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Abstract

Using end-to-end models for ecosystem-based management requires knowledge of the

structure, uncertainty and sensitivity of the model. The Norwegian and Barents Seas

(NoBa) Atlantis model was implemented for use in ‘what if’ scenarios, combining fisheries

management strategies with the influences of climate change and climate variability. Before

being used for this purpose, we wanted to evaluate and identify sensitive parameters and

whether the species position in the foodweb influenced their sensitivity to parameter pertur-

bation. Perturbing recruitment, mortality, prey consumption and growth by +/- 25% for nine

biomass-dominating key species in the Barents Sea, while keeping the physical climate con-

stant, proved the growth rate to be the most sensitive parameter in the model. Their trophic

position in the ecosystem (lower trophic level, mid trophic level, top predators) influenced

their responses to the perturbations. Top-predators, being generalists, responded mostly to

perturbations on their individual life-history parameters. Mid-level species were the most vul-

nerable to perturbations, not only to their own individual life-history parameters, but also to

perturbations on other trophic levels (higher or lower). Perturbations on the lower trophic lev-

els had by far the strongest impact on the system, resulting in biomass changes for nearly

all components in the system. Combined perturbations often resulted in non-additive model

responses, including both dampened effects and increased impact of combined perturba-

tions. Identifying sensitive parameters and species in end-to-end models will not only pro-

vide insights about the structure and functioning of the ecosystem in the model, but also

highlight areas where more information and research would be useful—both for model

parameterization, but also for constraining or quantifying model uncertainty.

Introduction

Comprehensive end-to-end ecosystem models are key tools for implementation of an ecosys-

tem-based approach to management (e.g. [1,2,3,4]). These models are typically developed to
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assess our ecosystem knowledge, to study ecosystem structure and functioning, and to test eco-

system responses to human impact ([5,6]. Likewise, the ability to perform ‘what-if’ scenarios

makes ecosystem models powerful tools to determine feasible, effective and efficient options

for cross-sector ecosystem management, as well as in the field of ecosystem-based fisheries

management[7,8].

Atlantis is one such comprehensive end-to-end ecosystem model, including the natural sys-

tem from physics to fish, whales and seabirds, fishing and other human activities impacting

the ecosystem[9]. Recently, an Atlantis ecosystem model was parameterized for the Nordic

and Barents Seas (NoBa;[10]). While the model is expected to become a significant tool for

simulating human impacts and testing management strategies, a core area of use will be to

investigate how the two most important drivers in these high latitude ecosystems, climate and

fisheries, interact and impact management strategies. This model, covering an area of 4 million

km2, is spatially resolved and composed of 52 species and functional groups (hereafter referred

to as components). The processes affecting e.g. nutrient recycling, physiology, population

dynamics, distributions and species interactions are defined through a set of>3000 parame-

ters. These parameters are defined based on estimates from the local ecosystems or other, com-

parable systems, on general ecological principles, or by tuning ([10, 11]).

The Atlantis model was rated as the best ‘what if’ scenario model by [5]. However, for there

to be confidence in its specific performance for an individual system, an assessment of model

performance is required[6]. Such assessments can highlight the strengths and deficiencies of

an individual model implementation, detect conceptual or coding errors, and assess uncertain-

ties in model results to help further model development ([12, 13]. Sensitivity analyses, aiming

to quantify the relationships between model inputs (especially parameters) and the response,

are common diagnostic tools used in model development and validation. Sensitivity analyses

are used to identify critical and non-critical model parameters. Such analyses help focus efforts

around estimation and calibration of the important parameters and provide an assessment of

whether the model sensitivity reflects processes that have an impact on the dynamics of the

natural ecosystems. Sensitivity analyses can be either analytical, by manipulating the model

equations directly to establish the input-output relationships, or empirical, by measuring the

model’s response to perturbations of the inputs [12]. Furthermore, sensitivity analyses can be

classified as local or global, depending on how much of the parameter space is sampled to esti-

mate the response. Local methods often explore the model sensitivity to parameter spaces

around the most likely point of model operation. Global methods explore model sensitivity

across a wide range of parameters in the model system. Due to the many feedback mechanisms

present in ecosystem models (e.g. through species interactions), model sensitivity to changes

in combinations of parameters may reflect both additive and non-additive effects enhancing

or dampening model responses to perturbations.

Despite the growing numbers of ecosystem models (> 500 marine ecosystem models are

implemented around the world; http://sirs.agrocampus-ouest.fr/EcoBase/, http://atlantis.cmar.

csiro.au/), sensitivity analyses are rarely performed, particularly for models that include higher

trophic levels. This is due to the long run time of complex ecosystem models, for which the

computational cost of sensitivity analyses becomes prohibitively high for many of the global

analytical approaches developed to date. In response, smaller searches are more typical—for

example, [13] undertook a smaller, local sensitivity analysis in their paper, concluding that the

growth rate of large zooplankton was the most sensitive to perturbations.

Here we present a sensitivity analysis of the NoBa Atlantis model. To ensure a manageable

run time (the model run time is ~13 hours for a 55-year simulation), we took a local and empir-
ical approach. We perturbed the parameterization of recruitment, mortality, prey consump-

tion and growth of 9 interacting species and functional groups in the modelled ecosystem.

Sensitivity study of an Atlantis end-to-end model of the Nordic and Barents Seas
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These 9 species and functional groups are recognized by ecologists as key species and groups

in the dynamics of these marine ecosystems; 4 groups of zooplankton that convert primary to

secondary production; 3 species of pelagic fish that are typical wasp-waist species holding key

positions in trophic transfer from lower to higher trophic levels, and the 2 dominating top

predators in terms of biomass and consumption; cod and minke whales[14]. Strong interac-

tions have been observed between these groups. The abundance of pelagic fish has varied dra-

matically over the last four decades, particularly due to repeated collapses in the capelin stock

[15]. Zooplankton and pelagic fish abundance are inversely correlated, suggesting a top-down

regulation of zooplankton by pelagic fish[16]. However, the strength of this interaction has

weakened with the recent warming of the system ([16] and references therein). In this study,

however, we are keeping the physics constant, reflecting a cold year (1981). Reduced abun-

dances of pelagic fish have also impacted the top predators of the ecosystem—including

recruitment, growth and mortality of cod, marine mammals and seabirds[14]. Hence, we may

expect that the model system may be more sensitive to perturbations affecting the pelagic fish

than the lower or higher trophic levels. Furthermore, interspecific resource competition may

also occur between pelagic fish species[17] and between top predators such as cod and marine

mammals[18]. Thus, a sensitivity analysis testing model responses to perturbations of these

core ecosystem components is an important means of assessing model sensitivity to parame-

terization of some of the key players in the dynamics of this ecosystem. As NoBa Atlantis is

built particularly for testing climate and fisheries scenarios, confidence in and transparency of

the model behaviour with respect to these key components and interactions is of critical

importance. This exercise will therefore also help provide the information needed to improve

the level of trust of the model by managers who may need its output as a source of information

for future planning.

In the sensitivity analysis, the parameters were first perturbed one-by-one, thereafter in

combinations, to explore additive and non-additive effects. The aim of this study was to iden-

tify sensitive and insensitive parameters, species and functional groups, to i) identify the

parameter uncertainties that the model output is most sensitive to, and ii) to explore how

model system responses are linked to the food web position of the perturbed species.

