetic silencing of the ipsCAT1 projections onto conCA1. By contrast,
in vivo fEPSP recordings reveal that ipsCA1-conCA1 synaptic efficacy is increased with delay
over 24 h when generalization is formed but it is unchanged if generalization is disrupted.
Direct excitation of ipsCAl-conCA1 synapses using chemogenetic hM3Dq facilitates
generalization formation. Thus, rapid generalization is an active process dependent on
bilateral CA1 regions, and encoded by gradual synaptic learning in ipsCA1-conCA1 circuit.
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ncoding and later recall rarely recur in exactly the same

conditions!. Recall flexibly across a variety of novel cir-

cumstances is largely dependent on generalization?, a time-
dependent capacity developed following the original memory.
However, it is not fully understood how this capacity evolves
from the original memories. This is also a primary question in the
field of artificial intelligence regarding how to endow better
generalization accuracy in dealing with unpredicted but similar
circumstances that the “neural network” has never been trained
on. In addition, overgeneralization of fear memories is one of the
key symptoms in posttraumatic stress disorder (PTSD), which
may occur with a passage of time after trauma. Thus, elucidating
the neural basis of generalization holds the potential impact on
these fields.

Research into the cellular and molecular mechanisms of
memories have identified experience or activity-dependent fast
changes of synaptic efficacy such as in CA3-CA1l synapses as one
of the key mechanisms®>=. Theories of memory have proposed

that the hippocampus learns quickly, and continuously interacts
with the cortical systems to abstract gradually the common ele-
ments of memories for generalization®”, so as to endow the
capacity of flexible recall while minimizing interference'".
Optogenetic and chemogenetic tools enable studying in greater
details the circuit mechanisms of memories. A recent study has
demonstrated a global circuit mechanism by which the medial
prefrontal cortex (mPFC) controls generalization of contextual
fear memory during acquisition via the nucleus reuniens of the
thalamus, which signals to the hippocampus and also back to the
mPFC!%,

Considering from another perspective, we addressed here
whether and how the hippocampal CA1 regions could process
fear memory and generalization by recruiting separate mechan-
isms, and thereby minimizing interference of each another. In
this study, we find a novel form of generalization with the
characteristics of rapid development and easy extinction within
24 h after fear conditioning training. This rapid generalization but
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Fig. 1 Formation and extinction characteristics of generalization. a Schematic of fear memory in the training box (T-box) and generalization in a non-
training similar box (G-box), measured at A h after fear conditioning. b Generalization developed gradually in G-box over 24 h (n = 8 per group, but n =9 at
18 h). ¢ Generalization extinction paradigm. d Extinction curves in the separate groups by exposing into T-box for 50 min. e Generalization was disrupted in
all groups, but fear memory was largely impaired at 24 h extinction after fear conditioning. f Retraining after extinction resulted in gradual reformation of
generalization over 24h (0.5h, n=6;12h, n=7; 24 h, n=8). Statistical comparisons are performed by using repeated two-way ANOVA (*contrast
effects, G-box vs. T-box; #parameter estimates, between T-box groups); *P < 0.05, **P < 0.01, *** or ### p < 0.001. Error bars, s.e.m
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not fear memory is processed by the interhemispheric exchanges
of the fear memory information allocated in bilateral CAl,
leading to a gradual developing synaptic potentiation in the
ipsCAl—-conCAl circuit within 24 h.

Results

Formation and extinction of generalization. We measured
generalization and contextual fear memory by placing the con-
ditioned rats into a non-training similar box (G-box, blue) and
1 h later into the training box (T-box, green) (Fig. la), at 0.5, 8,
12, 18, and 24 h after fear conditioning for the separate groups
(Fig. 1b, Ah). As shown in Fig. 1b, fear memory was formed
quickly in T-box, and maintained over the retrieval tests. By
contrast, generalization was developed gradually in G-box, and
rapidly rose up to maximal over 24h, when recall efficiency
became near equivalent to that in T-box (Fig. 1b, timexbox
interaction, F (4,36) = 3.575, P=0.015, two-way ANOVA; G-box,
*contrast effects between T-box vs. G-box at Ah following F (1,
36)=110.14, P <0.001, repeated two-way ANOVA), demon-
strating a rapid time-course of generalization full formation dis-
tinct from that of fear memory. This is a novel form of
generalization likely differed from the more gradual one reported
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previously showing that several weeks are required for general-
ization full development in mice!?!3,

