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Allogeneic hematopoietic stem cell transplantation (HSCT) has become the main curative

treatment in patients with chronic granulomatous disease (CGD). CGD is caused by

inherited defects of the phagolysomal NADPH-oxidase, leading to a lifelong propensity

for invasive infections and granulomatous inflammation. After successful allogeneic

HSCT, chronic infections and inflammation resolve and quality-of-life improves. Favorable

long-term outcome after HSCT is dependent on the prevention of primary and secondary

graft failure (GF), including falling myeloid donor chimerism (DC) below 10 %, and

chronic graft-vs.-host-disease (cGVHD). The risk of GF and GvHD increases with

the use of HLA-incompatible donors and this may outweigh the benefits of HSCT,

mainly in patients with severe co-morbidities and in asymptomatic patients with residual

NADPH-oxidase function. Seventeen scientific papers have reported on a total of

386 CGD-patients treated by HSCT with HLA-matched family/sibling (MFD/MSD),

9/10-/10/10-matched-unrelated volunteer (MUD) and cord blood donors. The median

OS/EFS-rate of these 17 studies was 91 and 82%, respectively. The median rates of

GF, cGVHD and de-novo autoimmune diseases were 14, 10, and 12%, respectively.

Results after MFD/MSD and 10/10-MUD-transplants were rather similar, but outcome in

adults with significant co-morbidities and after transplants with 9/10 HLA-MUD were less

successful, mainly due to increased GF and chronic GVHD. Transplantation protocols

using T-cell depleted haploidentical donors with post-transplant cyclophosphamide

or TCR-alpha/beta depletion have recently reported promising results. Autologous

gene-therapy after lentiviral transduction of HSC achieved OS/EFS-rates of 78/67%,

respectively. Careful retrospective and prospective studies are mandatory to ascertain

the most effective cellular therapies in patients with CGD.

Keywords: chronic granulomatous disease, CGD, hematopoietic stem cell transplantation, conditioning,

therapeutic drug monitoring, serotherapy, gene therapy

INTRODUCTION

Chronic granulomatous disease is caused by mutations leading to defects in
individual subunits of the phagocyte NADPH-oxidase (gp91phox in X-linked-;
p22-, p47-, p67-, p40phox, and EROS in autosomal recessive-CGD) (1–4). The
NADPH-oxidase-myeloperoxidase system generates microbicidal oxidants required
for host defense and control of inflammation. CGD affects ∼1:200,000–250,000
live-births (5–7) and X-linked-CGD accounts for approximately two-thirds of patients.
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P47phox-mutations are the most common AR-defects. Rarely,
female carriers of X-CGD with random X-lyonization of <15%
of circulating NADPH-oxidase-producing neutrophils present
with CGD-symptoms (7–9). Symptoms comprise of invasive
infections and chronic autoinflammatory diseases leading to
frequent medical interventions, impaired quality-of-life, and
increased morbidity/mortality (10–13). The majority of patients
are diagnosed in childhood, while some develop symptoms
in adulthood (7, 14, 15). Due to residual NADPH-oxidase
activity, patients with AR-p47phox-mutations survive longer
than X-CGD-patients (survival >40 years: >80 vs. 55%) (16).
The clinical course may be unpredictable even in individuals
of families with identical CGD-mutations (17). Short stature,
osteoporosis, organ failure, and amyloidosis are long-term
complications (18). There is still paucity of data on quality-of-life
and emotional health in patients with CGD (11, 12, 14, 19, 20).
Today, 90% of children with CGD are reaching adulthood and
the transition into adult care is challenging (21, 22).

The infections typically affect lungs, lymph nodes, skin,
liver, perianal region, gingiva and bone and are mainly caused
by Staphylococcus aureus, Burkholderia cepacia, Nocardia,
Serratia marcescens, and Aspergillus species. Klebsiella
pneumoniae, Salmonella (7, 23), Mycobacteria (21, 24),
Actinomyces, Granulibacter bethesthensis (25–27). Infections
caused by Chromobacterium violaceum and B. pseudomallei
(28–30) are less frequently encountered. The use of life-long
antibacterial prophylaxis with trimethoprim-sulfamethoxazole
is recommended. Pulmonary Aspergillus-infections are the
leading cause of mortality (31). Anti-fungal prophylaxis,
mainly with itraconazole (32, 33), can reduce the incidence
of fungal infections, but the emergence of azole-resistant
aspergillus species and dematiaceous molds is becoming a
clinical challenge (34).