Materials and methods

The NoBa Atlantis end-to-end model covers the Nordic and Barents Sea (Fig 1), where the

Nordic seas include the Greenland, Iceland and Norwegian Sea. The Norwegian and Barents

Seas are dominated by contrasting water masses. In the Norwegian Sea, the warm, saline

(>35.1) Norwegian Atlantic Slope Current flows northwards along the shelf edge, side-by-side

with the fresher Norwegian Coastal Current[19]. Upon reaching the eastern entrance to the

Barents Sea, the Norwegian Coastal Current and a branch of the Slope Current enters the

Barents Sea. The remainder of the Slope Current heads farther north towards the Arctic. Cold

Arctic Water enters the Barents Sea from the north[20]. This Arctic water mass is separated

from the Atlantic water by the strong Polar Front (Fig 1). South of the Polar Front, the water-

masses represents the warm and saline Atlantic water, whereas the watermasses north of the

Polar Front are dominated by Arctic Water. Given the contrasting physical conditions in the

two water masses, the ecology of the area is diverse and productive[21], but closely linked

through seasonal migrations. Both the Norwegian and Barents seas ecosystems have a limited

set of key species, including zooplankton, small pelagic fish, large demersal fish and marine

mammals, which dominate in biomass and trophic transfer, and that fluctuate significantly in

abundance (e.g. [22,23,24].

Sensitivity study of an Atlantis end-to-end model of the Nordic and Barents Seas
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Model description

NoBa Atlantis was set up on a grid with 60 polygons covering the Nordic and Barents Seas (Fig

1). The polygons were defined based on expert knowledge of the topography, hydrographic

characteristics and species distributions ([10]). They were designed to have high internal

homogeneity in physical and biological properties and high heterogeneity between polygons.

Higher spatial resolution was chosen for the Barents Sea to reflect the greater spatial variability

in bathymetry of this shelf sea compared to the deeper Norwegian Sea (Fig 1).

Each polygon has up to seven depth levels depending on the mean maximum depth, plus

one sediment level. The depth levels are defined as 0–50 m, 50–150 m, 150–250 m, 250–375 m,

375–500 m, 500–1000 m and>1000 m. The radiation (Wm-2) and day length is computed

within each box based on longitude and latitude and time of year. NoBa Atlantis is run offline

with interpolated temperature, salinity and volume fluxes from a Regional Ocean Modelling

Fig 1. NoBa model domain. The model domain of the Nordic and Barents seas model, including the bathymetry.

https://doi.org/10.1371/journal.pone.0210419.g001
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System (ROMS;[25]. The initial values of nutrients and phytoplankton are derived from the

NORWEgian ECological Ocean Modeling system (NORWECOM: [26, 27]).

NoBa Atlantis includes 52 components—49 species/functional groups, representing all tro-

phic levels from bacteria to top predators and 3 detritus groups (Table 1, note scientific names

for all the species/groups in the model are listed herein). The components resolved to the species

level (N = 26) include the commercially and ecologically important key species (e.g. Atlantic

mackerel, Norwegian spring spawning herring and Northeast Atlantic cod) and species that are

potentially vulnerable to changes in climate or fisheries (e.g. polar bears and beaked redfish).

The components resolved as functional groups (N = 23), represent groups of species (e.g. small

pelagics, other demersals) with similar life history, diet and horizontal distribution [10]. The

species and groups are connected through a diet matrix, where the maximum potential fraction

of prey available for the predator is defined (the realized diet is further determined by spatio-

temporal overlap of predator and prey, gape limitation and potentially by habitat dependency

and state). The invertebrates are represented as biomass pools, whereas the vertebrates include

information about numbers and weights in each polygon at each depth level. All vertebrates are

divided into 10 or fewer age classes, depending on the longevity of the species. Atlantis reports

weights, numbers and distribution for each of the age classes. Vertebrate weight is divided into

structural and reserve weight, where the structural weight represents bones and hard tissue;

reserve weight is soft-tissue weight (including fats and gonads). The components change their

size depending on availability of food, spawning, preference of growth over spawning, etc. [28].

The reserve weight is coupled to natural mortality and recruitment, e.g. if the components

reserve weight drops below a certain limit, spawning may be skipped. Starvation can occur,

leading to lower reserve weights and increasing natural mortality.

The initial values of NoBa Atlantis resemble the ecosystem situation in the early 1980s, with

a cold ocean climate, low primary and secondary production, but abundant pelagic and

demersal fish[29], [15]. The model was tuned to be stable and have all components within rea-

sonable limits after a spin-up time of 25 years [10]. Here, ‘reasonable limits’ meant individual

weights and numbers staying within 0.5–1.5 times the initial level when repeating oceano-

graphic input for one year, thus excluding any impact of climatic variation. This provided a

stable initial state. Also, the diets were tuned to reflect empirical knowledge [30] and to pro-

duce stable runs. The model was run without explicit fisheries pressure on the components,

but the fisheries mortality was accounted for in the quadratic mortality parameter.

Key parameters and species for perturbations

[12] identified four of the most important processes in Atlantis; growth rate, recruitment, con-

sumption rate and quadratic mortality (hereafter; mortality) rates. The equations for these pro-

cesses are given below, and the specific parameters that have been perturbed are indicated in bold.

The maximum growth rate (mum_XXX) rate in NoBa was calculated as the maximum

weight the animal can gain per day following [28]. In NoBa, weight-at-age observations from

assessment reports were used for the commercial components, whereas literature, grey litera-

ture and expert knowledge made up the basis for the non-commercial components [10]. Maxi-

mum growth rate at age was then calculated as the necessary weight gain per day to allow the

individual to achieve the appropriate weight gain before moving to the next cohort.

The grazing term in NoBa was represented by the equation, again following [11]:

Grprey ¼
B � C � B�prey

1þ
C�
P

iðEi �B
�
preyÞ

mum

ð1Þ
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Table 1. Overview over functional groups and species included in NoBa Atlantis.

Full name Abbreviation Species included/latin names

Polar Bear POB Ursus maritimus, Phipps 1774

Killer whale KWH Orcinus orca, Fitzinger 1860

Sperm whale SWH Physeter macrocephalus, Linnaeus 1758

Humpback whale HWH Megaptera novaeangliae, Borowski 1781

Minke whale MWH Balaenoptera acutorostrata, Lacepede 1804

Fin whale FWH Balaenoptera physalus, Linnaeus 1758

Bearded seal BES Erignathus barbatus, Erxleben 1777

Harp seal HAS Pagophilus groenlandicus, Erxleben 1777

Hooded seal HOS Cystophora cristata, Erxleben 1777

Ringed seal RIS Phoca hispida, Schreber 1775

Arctic sea birds SBA Uria lomvia, Linnaeus 1758

Boreal sea birds SBB Fratercula arctica, Linnaeus 1758

Long rough dab LRD Hippoglossoides platessoides, Fabricius 1780

Greenland halibut GRH Reinhardtius hippoglossoides, Walbaum 1792

Mackerel MAC Scomber scombrus, Linnaeus 1758

Haddock HAD Melongrammus aeglefinus, Linnaeus 1758

Saithe SAI Pollachius virens, Linnaeus 1758

Redfish RED Beaked redfish Sebastes mentella, Travin 1951

Blue whiting BWH Micromesistius poutassou, A. Risso 1827

Norwegian Spring Spawning

herring

SSH Clupea harengus, Linnaeus 1758

Northeast Arctic cod NCO Gadus morhua, Linnaeus 1758

Polar cod PCO Boreogadus saida, Lepechin 1774

Capelin CAP Mallotus villosus, Müller 1776

Sharks, other SHO Squalus acanthias, Linnaeus 1758

Demersals, other DEO Ling (Molva molva, Linnaeus 1758), and tusk (Brosme brosme, Linnaeus 1758)

Pelagic large PEL Atlantic salmon (Salmo salar, Linnaeus 1758)

Pelagic small PES Lumpsucker (Cyclopterus lumpus, Linnaeus 1758) and Norway pout (Trisopterus esmarkii, Nilsson 1855)

Redfish, other REO Golden redfish: Sebastes norvegicus, Ascanius, 1772

Demersal, other large DEL Monkfish (Lophius piscatorius, Linnaeus 1758), Atlantic halibut (Hippoglossus hippoglossus, Linnaeus 1758), Atlantic

wolffish (Anarhichas lupus, Linnaeus 1758), Northern wolffish (Anarhichas denticulatus, Krøyer 1845) and spotted

wolffish (Anarhichas minor, Olafsen 1772).