To explore the characteristics of this novel generalization in
more details, which might be useful for studying its underlying
mechanism, we measured the generalization and fear memory
24 h after extinction training that was performed by exposing the
rats into T-box for 50 min (Fig. 1c), starting at 0.5, 12 or 24 h after
fear conditioning for the separate groups (Fig. 1d, Ah). These
time points represented increasing levels (low to high) of
generalization that was then maintained for at least 7 d (see
Veh groups in Supplementary Fig. 2e, f). Consistent with previous
report'4, extinction training at the early stages (0.5 and 12 h) had
nonsignificant effect on fear memory, but that at the later time
point (24h) largely reduced fear memory (i.e., suppression)
(Fig. le, timexbox interaction, F (2,35) =12.090, P < 0.001, two-
way ANOVA; T-box: 0.5h vs. 24 h, ##P <0.001, and 12h vs.
24 h, #P < 0.03; parameter estimates, repeated two-way ANOVA).
In contrast, extinction training at all these stages (0.5, 12, and
24'h) disrupted the generalization (i.e., renewal) (Fig. le, G-box:
T-box vs. G-box at the time points, *contrast effects, repeated
two-way ANOVA). This revealed also a distinct pattern of
rapid generalization in memory extinction. Retraining after
extinction caused gradual generalization reformation over 24 h
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again (Fig. 1f, timexbox interaction, F (2,18) =18.551, P < 0.001,
two-way ANOVA; *contrast effects between T-box vs. G-box at
Ah following F (1,18)=71.932, P<0.001, repeated two-way
ANOVA).

Accordingly, we propose that the circuit mechanism for rapid
generalization is separated from that of fear memory, regardless
of whether or not they share the similar cellular and molecular
mechanisms.

Generalization requires bilateral CAl. We then started to
explore the circuit mechanism of the rapid generalization using
pharmacological tools. Ibotenic acid was used to lesion the CAl
region(s) of the dorsal hippocampus (Supplementary Fig. 1) 25 d
before fear conditioning (Fig. 2a). We found that unilateral CA1l
lesion might impair generalization (Fig. 2b, groupxbox interac-
tion, F (2,34) =2.455, P=0.101; within groups or between boxes,
F (2,34) = 7.933, P=0.001 or F (1,34) =29.66, P < 0.001; two-way

4
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r ##p < 0.01, *** or ###¥P < 0.001. Error bars, s.e.m. EGFP or EYFP, control

ANOVA; Uni: #P=0.02, G-box vs. Sham, parameter estimates,
two-way ANOVA; ***P < 0.001, G-box vs. T-box, contrast effects,
two-way ANOVA) without affecting fear memory (Fig. 2b, Uni:
P=0.403, T-box vs. Sham, parameter estimates, two-way
ANOVA), while bilateral CA1l lesion might impair both fear
memory and generalization (Fig. 2b, Bi: **P < 0.001, G-box vs.
Sham; **P=0.002, T-box vs. Sham, parameter estimates, two-way
ANOVA; *P =0.034, G-box vs. T-box, contrast effects, two-way
ANOVA), examined 24 h after fear conditioning.

A set of experiments was then performed to confirm this
intriguing finding by using the AMPA receptor inhibitor CNQX
plus the sodium channel blocker TTX (CNQX +TTX), the
GABA, receptor agonist muscimol, and the protein synthesis
inhibitor anisomycin, which is known to impair long-term
contextual fear memory'”. Unilateral or bilateral CA1 inhibition
using CNQX + TTX before fear conditioning (Supplementary
Fig. 2a, b) or before retrieval test (Supplementary Fig. 2c, d,
CNQX + TTX) resulted in similar effects on generalization,
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examined 24h after fear conditioning. Using muscimol
before retrieval test to inhibit unilateral or bilateral CAl
also led to similar effects (Supplementary Fig. 2¢, d, Muscimol).
The drug effects on generalization were long-lasting, because
either CNQX + TTX or anisomycin infused into unilateral or
bilateral CA1 after fear conditioning impaired generalization or
the both, tested 7 d after fear conditioning (Supplementary
Fig. 2e, ). Thus, generalization appears to be a type of memory
not only depending on but also differing from the original
memory.

We also examined whether left and right CA1 regions were (a)
symmetrically required for generalization, i.e., either side of the
CA1 was near equivalently important for generalization. Injection
of muscimol to inhibit left or right CA1 before retrieval test led to
nearly identical results, impairing generalization (Fig. 2c¢, d,
lateralityxbox interaction, F (1,10) =0.003, P=0.957; F (1, 10) =
19.656, **P=0.001 for G-box vs. T-box; but P=0.998 or 0.957 for
left vs. right or box vs. laterality; two-way ANOVA). Consistent
with a recent report indicating that unilateral lesion of the dorsal
hippocampus has no effects on contextual fear memory'®, our
findings indicate that unilateral CA1l suffices for fear memory.
However, generalization requires bilateral CA1 activity symme-
trically, implicating that the interhemispheric exchange of
memory information through the dorsal hippocampal commis-
sure (DHC) is critical. This is potentially interesting because the
DHC is highly conserved in mammals and believed to present a
functional pathway also in humans!”"8,