Absent or reduced NADPH-oxidase activity in
monocytes/macrophages causes impairment of efferocytosis
and autophagy (35, 36). Ineffective apoptotic cell clearance
increases the risks of developing autoinflammation (37).
Progressive granulomatous lung disease (PGLD), Crohn-like
enterocolitis (38, 39) and obstructive genitourinary inflammation
(40, 41) are relevant autoinflammatory syndromes and their

Abbreviations: aGVHD, acute graft-vs. -host disease; AIHA, autoimmune

hemolytic anemia; AR-CGD, autosomal recessive CGD; BM, bone marrow; Bu,

busulfan; CGD, chronic granulomatous disease; cAUC, cumulative area under the

curve; CBT, cord blood transplantation; cGVHD, chronic graft-vs.-host disease;

CY, cyclophosphamide; DHR, Dihydrorhodamin test; DC, donor chimerism; DLI,

donor lymphocyte infusion; EBMT, European Group For Bone and Marrow

Transplantation; EFS, event-free survival; Flu, fludarabine; FU, follow-up; GBS,

Guillain Barré syndrome; GT, gene therapy; GVHD, graft-vs.-host disease; HSC,

hematopoietic stem cell; HSCT, hematopoietic stem cell transplantation; IFI,

invasive fungal infection; IBD, inflammatory bowel disease; ITP, idiopathic

thrombocytopenic purpura; MAC, myeloablative conditioning; MUD, matched

unrelated donor; Haplo, haploidentical; Mel, melphalan; MMUD, mismatched

unrelated donor; MSD, matched sibling donor; Ped, pediatric; NBT, Nitroblue

tetrazolium test; OS, overall survival; PB, peripheral blood; PGLD, progressive

granulomatous lung disease; PTLD, post-transplant lymphoproliferative disorder;

RIC, reduced intensity conditioning; TBI, total body irradiation; TNI, total

nodal irradiation; TDM, therapeutic drug monitoring; Treo, treosulfan; TRM,

transplant-related mortality; TT, thiotepa; UCB, umbilical cord blood; X-CGD,

X-linked CGD.

risk increase steadily during life (14). Initial gastrointestinal
involvement without infections has often been misdiagnosed
as Crohn‘s disease (38, 39). Treatment of autoinflammation
includes steroids (42) and more recently IL1- or TNF-alpha
inhibitors to replace steroids, however, all of these drugs bear
the risk of increasing the risks for invasive infections (43).
Thalidomide (44–46), vedolizumab, ustekinumab (47, 48),
as well as pioglitazone (36) can be beneficial to reduce
autoinflammation in CGD and regular IFN-gamma injections
decrease the incidence of bacterial infections with no impact on
the incidence of colitis (21, 49–55).

Before HSCT, screening for infections is mandatory in
biopsies of infectious lesions and in bronchoalveolar lavage
specimens (14, 56). Steroids added to antimicrobials can
accelerate the regression of infectious lesions (42, 57, 58) and can
help to avoid extensive surgery (59). Granulocyte-transfusions
should be strictly indicated to prevent CMV-transmission and
sensitization to blood cell antigens (60–62). The McLeod-blood
group should be evaluated in X-CGD-patients to minimize the
sensitization against Kx-positive red cell transfusions (63–65).