Flatfish, other FLA European plaice (Pleuronectes platessa, Linnaeus (1758)), common dab (Limanda limanda, Gottsche (1835))
Skates and rays SSK Arctic skate (Amblyraja hyberborea, Collett, 1879), thorny skate (Amblyraja radiate, Donovan, 1808), sailray (Rajella

lintea, Fries, 1838), thornback ray (Raja clavata Linnaeus, 1758), round skate (Rajella fyllae Lütken, 1887) and spinytail

skate (Bathyraja spinicauda Jensen, 1914).

Mesopelagic fish MES Pearlside (Maurolicus muelleri, Cocco 1838) and glacier lanternfish (Benthosema glaciale, J.C.H. Reinardt, 1837)

Prawn PWN Pandalus borealis (Krøyer 1838)

Cephalopods CEP Gonatus fabricii (Lichtenstein, 1818)

Red king crab KCR Paralithodes camtschaticus (Tilenau, 1815)

Snow crab SCR Chionoecetes opilio (Fabricius, 1788)

Gelatineous zooplankton ZG Aurelia aurita (Linnaeus, 1758), cyanea capillata (Linnaeus, 1758)

Large zooplankton ZL Thysanoessa inermis (Krøyer, 1846)

Medium zooplankton ZM Calanus finmarchicus (Gunnerus, 1770)

Small zooplankton ZS Small copepods, oncaea, pseudocalanus, (Oithona similis, Claus (1866))

Dinoflagellates DF Phaeocystis pouchetii (Lagerheim, 1896) and Emiliania huxleyii (Lohmann)

Small phytoplankton PS Flagellates

Large phytoplankton PL Diatoms

(Continued)
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Where

B�prey ¼ pprey;CX � doverlap � dhabitat � dsize � Bprey ð2Þ

was the available biomass of the prey after all refuge (d) was taken into account [31]. pprey,CX

was the availability (range between 0 and 1) of the prey to the predator CX. B was the biomass

of predator CX and Ei is the assimilation efficiency of the predator from the different groups.

In the denominator, the growth rate of the predator, mum, was used.

Mortality in NoBa Atlantis was represented by:

MCX ¼ ððmLþmQ � NumCX þmStÞ � NumCXÞ ð3Þ

where mL was the linear mortality term and mQ the quadratic mortality (density-dependent)

term for component CX [31]. The mSt term included mortality due to starvation for verte-

brates. NumCX represented the numbers in an age group.

The recruitment in NoBa followed one of two equations [31]; either a constant recruitment

per reproducing adult per year (KDENR):

Rc ¼ KDENR ð4Þ

or a modified Beverton-Holt recruitment function described by:

Rc ¼
Sp � BHa

Biomþ BHb
ð5Þ

where BHa was the Beverton-Holt alpha, BHb the Beverton-Holt beta, Sp the spawn produced

and Biom the total biomass of the species [31].

To limit the number of runs and computational cost we only perturbed the parameters of

key species and functional groups in the Barents Sea system, including 4 groups of zooplank-

ton, 3 species of pelagic fish (capelin, herring and polar cod) and the dominant top predators

Northeast Atlantic cod and minke whales. For each vertebrate species, all four key parameters

(Table 2) were perturbed in the model. For zooplankton, we perturbed the same parameters

except recruitment, as the invertebrate components in Atlantis represented biomass pools and

did not have the same recruitment functions as the vertebrate components. Of the vertebrate

key species, only minke whales used the constant recruitment (Eq 4). Polar cod, herring, cape-

lin and cod all used the Beverton-Holt recruitment function (Eq 5), however herring, capelin

and polar cod had lognormal variation added to their Beverton-Holt recruitment function.

Table 1. (Continued)

Full name Abbreviation Species included/latin names

Predatory benthos BC Echinoderms, sea urchins, annelids and anemones

Detrivore benthos BD Selected annelids, echinoderms

Benthic filter feeders BFF Selected molluscs, barnacles, moss animals, anemones (Tridonta borealis, Schumacher (1817))

Sponges SPO Geodia baretti (Bowerbank, 1858)

Corals COR Lophelia pertusa (Linnaeus, 1758)

Pelagic bacteria PB

Benthic bacteria BB

Refractory detritus DR

Carrion DC

Labile detritus DL

https://doi.org/10.1371/journal.pone.0210419.t001
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As the model did not include fisheries directly, the quadratic mortality term was perturbed,

as this then also represented mortality due to loss through fisheries.

The parameters perturbed in this study are among those usually most heavily tuned when

setting up an Atlantis model. For the NoBa model, the growth, consumption and mortality

rates were initially set as close to observed values as possible [10]. However, while the same

was carried out for recruitment, recruitment is typically highly variable, and thus subject to

higher possible error [10].

In all runs but four, the parameters were changed +/- 25%. Mortality rate differed between

juvenile and adult stages and between species. Consumption and growth rate were resolved at

each age class. Thus, when varying parameters resolved at age-class stage, all age classes were

equally perturbed at the same time. These parameters were first varied one-at-a-time (OAT;

N = 68 runs). From these runs, we defined a selection of combined parameter perturbations

based on the biomass changes of all groups in the model (N = 36 runs, further described

below).

A parameter change of +/- 25% is well within observed natural levels of variation (e.g. [14,

22, 32]. It has to be emphasized that the natural levels of variation are realized levels and can-

not be directly compared to the changes applied on the parameters. The scope of this sensitiv-

ity analysis was to identify where the model response to a given perturbation is particularly

strong, hence the actual size of the perturbation may be less relevant. However, to test how the

model responded to extreme perturbations, we mimicked some extremes in observed values

(e.g.[14, 22]: i) Increasing herring recruitment by 230%; ii) decreasing herring recruitment by

90%; iii) increasing growth rate of cod by 70% and iv) decreasing growth rate of cod by 39%.

The differences in herring recruitment was calculated based on Fig 9 in [22], where numbers

of recruits for the period 1981–1996 was extracted, and the average of the timeseries, the mini-

mum and maximum year was used to find the two extremes. The changes to the growth rates

of cod were calculated based on the annual weight gain of cod in Fig 8 in [14]. Finally, one con-

trol run was performed with no parameter variations. All simulations were initiated at the

same biomass levels and experienced the same number of years in the spin up period.

All experiments were run for a length of 55 years with temperature, salinity and volume

fluxes for one year (1981) looped for the whole simulation period to maintain a stable environ-

ment throughout the experiments. This particular year represents a cold year in the system.