To explore further whether bilateral CAl activity is indeed
symmetrical for generalization, we applied a single-foot fear
conditioning paradigm by giving footshocks directly to the right
hind leg of the rats (Fig. 2e, f). It is documented that spinal cord
neurons relay the signals of the footshocks to the posterior
intralaminar nuclei (PIL) of the thalamus predominantly via
contralateral projections!®??, and then to the hippocampus?!.
Therefore, we examined whether and how PIL inhibition could
affect fear memory and/or generalization. We found that
inhibition of conPIL using CNQX + TTX before single-foot fear
conditioning impaired both fear memory and generalization
(Fig. 2g, groupxbox interaction, F (2, 17) =7.065, P=0.006; both
T-box and G-box, **P < 0.001, Veh vs. con, parameter estimates,
two-way ANOVA), but that inhibiting ipsPIL impaired general-
ization (Fig. 2g, G-box, *P<0.006, Veh vs. ips, parameter
estimates, two-way ANOVA) with smaller nonsignificant effect
on fear memory (Fig. 2g, T-box, P=0.079, Veh vs. ips, parameter
estimates, two-way ANOVA). In marked contrast, inhibition of
ipsCAl or conCAl using CNQX+ TTX after single-foot fear
conditioning (Supplementary Fig. 3a, b) or before retrieval test
similarly impaired generalization (Fig. 2h, groupxbox interaction,
F (1,26) = 1439, P=0.255; G-box, *P=0.035 or 0.01, Veh vs. ips
or con, parameter estimates; ips or con, P=0.055 or *P=0.018,
G-box vs. T-box, contrast effects; two-way ANOVA). Fear
memory was also affected in a milder extent (Fig. 2h, T-box,
#P=0.039, Veh vs. ips; P=0.089, Veh vs. con; parameter
estimates, two-way ANOVA). Thus, these findings indicate that
such asymmetry in the PIL, conPIL responsible for both fear
memory and generalization while ipsPIL responsible for general-
ization, is somehow emerged into a symmetry in which bilateral
CAl is responsible for generalization while unilateral CA1 is
sufficient for fear memory.

The ipsCAl-conCAl connectivity. The above studies have
identified that generalization depends on bilateral CA1 activity,
and requires symmetrical ipsCAl and conCAl activity even in
single-foot fear conditioning. The DHC could provide a route for
interhemispheric exchanges between ipsCA1 and conCA1l to lead
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to such symmetry in CA1. However, this pathway was reported to
have only weak bilateral connections which vary along the septo-
temporal axis of the hippocampus*?. We then set out to reex-
amine CA1 bilateral connectivity using rabies virus (RV-dG-GFP
and -Dsred, non-transsynaptic tracing virus) and electro-
physiological methods.

RV-dG-Dsred was injected into ipsCA1 stratum oriens, and a
number of neurons were found to be labeled in conCAl
(Supplementary Fig. 4), suggesting that the labeled neurons have
projection terminals onto ipsCAl stratum oriens. RV-dG-GFP
and —Dsred were injected into stratum oriens of ipsCAl and
conCAL1 respectively, and again, a few neurons were labeled in the
opposite side (Fig. 3a, and Supplementary Fig. 5), also indicating
that the ipsCAl-conCAl projections might directly cross the
midline below the corpus callosum.

When RV-dG-GFP was directly infused into the midline,
adequate connections between ipsCA1 and conCA1 were revealed
with the labeled neurons and fibers exclusively covering bilateral
the whole CAl regions (Supplementary Fig. 6). By marked
contrast, RV-dG-GFP was injected into ipsCAl stratum radia-
tum, and multiple neurons were labeled in both ipsCA3 and
conCA3 but not in conCA1l (Supplementary Fig. 7). Thus, it is
possible that ipsCAl receives bilateral CA3 inputs mainly at
stratum radiatum but it can sense conCA1 inputs mainly at the
stratum oriens. Consistent with these findings, ample projection
terminals were also found in conCAl stratum oriens after
infusion of AAV-CaMKIla-ChR2-EYFP into ipsCAl (Supple-
mentary Fig. 8a), at which optogenetic stimulation effectively
evoked the field excitatory postsynaptic potentials (fEPSP) in
conCA1 (Supplementary Fig. 8b).

Both in vitro and in vivo fEPSP recordings were further used to
characterize the ipsCAl-conCA1 functional connectivity. Electric
stimulating at the midline below the corpus callosum effectively
evoked a fEPSP in both ispCAl and conCAl in a coronal slice
(Supplementary Fig. 6d, e), indicating the ipsCAl-conCAl
functional connectivity in the septal (dorsal) part of the
hippocampus.

In vivo recording revealed that the fEPSP at conCAl was
effectively evoked by stimulating at ipsCAl using homotopic
coordinates (Fig. 3b), with an onset latency of about 8-ms,
compared with about 10-ms in the ipsCA3-conCAl synaptic
transmission (Fig. 3¢, d, *P=0.01, T1 vs. T2; one-tail ¢-test). To
rule out the possibility that the stimulation antidromically excited
ipsCA3 which in turn drove the ipsCA3-conCA1 fEPSP, although
the onset latency is presumably even longer, we used CNQX +
TTX. The ipsCAl-conCAl fEPSP was blocked by infusion of
CNQX + TTX into ipsCAl, but not into ipsCA3 (Supplementary
Fig. 8¢, d).