HSCT MAC-CONDITIONING (TABLE 1)

In Europe, the first major survey of the Inborn Errors
Working Party of the EBMT reported on 27 patients with
CGD who had been transplanted between 1985 and 2000.
At HSCT, nine of 27 patients had intractable invasive
infections and received antibiotics as well as granulocyte-
transfusions (seven of nine). Eighteen of 27 patients were
free of infection at HSCT. Seven of the 18 patients without
overt infection had signs of active ongoing autoinflammation
including enterocolitis and PGLD. Twenty-five of the 27
patients received MSD-transplants (five heterozygous carriers).
Two patients with no overt infection or autoinflammation
received aMUD-transplant. Conditioning-regimens were mainly
myeloablative with full-dose busulfan/cyclophosphamide and
mainly without serotherapy (67). Recovery from refractory
infection, remission of inflammatory organ dysfunction and
catch-up growth were observed (67). Patients without overt
autoinflammation/infections had an OS of 100%, whereas
patients with ongoing infections at transplant had a TRM of
44% (four of nine) (67). The OS/EFS was 85/81%, respectively.
The GF and chronic GVHD rate were 7 and 11%, respectively.
The majority of surviving patients had >95% circulating
myeloid cells of donor origin. This important paper showed
that myeloablative HSCT based on busulfan/cyclophosphamide
and no in vivo T-cell depletion was overall efficient in sibling
transplants but induced exuberant inflammation in patients
suffering from ongoing infections at transplant. The same was
observed in a transplantation model in non-infected CGD
mice after myeloablative allogeneic HSCT resulting in marked
infiltration of the lungs with inflammatory cells, in contrast
to normal mice (81). Cultured monocytes from the CGD-mice
produced 3-fold TNF-alpha (81), explaining the higher incidence
of severe GvHD in patients with pre-existing overt infections
treated with HSCT without serotherapy. Myeloablative regimens
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TABLE 1 | Major HSCT studies with HLA-matched donor transplants in CGD between 2001 and 2019 (n >5 patients).

Author*Year of

report Horwitz

et al. (66)

Seger

et al. (67)

Schuetz

et al. (68)

Soncini

et al. (69)

Gozdzik

et al. (70)

Martinez**

et al. (71)

Tewari

et al. (72)

Ahlin

et al. (73)

Gungor

et al. (63)

Morillo-

Gutierrez

et al. (74)

Khandelwal

et al. (75)

Parta

et al. (64)

Osumi

et al. (76)

Yanir**

et al. (77)

Fox et al.

(78)

Arnold

et al. (79)

Lum

et al. (80)

Conditioning RIC

Flu/CY +

rATG

MAC

(most)

Bu/CY

±TNI/TT

/Mel

/rATG

MAC

(most)

Bu/Cy ±

TBI, Mel,

RIT ±

rATG

MAC

(most)

Bu/Cy

+Camp.

MAC

(most)

Bu/Cy or

Flu/Mel +

rATG

MAC

Bu/Cy +

Flu +

Campath

MAC

Bu/Cy +

Flu +

−2Gy TBI

+ eATG

RIC and

RTC/MAC

1. Bu/CY

2. Bu/Flu

3. Treo/Flu

± rATG

RIC

Flu/low

Bu +

rATG or

Campath

RTC

Flu/Treo/

or Cy or

TBI ±

rabbit

ATG or

Camp.

RIC and

RTC/MAC

Flu/Mel +

Camp. Or

Bu/CY + rATG

RTC Bu

(10mg/kg)

/TBI 3Gy,

+Camp.

RTC

Flu/Bu/TBI

3Gy +

ATG

MAC

Bu/Flu/CY

+ Ara C,

+ Camp.

RIC 1.

Flu/Bu

+Camp.

or

rATG (1)

2. Flu/Mel

+Camp. (2)

MAC

Bu/Flu

+ATG

(+TT)

MAC

RIC/RTC

Mixed

TDM No No No No No No No No Yes No Yes No Yes Yes Yes Yes No

Target Bu cAUC

Achieved cAUC

mg /Lx h

No No No No No No No No Yes

45–65

30–65

No Yes 60–70

59–66

No

19–88

Yes

45–65

39–52

No

60–80

No

44–63

No

59–98

No

Ped/Adult

Age (yrs)

Mixed

5–36

Mixed

3–39

Mixed

4–20

Mainly

Ped.