Thus, the simulation experiments were not expected to reproduce the observed development

of the ecosystems and its components, as these had gone through a consistent warming

impacting both ecosystem structure and function[33, 34, 35]. The ability to reproduce the eco-

system development over time will be the focus of a separate skill assessment (following

among other the methods of[6]. For each run, the average biomasses over the last 10 years of

the simulations were calculated. A spin-up time of 25 years was used [10] and the model out-

put was stable for roughly 20 years before the results were extracted.

To assess the effects of parameter perturbations, we calculated an impact factor for each run

according to the magnitude of the change in absolute biomass of the key species compared to

the control run. The impact factor was calculated by first splitting the changes in the average

Table 2. Overview of the perturbed parameters.

Parameter perturbed Parameter description

mum_XXX The maximum growth (in weight) gained per day

BHa The slope in the Beverton-Holt recruitment function

CCX The consumption rate of consumer CX

mQCX The quadratic mortality term for component CX

https://doi.org/10.1371/journal.pone.0210419.t002
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biomass of each species into four categories: no-impact, low-impact, medium-impact and

high-impact, depending on the magnitude of the biomass change. These four categories were

given a weight accordingly to the category (Table 3). The impact factor was then calculated as

the mean of the weights of all species within each simulation.

For the combination runs, the runs were paired based on their impact factor. High-impact

runs were paired with both high-impact and low-impact runs, and low-impact runs were

paired with both high-impact and low-impact runs from each group of parameters (Table 4).

The reasoning behind the pairing of parameter settings was to evaluate possible additive and

non-additive effects that would evolve from these combinations.

In addition to these 28 combination runs (run 77–104, Table 4), 8 runs with different com-

binations of high-impact and low-impact on the key species alone were performed (run 69–76,

Table 4). In these 8 runs exclusively, the response in biomass for the key species was taken into

account when pairing the parameter settings.

To assess whether the responses to combined parameter perturbations were additive or

non-additive, we followed the approach used by [36]. A species response was considered addi-

tive if the biomass change of the component in the combined run equalled (within ± 1%) the

sum of biomass change when the parameters were perturbed separately, i.e.

DP1P2 � ðDP1 þ DP2Þ < 0:01 ð6Þ

Here, ΔPx represented biomass changes for a specific component in one of the OAT runs

compared to the control run, whereas ΔP1P2 represented biomass changes for the same com-

ponent in the combined simulation compared to the control run. Responses were defined as

non-additive if the biomass change differed (more than ± 1%) from the pair of single per-

turbed parameter runs, i.e.

DP1P2 � ðDP1 þ DP2Þ > 0:01 ð7Þ

For the additive and non-additive effects, key species as well as all other components (mam-

mals, birds, fish, lower trophic levels, benthos and bacteria) were examined. The non-additive

effects were furthermore identified as either antagonistic or synergistic, depending on the bio-

mass change for the combined run being smaller or higher than the sum of biomass change,

when parameters were perturbed separately, respectively:

absðDP1P2Þ < absðDP1 þ DP2Þ ð8Þ

absðDP1P2Þ > absðDP1 þ DP2Þ ð9Þ

All calculations and figures were produced with R (R Development Core Team, 2008).

Results

In total, 104 simulations were performed. In 66 runs, one or more of the key species/groups

experienced changes in biomass > 20%. On the other end, only 3 simulations gave responses

Table 3. Categories of runs according to the absolute change in biomass compared to the control run.

Absolute change in biomass Category Impact factor

0–5% No impact 1

5–10% Low impact 2

10–20% Medium impact 3

>20% High impact 4

https://doi.org/10.1371/journal.pone.0210419.t003
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Table 4. Overview of runs and parameter changes.

Sim.

name

Description Parameter pert. Original value Change

Run 00 Control run - - -

Run 01 Increase growth rate for cod mum_NCO 160, 54, 102, 180, 214, 228, 228, 264, 270, 270 25%

Run 02 Decrease growth rate for cod mum_NCO 160 .0, 54.0, 102.0, 180.0, 214.0, 228.0, 228.0, 264.0, 270.0,

270.0

-25%

Run 03 Increase growth rate for herring mum_SSH 1.20, 1.80, 2.90, 1.40, 1.80, 1.10, 0.80, 0.60, 0.80, 0.20 25%

Run 04 Decrease growth rate for herring mum_SSH 1.20, 1.80, 2.90, 1.40, 1.80, 1.10, 0.80, 0.60, 0.80, 0.20 -25%

Run 05 Increase growth rate for polar cod mum_PCO 2.40, 0.60, 0.45, 0.20, 0.20, 0.20, 0.20, 0.20, 0.40, 0.40 25%

Run 06 Decrease growth rate for polar cod mum_PCO 2.40, 0.60, 0.45, 0.20, 0.20, 0.20, 0.20, 0.20, 0.40, 0.40 -25%

Run 07 Increase growth rate for capelin mum_CAP 0.33, 0.25, 0.27, 0.28, 0.28 25%

Run 08 Decrease growth rate for capelin mum_CAP 0.33, 0.25, 0.27, 0.28, 0.28 -25%

Run 09 Increase growth rate for minke whales mum_MWH 1�105, 2�104, 2�104, 2�104, 2�104, 2�104, 8�103, 8�103, 8�103,

8�103
25%

Run 10 Decrease growth rate for minke whales mum_MWH 1�105, 2�104, 2�104, 2�104, 2�104, 2�104, 0.8�104, 0.8�104,

0.8�104, 0.8�104
-25%

Run 11 Decrease growth of large zooplankton Mum_ZL 0.076 -25%

Run 12 Decrease growth of medium zooplankton Mum_ZM 0.1 -25%

Run 13 Decrease growth of small zooplankto Mum_ZS 3.55 -25%

Run 14 Decrease growth of gelatineous zooplankton Mum_ZG 0.02 -25%

Run 15 Increase growth of large zooplankton Mum_ZL 0.076 25%

Run 16 Increase growth of medium zooplankton Mum_ZM 0.1 25%

Run 17 Increase growth of small zooplankton Mum_ZS 3.55 25%

Run 18 Increase growth of gelatineous zooplankton Mum_ZG 0.02 25%

Run 19 Decrease cod consumption C_NCO 90, 110, 250, 400, 550, 1250, 1600, 1900, 2000, 2300 -25%

Run 20 Increase cod consumption C_NCO 90, 110, 250, 400, 550, 1250, 1600, 1900, 2000, 2300 25%

Run 21 Increase herring consumption C_SSH 2.8, 6.9, 13.4, 16.5, 20.4, 22.9. 24.6, 25.98, 27.90, 28.2 25%

Run 22 Decrease herring consumption C_SSH 2.8, 6.9, 13.4, 16.5, 20.4, 22.9, 24.6, 25.98, 27.90, 28.2 -25%

Run 23 Increase capelin consumption C_CAP 1.5, 3, 4, 6, 8 25%

Run 24 Decrease capelin consumption C_CAP 1.5, 3, 4, 6, 8 -25%

Run 25 Increase polar cod consumption C_PCO 3, 1.3, 2.03, 2.6, 2.5, 2.7, 3.2, 3.9, 4.8, 5.6 25%

Run 26 Decrease polar cod consumption C_PCO 3, 1.3, 2.03, 2.6, 2.5, 2.7, 3.2, 3.9, 4.8, 5.6 -25%

Run 27 Increase minke whale consumption C_MWH 7.9�105, 8.9�105, 1�106, 1.1�106, 1.2�106, 1.3�106, 1.4�106,

1.4�106, 1.5�106, 1.5�106
25%

Run 28 Decrease minke whale consumption C_MWH 7.9�105, 8.9�105, 1�106, 1.1�106, 1.2�106, 1.3�106, 1.4�106,