Together, the results indicate that the ipsCAl-conCAl
functional connectivity may serve as a repository that may sense
the signals of bilateral CA1 activities, whereas its functions have
remained not clear.

To establish whether ipsCAl-conCA1 functional connectivity
is critical for generalization but not for fear memory, a set of
experiments was then performed. First, we injected AAV-syn-
EGFP-2A-TetLC into CA1 30 d before fear conditioning (Fig. 3e)
to express tetanus toxin light chain (TetLC) that is known able to
block neurotransmitter release at the CAl efferent projection
terminals. Unilateral CA1 expression of TetLC impaired general-
ization (Fig. 3f, groupxbox interaction, F (2,27) =9.322, P=0.001;
T-box P=0.915, G-box *P=0.037, EGFP vs. Uni, parameter
estimates; T-box vs. G-box, ~ P=0.003, contrast effects; two-way
ANOVA), but bilateral CA1 expression of TetLC impaired the
both (Fig. 3f, T-box *P=0.043, G-box *P=0.022, EGFP vs. Bi,
parameter estimates; T-box vs. G-box, P=0.265, contrast effects;
two-way ANOVA; see also Supplementary Fig. 9), relative to
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box (T-box). Without CNO treatment (saline control), the scores in G-box were significantly lower than that in T-box. Statistical comparisons are

contralateral CA1

control virus (Fig. 3f, EGFP), suggesting that the CAl efferent
projections are responsible for generalization.

Second, direct silencing unilateral or bilateral CA1 neurons
expressed optogenetic AAV-CaMKIla-NpHR; o-EYFP during the
retrieval tests (Fig. 3g—i) produced the similar results (Fig. 3j,
groupxbox interaction, F (2,26) =16.261, P < 0.001; T-box, P=
0.95, EYFP vs. Uni; #*P = 0.001, EYFP vs. Bi; G-box, **P < 0.006,
EYEP vs. Uni; ##P < 0.001, EYFP vs. Bi; parameter estimates; Uni
or Bi, **P < 0.001 or *P=0.04, T-box vs. G-box; contrast effects;
two-way ANOVA), relative to control virus (AAV-CaMKIIa-
EYFP) (Fig. 3j, EYFP).

Finally, AAV-CaMKIla-NpHR;,-EYFP was injected into
ipsCA1, and optogenetic stimulation was applied at the projection
terminals onto conCAl, by which the ipsCAl-conCA1l fEPSP
was reduced by about 20% with light on relative to light off
(Fig. 3k, 1). Generalization might be impaired by turned on
optogenetic stimulation (groupxbox interaction, F (2,21) = 3.309,
P=0.384; within groups or between boxes, F (2, 21) = 6.836, P=
0.005 or F (1, 21) =4.918, P=10.038; *P=0.017, T-box vs. G-box,
contrast effects, two-way ANOVA) with nonsignificant effect on
fear memory (P=0.283, EYPF vs. T-box, parameter estimates,
two-way ANOVA) during retrieval tests; a slight enhancement of
both fear memory and generalization was observed by turned off
the stimulation relative to EYFP control (Fig. 3m, n, both T-box
and G-box, *P=0.022, EYPF vs. light off, parameter estimates,
two-way ANOVA). Altogether, activities of the ipsCAl-conCAl
projections were found to be particularly essential for
generalization.

The ipsCAl-conCAl circuit for generalization. To establish
further how the ipsCAl-conCAl circuit contributes to

performed by using repeated one-way ANOVA d, f or two-way ANOVA h; *P < 0.05, **P < 0.01. Error bars, s.e.m. ipsCA1, ipsilateral CAT; conCAT,

generalization, we recorded experience-dependent changes of
synaptic efficacy in the ipsCAl-conCA1 circuit in freely moving
rats. The fEPSP baseline (BL) was recorded for 40-min before fear
conditioning (Fig. 4a, b), and then the fEPSP was recorded for 1 h
starting at 0.5h after fear conditioning. No difference from BL
was detected at 0.5h after fear conditioning (Fig. 4c, d), when
generalization was nearly undetectable (see Fig. 1a, b, 0.5h). By
contrast, the fEPSP recorded at 24h after fear conditioning
exhibited a reliable synaptic potentiation relative to BL (Fig. 4c, d,
24h, F (1, 7)=5.623, *P = 0.049, repeated ANOVA), when gen-
eralization was well developed (see Fig. 1a, b, 24 h).

Furthermore, our behavioral results indicated that extinction
training starting at 0.5h after fear conditioning disrupted
generalization without apparent effects on fear memory, tested
24 h later (see Fig. 1c—e). We thus used this paradigm to examine
whether a selective disruption of generalization would readjust
this late developing synaptic potentiation. The fEPSP recorded for
1 h starting at 23.5 h after the extinction training was not different
from BL (Fig. 4e, f), when generalization was disrupted by the
extinction paradigm. A late developing synaptic potentiation was
observed again if the conditioned animals was left in homecage
without extinction training (Fig. 4f, F (1, 7) =6.653, P=0.037,
repeated ANOVA).