1–21

Ped.

2–13

Ped

1–13

Ped.

0.7–11.7

Mixed

1–35

Mixed

1–39

Ped.

0.4–19

Mainly Ped.

0.45–20.17

Mixed

4–32

Ped.

2–18

Mixed

0.5–30

Adult

17–28

Ped.

1–13

Ped.

0.6–18

Patients n= 10 27 12 20 6 11 12 14 56 70 18 40 6 24 (11**) 11 7 55

X-linked CGD % 80 85 92 95 83 82 67 71 61 80 44 85 83 88 64 86 82

Colitis% ND 7 0 50 0 9 30 14 34 50 11 12.5 (?) 67 0 55 43 91

PGLD% ND 26 58 25 67 27 ND ND 14 21 11 0 0 4 0 0 7

Lung infection % ND 26 83 25 33 55 17 43 27 17 0 20 0 25 27 14 ?

Liver abscess % ND 0 40 15 0 9 8 7 2 0 0 2.5 0 0 0 14 ?

McLeod n= ND ND 2 ND ND ND ND 2 1 1 0 2 0 0 1 0 ?

Donor n=

MSD/MFD n=

(carrier n=)

10 25 (5) 3 10 (1) 2 4 6 5 (2) 21 13 3 6 0 6 3 1 20

MUD 10/10 0 2 9 10 3 7 0 7 25 44 15 33 3 16 6 (10/10

MUD)

7 31

MUD 9/10 0 0 0 0 0 0 0 0 10 11 0 1 3 4 2 (9/10

MUD)

0 ND

MMUD 8/10 0 0 0 0 1 0 0 0 0 1 haplo 0 0 0 0 8 0 4 haplo

UCB 4-6/6 0 0 0 0 0 0 8 4 0 1 0 0 0 0 2 0 2

Source n= 0 BM 24 BM 9 BM 15 BM 6 BM 11 5 BM 11 BM 45 BM 36 BM 16 BM 5 BM 6 BM ND BM 4 PBSC 6 BM 53 BM

10 PBSC 3 PBSC 3 PBSC 3 PBSC 0 PBSC 0 PBSC 0 PBSC 3 PBSC 11 PBSC 33 PBSC 1 PBSC 35 PBSC 0 PBSC ND PBSC 7 BM 2 PBSC 23 PBSC

0 CB 0 CB 0 CB 2 CB 0 CB 0 CB 9 CB 4 CB 0 CB 1 CB 1 CB 0 CB 0 CB 0 CB 0 CB 0 CB 2 CB

Outcome

Med. FU in

months

17 24 53 61 20 48 70.5 92 21 34 20 (in RIC) 60

(in RTC/MAC)

41 12 48 33 32 78

OS % 70 85 75 90 100 100 100 93 96 90.5 83 82.5 100 91 81.8 100 89

EFS % 60 81 67 90 83 100 100 79 91 81 50 80 83 83 90.9 90 77

(Continued)

F
ro
n
tie
rs

in
P
e
d
ia
tric

s
|
w
w
w
.fro

n
tie
rsin

.o
rg

3
Ju

n
e
2
0
2
0
|V

o
lu
m
e
8
|
A
rtic

le
3
2
7

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


G
ü
n
g
ö
r
a
n
d
C
h
ie
sa

C
e
llu
la
r
T
h
e
ra
p
ie
s
in

C
G
D

TABLE 1 | Continued

Author*Year of

report Horwitz

et al. (66)

Seger

et al. (67)

Schuetz

et al. (68)

Soncini

et al. (69)

Gozdzik

et al. (70)

Martinez**

et al. (71)

Tewari

et al. (72)

Ahlin

et al. (73)

Gungor

et al. (63)

Morillo-

Gutierrez

et al. (74)

Khandelwal

et al. (75)

Parta

et al. (64)

Osumi

et al. (76)

Yanir**

et al. (77)

Fox et al.

(78)

Arnold

et al. (79)

Lum

et al. (80)

Myeloid DC% n =

pat.