1.4�106, 1.5�106 1.5�106
-25%

Run 29 Decrease consumption by large zooplankton C_ZL 0.2 -25%

Run 30 Decrease consumption by medium zooplankton C_ZM 0.4 -25%

Run 31 Decrease consumption by small zooplankton C_ZS 0.4 -25%

Run 32 Decrease consumption by gelatineous zooplankton C_ZG 0.5 -25%

Run 33 Increase consumption by large zooplankton C_ZL 0.2 25%

Run 34 Increase consumption by medium zooplankton C_ZM 0.4 25%

Run 35 Increase consumption by small zooplankton C_ZS 0.4 25%

Run 36 Increase consumption by gelatineous zooplankton C_ZG 0.5 25%

Run 37 Increase cod recruitment Bhalpha_NCO 3.00�1011 25%

Run 38 Decrease cod recruitment Bhalpha_NCO 3.00�1011 -25%

Run 39 Increase capelin recruitment Bhalpha_CAP 1.50�1010 25%

Run 40 Decrease capelin recruitment Bhalpha_CAP 1.50�1010 -25%

Run 41 Increase herring recruitment Bhalpha_SSH 7.00�107 25%

Run 42 Decrease herring recruitment Bhalpha_SSH 7.00�107 -25%

(Continued)
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Table 4. (Continued)

Sim.

name

Description Parameter pert. Original value Change

Run 43 Increase polar cod recuritment Bhalpha_PCO 4.30�108 25%

Run 44 Decrease polar cod recruitment Bhalpha_PCO 4.30�108 -25%

Run 45 Increase minke whale recruitment KDENR_MWH 0.45 25%

Run 46 Decrease minke whale recruitment KDENR_MWH 0.45 -25%

Run 47 Increase cod mortality jmQ_NCO/

mQ_NCO

1.48�10−9, 5.48�10−9 25%

Run 48 Decrease cod mortality jmQ_NCO/

mQ_NCO

1.48�10−10, 5.48�10−9 -25%

Run 49 Increase herring mortality jmQ_SSH/

mQ_SSH

2.47�10−13, 2.11�10−13 25%

Run 50 Decrease herring mortality jmQ_SSH/

mQ_SSH

2.47�10−13, 2.11�10−13 -25%

Run 51 Increase capelin mortality jmQ_CAP/

mQ_CAP

1.48�10−18, 1.1�10−22 25%

Run 52 Decrease capelin mortality jmQ_CAP/

mQ_CAP

1.48�10−18, 1.1�10−22 -25%

Run 53 Increase polar cod mortality jmQ_PCO/

mQ_PCO

1.48�10−13, 5.48�10−13 25%

Run 54 Decrease polar cod mortality jmQ_PCO/

mQ_PCO

1.48�10−13, 5.48�10−13 -25%

Run 55 Increase minke whale mortality jmQ_MWH/

mQ_MWH

9.49�10−7, 7.48�10−8 25%

Run 56 Decrease minke whale mortality jmQ_MWH/

mQ_MWH

9.49�10−7, 7.48�10−8 -25%

Run 57 Decrease mortality of large zooplankton mQ_ZL 8.00�10−10 -25%

Run 58 Decrease mortality of medium zooplankton mQ_ZM 2.50�10−8 -25%

Run 59 Decrease mortality of small zooplankton mQ_ZS 6.00�10−8 -25%

Run 60 Decrease mortality of gelatineous zooplankton mQ_ZG 4.50�10−8 -25%

Run 61 Increase mortality of large zooplankton mQ_ZL 8.00�10−10 25%

Run 62 Increase mortality of medium zooplankton mQ_ZM 2.50�10−8 25%

Run 63 Increase mortality of small zooplankton mQ_ZS 6.00�10−8 25%

Run 64 Increase mortality of gelatineous zooplankton mQ_ZG 4.50�10−8 25%

Run 65 Increase growth rate of cod Mum_NCO 160, 54, 102, 180, 214, 228, 228, 264, 270, 270 70%

Run 66 Increase recruitment of herring BHalpha_SSH 7.00�107 230%

Run 67 Decrease growth rate of cod Mum_NCO 160, 54, 102, 180, 214, 228, 228, 264, 270, 270 39%

Run 68 Decrease recruitment of herring BHalpha_SSH 7.00�107 90%

Run 69 Decrease consumption and mortality for cod Run 19 + Run 48

Run 70 Decrease consumption for cod + decrease recruitment of

capelin

Run 19 + Run 40

Run 71 Decrease recruitment of capelin and herring Run 40 + Run 42

Run 72 Decrease minke whale mortality + decrease capelin growth Run 56 + Run 8

Run 73 Decrease consumption of capelin + decrease mortality of

cod

Run 24 + Run 48

Run 74 Decrease growth rate of polar cod and of capelin Run 6 + Run 8

Run 75 Decrease growth rate of minke whales + decrease

consumption for cod

Run 10 + Run 19

Run 76 Decrease mortality of cod + decrease recruitment of

capelin and herring

Run 48 + Run 71

Run 77 Increase C_ZS + decrease mum_ZL Run 35 + run 11

(Continued)
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in the key species/groups below 5%. Of the 66 runs with the strongest impact on the key spe-

cies/groups (i.e., one or more species/groups with biomass change > 20%), 39% were com-

bined runs, and 42% included perturbations on one of the zooplankton components. The 15

runs with the highest impact factor all included parameter perturbations on the zooplankton

level.

System impact of parameter perturbations

The importance of each parameter was assessed based on the impact factor for each simulation

(Fig 2). The single parameter change that gave the lowest response in the ecosystem, was

decreasing the polar cod mortality (Fig 2: the lowest red dot). Decreasing the growth rate

parameter of large zooplankton gave the highest response in the ecosystem (Fig 2: uppermost

grey triangle). Mortality and recruitment parameter perturbations (Fig 2; red and blue marks)

Table 4. (Continued)

Sim.

name

Description Parameter pert. Original value Change

Run 78 Increase C_ZS+

decrease bhalpha_MHW

Run 35 + run 46

Run 79 Increase C_ZS + increase mQ_NCO Run 35 + run 47

Run 80 Decrease mum_ZL+

decrease Bhalpha_MWH

Run 11+ run 46

Run 81 Decrease mum_ZL+increase mQ_NCO Run 11 + run 47

Run 82 Decrease Bhalpha_MWH+

increase mQ_NCO

Run 36 + run 35

Run 83 Decrease mum_SSH+increase C_ZS Run 4 + run 35

Run 84 Decrease mum_SSH+

decrease Bhalpha_MWH

Run 4 + run 46

Run 85 Decrease mum_SSH+decrease mum_ZL Run 4 + run 11

Run 86 Decrease mum_SSH+increase mQ_NCO Run 4 + run 47

Run 87 Increase C_PCO+increase C_ZS Run 25 + run 35

Run 88 Increase C_PCO+

decrease Bhalpha_MWH

Run 25 + run 46

Run 89 Increase C_PCO+decrease mum_ZL Run 25 + run 11

Run 90 Increase C_PCO+increase mQ_NCO Run 25 + run 47

Run 91 Increase Bhalpha_CAP+increase C_ZS Run 39 + run 35

Run 92 Increase Bhalpha_CAP+decrease Bhalpha_MWH Run 39 + run 46

Run 93 Increase_Bhalpha_CAP+decrease mum_ZL Run 39 + run 11

Run 94 Increase Bhalpha_CAP+increase mQ_NCO Run 39 + run 47

Run 95 Decrease mQ_PCO+increase C_ZS Run 54 + run 35

Run 96 Decrease mQ_PCO+decrease Bhalpha_MWH Run 54 + run 46

Run 97 Decrease mQ_PCO+decrease mum_ZL Run 54 + run 11

Run 98 Decrease mQ_PCO+increase mQ_NCO Run 54 + run 47

Run 99 Increase C_PCO+decrease mum_SSH Run 25 + run 4

Run 100 Increase C_PCO+

increase Bhalpha_CAP

Run 25 + run 39

Run 101 Increase C_PCO+decrease mQ_PCO Run 25 + run 54

Run 102 Decrease mum_SSH+

increase Bhalpha_CAP

Run 4 + run 39

Run 103 Decrease mum_SSH+decrease mQ_PCO Run 4 + run 54

Run 104 Increase Bhalpha_CAP+decrease mQ_PCO Run 39 + run 54

https://doi.org/10.1371/journal.pone.0210419.t004
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had the lowest impact on the system and gave low response rates for a large number of model