Moreover, if generalization and gradual developing synaptic
potentiation were causally linked together, direct exciting of the
ipsCAl-conCA1 synapses may speed up the active process for
generalization formation. To excite these synapses continuously
for hours that might overlay on the endogenous active process of
the selected neurons in developing a synaptic potentiation
gradually, we used a chemogenetic tool, AAV-hsyn-hM3Dgq-
mCitrine that was injected into ipsCAl (Fig. 4g, and
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Supplementary Fig. 10). Injection of clozapine-N-oxide (CNO)
twice, immediately after fear conditioning and 30 min before
retrieval tests at 8h, into conCAl excited the postsynaptic
neurons that had the contralateral inputs from the ipsCAl
neurons directly (as indicated by cFos expression, see Supple-
mentary Fig. 10). We found that generalization was facilitated, up
to maximal levels already at 8 h after fear conditioning (Fig. 4h,
treatmentxbox interaction, F (1, 12) =8.527, P=0.013; CNO, P =
0.983, T-box vs. G-box, contrast effects, two-way ANOVA),
almost equivalent to that in T-box. By contrast, without CNO
treatment, generalization was significantly lower than that in T-
box (Fig. 4h, control, **P =0.002, T-box vs. G-box, contrast
effects, two-way ANOVA). These findings indicate that indeed,
gradual developing synaptic potentiation of the ipsCAl-conCAl
circuit is a critical part for the development of generalization.

Discussion

The hippocampal CAl regions have been implicated in both
memory and generalization, which raises the question of how
these two tasks function alongside each other without inter-
ference. Using non-transsynaptic rabies virus, we find that CA3
neurons send the Schaffer and commissural projections mainly
onto synapses in stratum radiatum of ipsCA1 and conCAl, but
an ipsCAl-conCAl circuit is consisted of the commissural pro-
jections onto synapses mainly in CA1 stratum oriens. Notably, we
demonstrate here for the first time that generalization is depen-
dent on symmetrical ipsCA1-conCA1 activity, and maintained by
gradual developing potentiation of synaptic efficacy in the
ipsCAl-conCA1 circuit. By contrast, fear memory is widely
believed to involve fast potentiation of synaptic efficacy in the
synapses from CA3 to CA1 stratum radiatum®™. Therefore, these
spatiotemporally separated mechanisms within CAl at least in
the early stage of memory processing, may match the orthogonal
properties for generalization theoretical hypothesis described
previously!, thereby minimizing interference of one to the
other!®, Furthermore, it is apparent not because fear memory is
not specific or precise at this early stage while resistant to
extinction training (see Fig. le, T-box), but because generalization
is gradual developing and thus sensitive to extinction training (see
Fig. le, G-box).

A number of studies have demonstrated gradual generalization,
for which 14 d*72° or even longer!>!327:28 are required for its
full formation, for which the freezing level in G-box becomes near
equivalent to that in T-box. Theories have been developed for
understanding this time-dependent process of generalization that
may relate to systems consolidation of memory when the con-
textual components may become less specific!®?”. In contrast,
early but not full generalization within 2 d after fear conditioning
can occur in mice by the learning process in a neural circuit that
involves the mPFC, the thalamus, and the hippocampus'!. Fur-
thermore, full generalization may have occurred within 24 h if the
rats were treated with D-cycloserine, an enhancer of NMDA
receptor activity, before one-trial inhibitory avoidance training®®.
This is somewhat consistent with our present finding in which
generalization was fully developed within 24 h, likely due to pre-
exposure to T-box and 1 h later to G-box on the acclimation day,
by which NMDA receptors would have been activated, leading to
the formation of the context memories 24 h before fear con-
ditioning. Moreover, the context memories for T-box and G-box
could be linked together as a result of the temporally closed
neuronal ensembles, as suggested by a recent report and the
“allocate to link” hypothesis®>°. It seems that the linked context
memories would allow fear to be transferred (or generalized)
from T-box to G-box rapidly within 24 h. Consistent with this
assumption, without such a memory link by using the protocols
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similar as previous generalization studies described through
exposing the animals to T-box but not G-box on the acclimation
day, full development of generalization in G-box was observed by
two weeks after fear conditioning (Supplementary Fig. 11). All
together, we would like to propose a hypothesis for which the
formation of generalization is gradual but have actively rapid and
passively slow phases, likely corresponding to cellular con-
solidation and systems consolidation of memory when the con-
textual components are more or less specific. This explanation
seems consistent with clinical recommendation that exposure-
based therapy early after trauma in susceptible individuals may
produce better efficacy in reducing overgeneralization of condi-
tioned fear and prevalence of PTSD31%2,

Fear memory appears to be processed by contralateral side of
the subcortical systems such as the amygdala®® or the thalamic
PIL (see Fig. 2e—g), if used lateralization of the stimulation during
fear conditioning. In marked contrast, fear memory is likely
duplicated in bilateral CA1 regions so that either CA1 is sufficient
for specific recall, but generalization requires symmetrical activity
of bilateral CAl. Their activity history is likely to explain how
bilateral CA1 neurons are selected for developing generalization
as suggested recently?®*’, for example, hippocampal activities can
be synchronized at times between ipsCA1 and conCA1%4, Thus,
the synchronized activities at the early stage could have read-
justed the ipsCA1-conCA1 functional connectivity in the selected
bilateral CAl neurons, presumably through spike timing-
dependent plasticity mechanisms>>~>’, to enable effective gen-
eralization formation at the rapid phase.