6 (full)

2 (mix.)

22 (full) 11 (full) 14 (full) 100% 9 (full)

2 (mix.)

15

(>90%)

12

(>90%)

1 (60%)

52

(>90%)

51

(>95%)

1 (<90%)

3 (39–74%)

14 (>95%)

1 (50%)

2 (11–40%)

27

(>97%)

3 (>70%)

1 (<50%)

5 (>95%)

1 (0%)

22 (full)

2 (mixed)

4 (100 %)

7 (mixed)

7 (full) 43 (Med.

92%)

DLI/SCB 9/0 2/0 0/0 0/0 1/0 0/0 0/0 3/0 0/0 4/0 1/2 0/6 0/0 0/0 0/0 0/0 0/3

Re-HSCT 0 0 1 1 1 0 3 3 3 5 0 3 1 2 0 1 4

DSF after

re-HSCT%

NA NA 0 100 100 NA 100 67 67 80 NA 0 ND 100 NA 100 100

Graft failure %

(n=)

20 (2) 7 (2) 17 (2) 5 (1) 16 (1) 0 (0) 25 (3) 14 (2) 5 (3) 12 (8) 50 (2) 22 (9) 17 (1) 8 (2) 0 15 (1) 7 (4)

aGVHD III-IV %

(n=)

10 (1) 15 (4) 0 (0) 10 (2) 17 (1) 0 (0) 8 (1) 7 (1) 4 (2) 12 (8) 28% (5) 15% (6) 17% (1) 0% (0) 1 15 (1) 9 (5)

chronic GVHD %

(n=)

20 (2) 11 (3) 8 (1) 10 (2) 17 (1) 0 (0) 33 (4) 0 (0) 7 (4) 13 (9) 22 (4) 12.5 (5) 17 (1) 0 (0) 3 (1) 0 (0) 0 (0)

Lethal infections

(n=)

Bact. (1)

Fung. (1)

Fung. (2)

Pre-exist.

BK (1)

CNS (1)

ARDS (1)

Fung. (2)

Pre-exist.

(0) (0) (0) Fung. (1)

Pre-exist.

PTLD (1) Bact. (1),

ADV (2),

FLU (1)

Fung. (1) Bact. (2),

Fung. (1)

Pre-exist.

Not

specified

(2)

(0) ND (0) PTLD (1)

De-novo

autoimmunity %

Type (n=)

ND ND ND 11

Thyroid (2)

ND 18

Thyroid (1)

AIHA (1)

25

ITP (3)

7

AIN (1)

4

AIHA (2)

5

AIHA (2)

GBS (1)

ND 2.5

AIHA/ITP (1)

ND 50

AIHA/ITP (6)

Thyroid (6)

GB (2)

ND 14

AIHA (1)

12

AIHA (3)

Thyroid (2)

DM (1)

Reported fertility

(n=)

ND ND ND ND ND ND ND ND Fatherhood.

(2)

ND ND ND ND ND Fatherh.

(1)

Viable

sperm (2)

ND ND

ADV, adenovirus; aGVHD, acute Graft-vs.-host disease; AIHA, autoimmune hemolytic anemia; AIN, autoimmune neutropenia; ARDS, acute respiratory distress syndrome; Bact, bacteria; Bu, Busulfan; Camp, Campath IH/Alemtuzumab;

chronic GVHD, chronic graft-vs.-host disease; CY, cyclophosphamide; DC, donor chimerism; DFS, disease-free survival; DLI, donor lymphocyte infusion; DM, diabetes mellitus, eATG, equine Anti T-cell globulin; EFS, event free survival;