components. Perturbing consumption rate for the top and mid-trophic level species (green

squares and circles) gave small responses, hence low impact factors. However, perturbing the

consumption rate for the zooplankton (green triangles) resulted in changing biomasses for

several components, causing a higher impact factor at the system level. Perturbing the growth

rate parameter had, as for the consumption rates, a larger impact when performed at the zoo-

plankton level (Fig 2; grey triangles), compared to at mid- and top-trophic levels (Fig 2; grey

squares and circles). The first 8 combined parameter perturbations (Fig 2; orange diamonds),

Fig 2. Impact factor. The figure shows the impact factor of all the simulations. The impact factor indicates how many species experience a change in

the biomass and is weighted according to the magnitude of the impact. The experiments are color-coded according to which parameter is tuned,

where grey is growth rate (Growth), green is consumption rate (Cons), red is mortality rate (Mort), blue is recruitment (Rec), dark blue are the

extreme (Extr) parameter changes, and orange represents combination runs (Comb). In addition, the shape of the dot indicates which trophic level

that has been perturbed. Triangles represents perturbations at zooplankton level, squares at top predator level, circles at mid-level and diamonds

represents combined runs.

https://doi.org/10.1371/journal.pone.0210419.g002
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including different combinations of perturbing mortality of cod, recruitment of capelin and

growth rate parameter of minke whales, resulted in intermediate effects on top and mid-tro-

phic level key species. The last 28 combination runs (Fig 2; orange diamonds) were parameter

combinations that represented simulations with both low and high impact factor for a particu-

lar parameter (Table 4). The strongest responses were associated with perturbing the con-

sumption rate of small zooplankton and growth rate parameter of large zooplankton. Of the 15

runs that gave the strongest impacts, 10 were combined runs, all including at least one pertur-

bation on a zooplankton level.

Species responses and sensitivity to parameter perturbations

There were large variations among species and groups in strength of responses to the different

perturbations, and thus how sensitive the species and groups were to the parameterization of the

key species/groups in the model system. Fig 3 shows the biomass changes in all species/groups

across the 104 runs. Marine mammals and seabirds generally responded weakly to parameter per-

turbations, except for killer whales who showed relatively large biomass changes (> ± 20%) in 25

runs. The killer whale responses, which were all indirect responses as the parametrization of killer

whales were not perturbed, were also stronger than the responses in minke whales, which were

directly perturbed. Among the fish, the strongest responses were found in the pelagic fish; capelin,

polar cod and herring. Of the non-perturbed fish components, there were large changes in saithe,

haddock and long rough dab; with the responses of these three species having a correlation>0.86.

These fish frequently experienced biomass changes>20%.

The non-perturbed lower trophic levels generally experienced a stronger change in average

biomass in a larger fraction of the runs compared to those seen in higher trophic levels. Among

these, squid, prawns, carnivore benthos and sponges showed the weakest responses to the per-

turbations, whereas phytoplankton, red king crab and bacteria had the strongest responses to

the perturbations. The strong responses seen in red king crab and bacteria is explained by pred-

ator-prey relationship between these two components and the zooplankton components.

The perturbations to the zooplankton level in isolation or in combination caused high

impact factors (Fig 2; triangles for OAT perturbations). The high effects of these perturbations

trickled through almost other all components of the foodweb at all levels in the system.

Additive and non-additive effects

Whether responses to combined perturbations were additive or non-additive depended to a

large degree on trophic level of the component (Table 5). The additive responses were most

frequent at the top-predator level, whereas the lower trophic levels were more associated with

non-additive responses (Table 5). Phytoplankton and zooplankton experienced a higher num-

ber of synergistic effects (i.e. stronger response than expected from single parameter perturba-

tions) compared to other trophic levels. Splitting the lower trophic levels into phytoplankton

and zooplankton showed a slightly higher number of additive runs in phytoplankton (11.2%

compared to 5.6%), whereas zooplankton had a higher fraction of synergistic runs (72.2%

compared to 47.2%). Species only experiencing indirect effects due to parameter perturbations

had a lower fraction of synergistic responses than the species that were perturbed directly. The

synergistic effects were not large (<15%).

Top predators experienced a higher number of additive effects than the species at mid-tro-

phic levels. Capelin and herring experienced opposite effects; where capelin in most cases

responded to combined perturbations with antagonistic effects, dampening the responses,

herring experienced by far the most synergistic effects of perturbing the key components

(Table 6).
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Model performance

The model was run with no variability in physics or fisheries pressure, which limits the possi-

bilities to compare the model output to the temporal development of the ‘real world’. However,

one rule-of-thumb that has been applied in several Atlantis models (e.g. [37] is that the compo-

nents should remain within 0.5–1.5 of the initial biomass levels after the burn-in period. The
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Fig 3. Component response to perturbations. Biomass change for all species in all runs. Dark red/dark blue areas are changes above or below 60%. While fish

and marine mammals experience a negative response to a majority of the simulations, the opposite is found in the zooplankton, due to predator-prey

interactions. Harp seal (Pagophilus groenlandicus) is one of a few species to have mostly positive responses (although low).

https://doi.org/10.1371/journal.pone.0210419.g003
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relative biomasses of the 9 key species from the control run are shown in Fig 4. Over the simu-

lation time, cod, capelin and small zooplankton stayed within 50 and 150% of the initial bio-

mass level. Minke whales and polar cod showed a consistent slow increase, whereas herring

decreased. The large and medium zooplankton stabilised at levels 8–16 times larger than the

initial biomass levels, whereas jellyfish oscillated between 1–50 times initial levels. Hence, the

biomass levels for the zooplankton components were on the higher end compared to initial

values. However, the biomass estimates at these levels are both uncertain and highly variable,

so we do not consider this as a critical issue. We also assessed individual weights to ensure real-

istic body sizes. Of all cohorts for the vertebrate components in the model, 75% were within

0.5–1.5 of their initial weights, and we found this satisfactory. Furthermore, timing of phyto-

plankton and zooplankton blooms were within what has been observed. Predation was com-

pared to observations and literature and corrected for those species that either had unrealistic

diets or preyed heavily on a single component, causing this to decrease.

In summary, we conclude that these comparisons indicate that the majority of the compo-

nents stayed within reasonable levels and hence that this version of the model was in a suffi-

cient state to be applied for sensitivity analysis. For other applications, e.g. management

strategy evaluations, we conclude that the model needs further tuning and refinement.