Specificity of memory is proposed to be maintained by “pattern
separation” through the DG-CA3 circuit mechanisms including
DG adult neurogenesis over time*®(, while generalization is
suggested to occur at recall through “pattern completion” in the
CA3 recurrent system”>8. Given the present findings, the distinct
processes for generalization are expected to involve also inter-
hemispheric exchanged activities, thereby contributing to differ-
ent aspects of memory and generalization through
spatiotemporally separated dimensions. These intra-hippocampal
processes should be able to interact continuously with the cortical
and subcortical systems to enable recall more flexibly®>!1,
Because generalization and related plasticity were found to be
developed gradually over time, here rapid generalization is likely
to present an example of a process that requires “gradual internal
learning”, as proposed by multiple theories of memory®™. We
here propose that “gradual internal learning” is continuously
readjusting the functional connectivity of the neural circuits not
only for minimizing interference but also for reducing unpre-
dicted errors under varying circumstances. Our findings suggest
that rapid generalization requires “gradual internal learning” over
24 h, a process distinct from that of memory itself, which is
dependent on bilateral CA1 activities to readjust the interhemi-
spheric CA1-CAl synaptic efficacy for the selective formation
and also extinction of generalization.

Methods

Subjects. Male Sprague-Dawley rats (from Animal Center of Kunming Medical
University, Yunnan, China) and C57 mice (from Vital River Laboratory Animal
Technology Co. Ltd., Beijing, China), aged 10-12 weeks, were used. All experi-
ments were carried out in rats, except those reported in Supplementary Figs. 4-7 in
which mice were used. Animals were group housed in ventilated cages with free
access to water and food, a 12/12-h light/dark cycle, and a thermoregulated
environment. As usually, animals were randomly grouped, and more than 7 ani-
mals per group were used for behavioral study but 4-5 animals per group for
electrophysiological study. None of the animals finished experimental design was
excluded from analyses. Most of the experiments were performed by the equal
contribution authors who were not blinded to the experimental groups, but each of
they performed independent experiments. Experimental protocols were approved
by the animal ethics committee of Kunming Institute of Zoology, Chinese Acad-
emy of Sciences.
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Surgery, cannula implantation and chemicals. Using the techniques described
previously?'™, surgery was carried out under pentobarbital sodium (Sigma,

60 mg kgL, i.p.) anesthesia, medical oxygen (95% O, and 5% CO,) was supplied
through a mask, and body temperature (37 + 0.5 °C) was maintained through a
heating pad. After surgery, animals were individual housed for at least 7 d before
experiments or mentioned elsewhere.

Under the surgery conditions, stainless steel guide cannulas (26 gauges) were
implanted by using stereotaxic apparatus (RWD Life Sciences, Shenzhen, China),
according to the Paxinos and Watson Brain Atlas. Guide cannulas were designed
1 mm shorter than injection needles, and placed by 1 mm above the targeted areas,
the CA1 regions of the dorsal hippocampus using the stereotaxic coordinates:
anteroposterior (AP), —3.8 mm, mediolateral (ML) + 2.8 mm, and dorsoventral
(DV) —2.6 mm. The stereotaxic coordinates for the posterior intralaminar nuclei
(PIL) of the thalamus are AP, —=5.6 mm, ML + 2.9 mm, and DV —6.8 mm. The
guide cannulas were plugged with stylets, and affixed to the skull of the rats using
dental cement with two stainless steel screws serving as anchors.

The AMPA receptor inhibitor CNQX, the sodium channel blocker TTX, the
GABAA receptor agonist muscimol, the protein synthesis inhibitor anisomycin,
and ibotenic acid were all purchased from Sigma. Muscimol (4.38 mMol L~1)%0,
CNQX (3 mMol L) + TTX (20 pMol L% and anisomycin (0.3 mMol L1yt
were all infused at a volume of 1 pL per side through the implanted guide cannulas
by using the injection needles connecting to a syringe pump (RWD Life Sciences,
Shenzhen, China), and infused at a speed of 0.1 pL min~L.