Fatherh., fatherhood; Flu, fludarabine; FU, follow-up; Fung, fungi; GB, Guillain-Barré-Syndrome; ICH, intracranial hemorrhage; ITP, immune thrombocytopenia; LD, lung disease; MAC, myeloablative conditioning; med, median; Mel,

melphalan; MSD, matched family donor; MFD, matched family donor; MMUD, mismatched unrelated donor; MUD, matched unrelated donor; NA, not applicable; ND, not done; OS, overall survival; PGLD, progressive granulomatous

lung disease; SCB, stem cell boost; TDM, therapeutic drug monitoring; rATG, rabbit Anti T-cell/thymocyte globulin; RIC, reduced intensity conditioning; RTC, reduced toxicity conditioning; RIT, radioimmune therapy; SCB, stem cell

boost; TDM, therapeutic drug monitoring; TBI, total body irradiation; TNI, total nodal irradiation; Treo, treosulfan; TT, thiotepa; UCB, unrelated cord blood. *Literature citation see in main manuscript. **11 patients from Martinez were

reanalyzed with a longer follow-up in Yanir‘s investigation.
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containing cyclophosphamide were greatly abandoned in Europe
after this experience. The authors at that time concluded that
all infectious/inflammatory foci had to be detected and treated
before HSCT and that HSCT should be mainly restricted to
children with MSD/MFD (67).

HSCT WITH RIC/RTC-REGIMENS
(TABLE 1)

Almost simultaneously to the above mentioned European
experience, the NIH in the USA used for the first time
a reduced intensity conditioning (RIC) comprising of non-
myeloablative fludarabine/cyclophosphamide followed by in-
vitro T-cell depleted grafts. This approach resulted in clearly
increased GF-rates (20%), even with the use of matched
family/sibling donors (66). Donor-lymphocyte infusions were
necessary to prevent falling DC but unfortunately induced severe
acute GVHD and resulted in a transplant-relatedmortality rate of
30% (66, 82). RIC-regimens includingmelphalan and fludarabine
were associated with similarly high GF-rates (30%) (75).

RIC-regimens based on reduced or targeted busulfan,
fludarabine and serotherapy were more successful and achieved
sufficient myeloablation and clearly lower rates of GF and
chronic GVHD (38, 63, 83–85). These busulfan-fludarabine-
based RIC-regimens were first used in adult high-risk CGD-
patients suffering from invasive Aspergillus-infections and/or
enterocolitis using MSD/MFD- or MUD transplants. The
OS/EFS rates were 100% in these small initial series (38, 84).
Administration of anti-T-cell/thymocyte globulins as well as of
a humanized monoclonal anti-CD52 antibody (Campath IH;
alemtuzumab) were shown to deplete successfully T-cells and
allo-stimulatory dendritic cells (86) of recipient origin. The
importance of using serotherapy for in-vivo T-cell depletion
to reduce both GF and chronic GVHD after HSCT for CGD
became obvious. Viral reactivations after serotherapy were
fortunately rare or well manageable rendering clinical HSCT
outcomes with MUD-donors vastly similar to MSD/MFD-
donors (68, 69, 71).

Busulfan-based RIC-conditioning was further refined by
investigating the interindividually variable busulfan clearance
and exposure in patients (87, 88). Therapeutic drug monitoring
(TDM) helped optimize both safety and efficacy of busulfan-
administration. The assessment of the cumulative AUC (cAUC)
turned out as an appropriate tool to measure the total busulfan-
exposure and -toxicity (87, 89). A 10-year prospective study
on 56 pediatric/adult CGD-patients (2/3 high-risk patients)
treated with submyeloablative busulfan (half-dose or cAUC 45–
65 mg/L × h) yielded, indeed, excellent results. Busulfan-dose
adjustments (90) were necessary in 14/44 patients (32%) (63).
Immunoablation was achieved with fludarabine and serotherapy
including rabbit ATG or alemtuzumab. After a follow-up
time of 21 months, the OS/EFS-rates were 93 and 89%,
respectively. However, GF could not be abolished and occurred
in 5% of patients. The cumulative incidences of grade III–
IV acute GVHD and chronic GHVD were low with 4 and

7%, respectively. Stable ≥90% myeloid DC was documented
in 93% surviving patients leading to resolution of infectious
and inflammatory lesions. Equivalent outcomes were observed
between MFD/MSD and MUD rendering matched unrelated
donors a good donor choice in the absence of matched
sibling donors. Outcomes were not different between 9/10-
HLA- (n = 10) and 10/10-matched MUD (n = 25), but the
numbers were low. Two fatherhoods were documented after
successful HSCT. To further reduce the risk of graft failure
with this RIC-regimen, some investigators have narrowed the
submyeloablative target of the cumulative AUC of busulfan to
55–65 mg/L × h (83) and have started using busulfan starting
doses based on a new body weight-dependent busulfan dosing
nomogram (91).