Discussion and conclusions

End-to-end models, such as Atlantis, have become increasingly important in ecosystem studies

and in development and testing of ecosystem-based management strategies [38]. These models

should not be used in tactical decisions such as defining quotas [39], but at the same time they

are important tools for strategic planning and shifting management approaches towards eco-

system-based fisheries management[8]. They can also be actively used in integrated ecosystem

assessments, e.g. through management strategy evaluations[8,40]. Before taking such steps,

however, the model responses, sensitivity and uncertainty should be evaluated. This will

increase credibility and trust in the model, managers and other users will have a transparent

assessment of the reliability and uncertainty associated with the model projections. We have

therefore run this initial sensitivity analysis on core components of the ecosystem foodweb in

the Norwegian and Barents seas, which are known to strongly interact.

The four key variables perturbed in this study; growth rate, mortality rate, recruitment and

consumption rate, are generally the most sensitive variables in Atlantis [12]. When calculating

the realized growth rate for cod from Fig 8 in [14], this indicate that annual variation in the

maximum growth rate parameter (mum) may range from -39 to 71%. Therefore, we consid-

ered the applied change of +/- 25% as used in our perturbations as moderate. Nevertheless,

Table 5. Additive/Non-additive effects on component groups (in % of runs). All 36 combination runs were considered.

Mammals Birds Fish Lower troph. lev. Benthos Bacteria

Additive 55.6 100 25 11.1 72.2 2.8

Synergistic 16.7 0 5.6 61.1 13.9 19.4

Antagonistic 27.8 0 69.4 27.8 13.9 77.8

https://doi.org/10.1371/journal.pone.0210419.t005

Table 6. Overview of additive/non-additive effects (in % of runs) on the key species in the 36 combination runs.

Cod Herring Polar cod Minke whales Capelin Large z.p Medium z.p Small z.p Gel. z.p

Additive 58.3 0 16.7 72.2 2.8 22.2 19.4 2.8 2.8

Synergistic 19.4 55.6 33.3 0 25 41.7 27.8 61.1 72.2

Antagonistic 22.2 44.4 50.0 27.8 72.2 36.1 52.8 36.1 25

https://doi.org/10.1371/journal.pone.0210419.t006
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when applying the extreme values reported by [14] and by [22] regarding herring, we found

that the size of the perturbations was not reflected in the model results. This indicates a strong

buffering capacity within the model system. In the real system, the difference between the cas-

cading effects of the first capelin collapse, when also the polar cod and the herring biomasses

were low, and the ecosystem responses in the following two capelin collapses [14] when the

two other stocks were at higher levels, were striking. It is possible that also in the NoBa system

the cumulative effects of several key stocks increasing/decreasing in concert will have a much

stronger ecosystem response than what can be seen from changes in a single stock. The system

vulnerabilities to cumulative changes across stocks should be further investigated in the mod-

elled system.
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The empirical information available differ between the 4 perturbed parameters. Typically,

information on weight at age used to calculate the growth rate parameter is available for all com-

mercially exploited stocks through the ICES stock assessment working group reports (e.g. [41,

42]. There was, however, less information and more uncertainty regarding the growth of the

youngest age classes. Recruitment, consumption and mortality rates in the real system are both

more variable and more difficult to estimate than growth rates (e.g. [43]. In the NoBa model these

parameters were, as far as possible, based on empirical knowledge. Still, considerable tuning was

required to reach model equilibrium [10]. In particular, the mortality rate in the model turned out

to be much lower than the mortality rate suggested in ICES working group reports [10]. The rea-

son for this was that the predation mortality is separated from the other mortality rates in the

Atlantis framework. The consumption rates were initially defined based on an assumption about

stomach fullness and the relationship between the weight of the stomach and the total body weight

[10]. However, a substantial amount of tuning was necessary to obtain the individual weights

within reasonable limits. These examples demonstrate some of the challenges in parameterizing

ecosystem model; both finding but also reformulating empirical observations to parameter values.

Furthermore, they also demonstrate the challenge of comparing parameter values to empirical val-

ues, as the parameter values and the process not necessarily can be directly compared.

System impact

At the system level, the responses following the zooplankton perturbations show that there are

strong bottom-up dependencies within this ecosystem model. [12] and [44] found similar

dependencies in other Atlantis models which had been developed for ecosystem types very dif-

ferent to that in NoBa. This could therefore indicate the behaviour is a feature of the Atlantis

formulations. However, in the real world ecosystem of the Barents Sea, [16] pointed out that

the system structure fluctuates between bottom-up and top-down, while [45] defined the sys-

tem as a wasp-waist system. Either way, the large fish stocks in the Barents Sea depend on the

important production from the zooplankton, although the links might potentially be stronger

in the model than in the real world.

[12] identified mortality and recruitment perturbations among the four most important

parameters. We found that in NoBa these two resulted in the weakest responses in the system

among the four key parameters explored in the study. However, the (background non-preda-

tion) mortality used in the model was extremely low for most of these species. A 25% increase

will therefore still be a low additional mortality. The reason for these low parameter values are

that the predation mortality is accounted for directly in the grazing terms and this is much

larger than the quadratic mortality rate. The mortality rates represented by mQ is typically low

in most Atlantis models. The recruitment parameter had high values, but also high variability

and a large buffering capacity (among other due to predation mortality on the juveniles). Pos-

sibly, parameter changes >25% are needed to see any effects of these parameters due to their

natural high variability. The number of fish larvae entering the model system was highly vari-

able and allowed for strong year classes. Hence, an initial parameter change of 25% on recruit-

ment may not be expected to have the same impact as changes for the other parameters.

Overall, buffering effects were found within the system, especially when moving from lower

to higher trophic levels. Buffering effects have been observed in other Atlantis models [12] and

in relation to sensitivity to changes in fisheries in multispecies models [46]. It is, to some

degree, also seen in the real world, where the lower trophic levels experience seasonal differ-

ences, for instance the strong seasonal spring bloom seen in northern areas. These are followed

by zooplankton grazing on the phytoplankton[47]. Moving up to higher trophic levels, the

amplitudes gradually weakens, the same effects are seen in the Atlantis framework.
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The strong bottom-up control might change drastically when the fisheries and climate are

added to scenarios, but it suggests that the lower trophic levels should be part of the added var-

iability to the model system when testing management strategy evaluations. The systems

dependency on zooplankton biomass compared to zooplankton growth should also be evalu-

ated in future studies exploring harvest control rules. Another important aspect is the preda-

tor-prey interaction and the importance of these links when defining the outcome of changes

in management. This is information not usually identified through the traditional single-stock

assessment models.

Species responses and sensitivity to parameter perturbations

The trophic level of the species being investigated, to a large degree, determined the outcome

of the response to the perturbations. There was only one exception; killer whales. Their strong

coupling to herring, both in terms of preference within the diet matrix and their horizontal

distribution, made them very dependent on the herring prey. Although killer whales have tra-

ditionally been known to follow the herring distribution, studies have shown that they also fol-

low the mackerel distribution during summer feeding[48]. There is an overlap between these

two distributions within the NoBa domain [10]). However, a stronger dependency on the

mackerel within the diet of killer whales is something that should be considered further in a

skill assessment of the NoBa model. Further research on predation patterns of killer whales

and how they potentially switch between these two important pelagic stocks would also benefit

both the model development and the ecosystem knowledge.