Lesion of CA1 regions. Experimental procedures were used similar to those pre-
viously described®2. Under the surgery conditions, injection needles were posi-
tioned to the actual coordinates (AP, —3.8 mm, ML + 2.8 mm, DV —2.6 mm) for
the CALl regions of the dorsal hippocampus using stereotaxic apparatus, without
implantation of the guide cannulas. The injection needles, connected to a syringe
pump, delivered ibotenic acid (Sigma, 1 pL, 1.5 pg, dissolved in sterile saline) into
unilateral (Uni) or bilateral (Bi) CA1 regions. The animals were individual housed
for 25 d before experiments. After experiments, the lesion site was confirmed by
using histological method (see Supplementary Fig. 1).

Viral tracing. Using the techniques described previously, non-trans-synaptic
rabies viruses (RV-dG-Dsred and RV-dG-GFP, titer ~ 108 mL~!, Brain VTA Inc.,
Wuhan, China) were used to trace ipsilateral (ips) CAl-contralateral (con) CA1l
projections. Under the surgery conditions, glass micropipettes were positioned to
the targeted areas using stereotaxic apparatus: the stratum oriens or stratum
radiatum of the CA1 regions in the dorsal hippocampus (the rat: AP, =3.8 mm, ML
+2.8mm, DV -2.6 mm; the mouse: AP =-2.0 mm, ML=-1.3 mm, DV =

—1.25 mm for the stratum oriens of CA1 or —1.35 mm for the stratum radiatum of
CA1), and the midline of the dorsal hippocampal commissure (DHC) below corpus
callosum (the mouse: AP =-0.9 mm, ML =0 mm, DV =-2.0 mm). Infusion of the
viruses (1 pL in CA1 and 0.3 pL in midline) using glass micropipettes was driven by
a syringe pump at a speed of 0.1 pL min~!. The animals were individual housed in
an isolated room for 9 d. The animals were then anesthetized, and perfused with
saline followed by 4% PFA. Brains were taken from the animals, and placed in 4%
PFA overnight, and immersed in 30% sucrose in PBS. Slices were cut at 40-um
thickness using Leica VT 1000 vibratome (Leica Biosystems, German), and stained
using DAPI, and imaged using FV 1000 (Olympus, Japan) or Nikon A1l confocal
microscope (Nikon, Japan). The images were processed using Adobe Photoshop
and Image J.

TetLC expression. Under the surgery conditions described above, glass micro-
pipettes were used to inject AAV2-syn-EGFP-2A-TetLC-3flag (titer ~10'2 mL7,
from Tai Tin Bio, Ltd., Shanghai, China) into the pyramid layer of the dorsal CA1
regions (the rat: AP, =3.8 mm, ML + 2.8 mm, DV —2.6 mm), to express tetanus
toxin light chain (TetLC), which is known to block the neurotransmitter release of
the efferent projection terminals'!. Infusion of the viruses (1 uL in CA1 per side)
using glass micropipettes was driven by a syringe pump at a speed of 0.1 pL min™.
After 30 days of the virus injection, the animals were subjected to behavioral
studies.

After behavioral experiments, immunostaining and in situ hybridization were
performed. Briefly, the mice were killed and perfused with PBS and PFA. After
post-fixation in PFA at 4 °C overnight, the brains were sectioned with a cryostat
(CM1900, Leica). Brain slices were incubated with rabbit anti-VAMP2 (1:300,
Synaptic Systems) at 4 °C overnight, with biotinylated horse anti-rabbit antibody
(1:500, Vector Labs) at room temperature for 3 h and then with Cy3-conjugated
streptavidin (1:1000, Jackson ImmunoResearch) for 1h. In situ hybridization of
TetLC mRNA was performed, as described previously>®>°, Images were captured
with an epifluorescence microscope (Eclipse 80i, Nikon).

Optogenetic implantation. Both excitatory (AAV2-CaMKIIx-ChR2-EYFP) and
inhibitory (AAV2-CaMKIIa-NpHR3.0-EYFP) optogenetic tools (titer ~ 102 mL7,
from OBIO Technology, Ltd., Shanghai, China) were used to study the
ipsCAl-conCALl projections. Under the surgery conditions described above, guide
cannulas for optic fibers and virus injections were implanted, and glass micro-
pipettes via the guide cannulas injected the viruses into the pyramid layer of the
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dorsal CAl regions (the rat: AP, —3.8 mm, ML + 2.8 mm, DV —2.6 mm). Injection
of the viruses (1 pL in CA1 per side) was driven by a syringe pump at a speed of 0.1
pL min~!, The guide cannulas for insertion of optic fibers (200 pm in diameter,
from Biogene, Beijing, China) were affixed to the skull using dental cement with
two stainless steel screws serving as anchors. Thirty days after the virus injection,
the animals were subjected to behavioral studies. Before fear conditioning, the
animals were allowed to adapt to the optic fibers inserted into the implanted guide
cannulas for 3 d.

Chemogenetic manipulation. To excite the ipsCAl-conCA1 synapses for hours,
and also minimizing the excitation of cell bodies, excitatory AAV2-hsyn-hM3Dg-
mitrine (titer ~ 1012 mL™!, from OBIO Technology, Ltd., Shanghai, China) was
injected into the pyramid layer of ipsCA1 (1.5 pL; the rat: AP=-3.8 mm, ML=
—-2.8 mm, DV = -2.6 mm), while guide cannula was implanted into the stratum
oriens of conCAl (AP=-3.8 mm, ML=-2.8 mm, DV =-2.4mm). Thirty days
after the virus injection, the animals were subjected to behavioral studies. After fear
conditioning, clozapine-N-oxide (CNO, 1.5 pg, 1.5 pL) was infused into conCAl
twice (immediately after fear conditioning and 30 min before retrieval tests at 8 h
after fear conditioning) via the implanted guide cannula to excite persistently the
ipsCA1 projection terminals onto conCAl.

Experimental procedures were used similar to previously described®®. After 1 h
of the behavioral studies, the rats were anesthetized with sodium pentobarbital
(60 mgkg™!) and perfused intracardially with PBS pH 7.4 followed by 4%
paraformaldehyde (PFA). The isolated brains were post-fixed in 4% PFA overnight,
and dehydrated in 30% sucrose in PBS at 4 °C. Then the brains were sectioned (40
pm thick coronal sections) by using a vibratome. C-Fos immunostaining was
performed, as described previously. Free-floating sections were placed in a 0.01 M
PBS solution containing 5% BSA and 0.3% Triton X-100 for 1h followed by
incubation with primary antibody: rabbit anti c-Fos (1:500, Santa Cruz) overnight
at 4 °C, then washed slices for three times in PBS, followed by 2 h incubation with
secondary antibody (Donkey anti rabbit Alexa-594, 1:1000 Life Technologies) at
room temperature. Finally, the slices were washed three times, followed by
mounting and cover-slipping on microscope slides. Images were acquired by using
a confocal microscope (Nikon A1) with a 20 x objective at the same settings for all
conditions.

Electrophysiology. Using previously described techniques*!' =37, the field exci-
tatory postsynaptic potentials (fEPSP) were recorded in brain slice (in mice) or
anesthetized and freely moving rats. Brain slice: mouse brain was dissected and cut
into slices at 400 um thickness using Leica VT 1000 (Leica Biosystems), in ice-cold
artificial cerebrospinal fluid (ACSF). Before fEPSP recordings, the slices were
maintained for at least 30 min in the oxygenated (95% O, and 5% CO,) warm (37 °
C) ACSF containing (in mM) 120 NaCl, 2.5 KCl, 2 CaCl,, 2 MgSOy, 26 NaHCO;,
1.25 NaH,POy, 10 glucoses. Recording electrodes (4-6 MQ) were pulled on a
micropipette puller (Sutter Instruments, USA). Stimulating electrodes were made
by gluing together a pair of twisted Teflon-coated 90% platinum/10% iridium wires
(50-um bare diameter, 100-pum coated diameter, World Precision Instruments,
USA). Anesthetized and awake rats: with the anesthesia and surgery protocols
described above, stimulating and recording electrodes were implanted to the tar-
geted areas to find fEPSP. Both stimulating and recording electrodes were made by
gluing together a pair of twisted Teflon-coated 90% platinum/10% iridium wires.
For fEPSP study in freely moving rats, the implanted electrodes and stainless
screws serving as ground and reference were fixed to the skull with dental cement.
During recovery, the animals were handled and allowed to adapt to the recording
environment in a soundproof chamber for 3 d before experiments.

Fear conditioning. The procedures for studying contextual fear memory and
generalization were modified from those described previously!!713:41:4457,58,
Experiments were performed by using apparatuses from MED Associates Inc.,
Vermont (USA). The training box (T-box) and a non-training similar box (G-box)
were differed in sizes, floors, walls, and lights, which were placed into the similar
soundproof and ventilated chambers, and the behaviors were monitored by
infrared video system. One day before fear conditioning, rats were allowed to
acclimation to T-box and 1 h later to G-box by exploring each for 10 min. For slow
generalization study, the animals were exposed to T-box but not G-box for 10 min
on the acclimation day. On the day of fear conditioning, the rats were allowed free
exploration for 2 min, and then received 5 footshocks (0.8 mA, 2 s duration) with
averaged 2 min intervals, and returned to homecage 2 min after fear conditioning.
During a single-foot fear conditioning, all the procedures were the same, excepting
that the shock electrodes were banded by using adhesive tape directly to the front
and back of the hind right leg ankle of the rats. Retrieval tests were performed by
placing the rats into G-box first and 1 h later into T-box, both for 5 min, during
which freezing levels were recorded for scoring generalization and fear memory
through the computer system (MED Associates Inc.).

Statistical analysis. All values were reported as mean + s.e.m. Except Fig. 3d
(Student t-test) and Fig. 4d, f (repeated one-way ANOVA), repeated two-way or
two-way ANOVA was used in the other figures, followed by parameter estimates
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for control vs. treatment, and between treatments, or contrast effects for T-box vs.
G-box. The significance level was set at P < 0.05.

Data availability. The authors declare that data supporting the findings of this
study are available within the paper and its supplementary information files.
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