Somewhat surprisingly, we noticed a strong and very similar response to the perturbations

across haddock, saithe and long rough dab. These species do not have the same distributions, nor

the same predator preferences [10]. However, when investigating further, these correlations in

their responses are caused by a strong link to large zooplankton rather than any direct interactions

between the species. The strong response of these three fish species to perturbations in large zoo-

plankton is likely due to strong dependency of their younger cohorts on zooplankton prey. Had-

dock is known to prey heavily on crustaceans, whereas saithe on the other side prefers a diet

consisting of more fish [49]. Not being one of the commercial species, less is known about the

long rough dab and its diet preferences. However, in the North Sea, the long rough dab is known

to prey mainly on crustaceans [50]. The feeding interactions of components in the system repre-

senting relatively large biomasses is an important aspect of ecosystem-based management; how

sensitive is the outcome of the management advice to changing predator-prey interaction? Here,

more information on non-commercial key players would be extremely useful.

Jellyfish in the system respond strongly to several parameter perturbations, due to a combi-

nation of factors. They have strong blooms and fast response rates. In addition, they are placed

at approximately the same trophic level as herring and other pelagic fish [51], and are as vul-

nerable to changes. Their importance and role in the ecosystems are interesting, as they over-

lap to a large degree in prey items and distributions with the forage fish [52], and they are

significant components in the Barents Sea ecosystem in terms of biomass[52,53]. [53] esti-

mated changes in the jellyfish biomass from 19x106 kg to 4906x106 kg, a> 250 fold increase in

the period 1980–2010, a change much larger than the jellyfish responses within our sensitivity

study (and one likely to be discounted as an implausible model result if the empirical observa-

tions did not exist). However, investigating further the role and response of jellyfish to drivers

such as climate change and harvesting, could highlight areas where further research is needed

to provide answers on their importance for ecosystem structure and function.

Both capelin and herring were sensitive to almost any perturbation in the model. The high

vulnerability of these species is likely linked to their trophic position, as small pelagic fish
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typically have strong variability in their population dynamics (e.g. [54]. Capelin was eaten by a

wide range of species (including herring). Herring was in a similar position in the food web

and also connected to capelin through the predation by herring juveniles on capelin recruits.

The importance of the overlap between the two for the population development of both stocks

should be further explored in future studies. It is notable that the impact on polar cod was less

than for other species at the corresponding trophic level. This can be explained by the degree

of horizontal overlap in the system, as the polar cod are located in the northern part of the

Barents Sea with less horizontal overlap and hence less trophic connections to the other domi-

nating species being affected (e.g. [55]). They were therefore more robust to perturbations in

the rest of the system, demonstrating the importance of species distributions and food web

compartmentalization in terms of food-web cascading.

Similarly,[56] using the GADGET multispecies model for the Barents Sea found relatively

strong responses in capelin to changes in trophic interactions and fisheries, while herring

responses were weaker. Furthermore, they also found strong responses and fluctuations at the

top predator level (cod), which we did not observe in NoBa. These differences could be caused

by the structural differences between the GADGET model and the Atlantis model system, and/

or the fact that this version of NoBa is run without any external stressors like fisheries and cli-

mate variability. These differences should be explored further in ensemble runs with NoBa and

GADGET (e.g. [57]).

Additive and non-additive effects

The combined runs revealed both additive and non-additive effects in the model system. The

additive effects were predominant in mammals and seabirds, while there was a higher occur-

rence of non-additive effects in fish and lower trophic levels. The number of prey-predator links

are higher within these levels, as was (for most species) the degree of spatial overlap. Most of the

non-additive effects were antagonistic, hence dampening the effects of combined parameter

perturbations relative to perturbing the parameters in separate runs. However, synergistic

effects were mostly observed in the lower trophic levels. Compared to [36], who used the North-

east U.S. Atlantis model system to explore the effects of climate and fisheries, we experience

much higher numbers of non-additive effects. This might be an effect of running the model

without one of the strongest drivers; the fisheries, likely increasing the relative strengths of tro-

phic interactions and this should be kept in mind in future ‘what if’ scenarios where fisheries

will be included. When testing suggested changes in harvest control rules as part of a manage-

ment strategy evaluation, the dependency on the variability of the lower trophic levels should be

included. From a management perspective, as [36] also argue, the non-additive effects may be

crucially important. As more drivers are included, the combination of several stressors and

more interactions can potentially lead to stronger synergistic effects. The high number of inter-

actions possibly also explains the higher number of non-linear effects in the lower trophic levels.

Due to the grouping into larger functional groups, these components have a much higher num-

ber of individual connections to predator species compared to the real-world system, which

could introduce higher vulnerability to changes than observed in the NoBa model system.

Conclusions

Without important drivers such as fisheries and climate, it is a challenge to evaluate the model

performance. Furthermore, such comprehensive ecosystem models will never be correct for

every component of the system and are associated with large uncertainties that make them

inadequate for e.g. tactical decisions on harvesting quotas [39]. However, most of the compo-

nents were stable throughout the simulations. Furthermore, both the biomasses and the
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physical environment represent a cold and low-biomass state of the Barents Sea [34], hence a

state where species interactions appeared to be stronger than in the current warm and more

productive regime [16, 21, 36]. Therefore, foodweb mediated system responses to perturba-

tions in key species was both expected, and observed in the model system. In summary, we

conclude that the model performed well, and that the responses to the perturbations gave cred-

ibility to the model. There is of course still work to be done on model development. Parameter-

ization on some of the components, such as killer whale should be improved, and significant

drivers such as climate and fisheries must be added before both assessing model skill (e.g. the

models ability to recreate observed development in species and systems) and testing manage-

ment strategies in a climate change perspective.

Identifying critical variables in the model is important for the ecosystem-based manage-

ment aspects of end-to-end models. Knowing where the largest uncertainty of the model out-

put lies ([58] can identify those processes where more studies and observations are needed to

improve the model. That way, the uncertainty of the model connected to that particular

parameter can be reduced, or at least quantified. Here, we concluded that growth rate was the

most influential parameter, and that the system had a strong bottom-up control. We also

noticed that the components position in the foodweb to a large degree defined its sensitivity to

the parameter perturbations that was done.

By limiting our analysis within the full model to just the key groups we simplified an excep-

tionally challenging task, but we feel it is justified as the key species studied here make up a sub-

stantial part of the whole ecosystem biomass that is of most interest to users and stakeholders

(i.e. omitting the large biomasses of bacterial and benthic habitats). Theoretically the ‘perfect’

solution would be to do similar perturbations on all components of the system, however this

was not feasible within the scope of the study. A thorough evaluation of such complex and com-

prehensive models must contend with large amounts of output results, while often lacking inde-

pendent observations of the whole system with which to cross check the validity of the model

projections [39, 59, 60]. The situation is even more challenging with a model system like Atlan-

tis, where a more sophisticated analysis of model skills is effectively hindered by the large

computational costs that it will require to run a global sensitivity study [11]. Even with modern

computing infrastructure it would take 1000s of years to exhaustively run all potential parame-

ter permutation combinations. It is common knowledge that local, qualitative sensitivity studies

do not identify all weak spots in the model [61, 58]. However, we find that such approaches are

still a useful first pragmatic step to identifying parameters that are a key to system sensitivity.

Sensitivity analysis of end-to-end models of this degree of complexity is not straightfor-

ward, as we have shown here, but should be a part of evaluating how the model performs [62].

By including both sensitivity and skill-assessment in the model evaluation, we build trust in

the model system. These models are the only way of evaluating trade-offs in management strat-

egies, and therefore play an important role in every ecosystem striving to move towards a

more ecosystem based management.
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