Morillo-Gutierrez et al. (74) showed in a large retrospective
European study of the EBMT on 70 CGD-children that HSCT
after treosulfan-based conditioning was well tolerated and
achievedOS/EFS-rates of 91.4/81.4%, respectively. Treosulfan, an
alkylating drug with both myeloablative and immunosuppressive
effects, exhibited an overall low acute toxicity in CGD
transplants. If used as a single alkylator, treosulfan may be
less gonadotoxic than other alkylators, however, there is no
study yet available convincingly proving this assumption (92–
94). Excellent myeloid DC (>95%) was documented in 80% of
surviving patients. With this paper, treosulfan-based RTC was
shown to be an alternative conditioning to targeted busulfan-
based-RIC, although it remained unclear which treosulfan
systemic exposure was more likely to be myeloablative or
submyeloablative. Graft failure remained a problem occurring
in 12% of the patients (74). Some centers have therefore
started to add thiotepa to treosulfan to further reduce the
risk of GF (80), probably at the expense of augmented
gonadotoxicity (94).

The experience with unrelated 4/6–6/6-HLA-compatible cord
blood transplants (CBT) in CGD is scarce, but there are a few
examples of successful transplants using cord blood in patients
lacking MSD or MUD (72, 95, 96). Due to low HSC-numbers
in CB, CBT is usually restricted to patients with low body
weight (<20 kg) and viral reactivations may be of concern. CBT
usually requires myeloablative and therefore more gonadotoxic
conditioning, e.g., busulfan (cAUC 80–100 mg/L × h) or
treosulfan/thiotepa, to achieve sufficient myeloid engraftment.

For this review, we have analyzed the results of the two
above mentioned major European studies together with 15
other relevant international papers published between 2010 and
2019. We have summarized the results of 386 CGD-patients
receiving transplants from mainly MSD/MFD- and MUD-
donors in Table 1. The median overall incidences of OS, EFS,
graft failure, chronic GVHD and de-novo autoimmune disease
in these 17 papers were 92, 81, 14, 9, and 15%, respectively. The
most important secondary problems were graft failure including
patients with slowly falling myeloid DC < 10% (DHR/NBT-tests
< 10%), de-novo autoimmunity and chronic GVHD. Graft failure
or low donor myeloid DC was associated with reappearance of
CGD associated symptoms, and chronic GVHD clearly impacted
negatively on quality-of-life and life expectancy (Table 1).
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TABLE 2 | Haploidentical HSCT and autologous gene-therapy in CGD between 2014 and 2020.

Author*Year of

report

Hoenig et al. (97) Parta et al.

(98)

Shah et al.**

(99)

Reguiero-Garcia

et al. (100)

Lum et al. **

(80)

Parta et al.

(101)

Kohn et al.

(102)

Conditioning MAC RTC RTC/MAC RTC/MAC RTC/MAC RTC Gene therapy

(type of T-cell

depletion)

Bu/Flu/TT

CD34+ positive

selection (in-vitro)

Bu/Flu/CY/TBI

2Gy+post CY

2 × 50

(d+3/+4)

(in-vivo)

Treo/TT/Flu

TCR-

alpha/beta+/

CD19+-

depletion

(in-vitro)

Treo-based

+post CY 2 × 50 (d

+ 3/4) (in-vivo)

Treo/TT/Flu

TCR-

alpha/beta+/

CD19+-

depletion

(in-vitro)

Bu/Flu/CY/TBI

2Gy+post CY

2 × 50 (d +

3/+4) (in-vivo)

Myeloablative

Busulfan

TDM No No No No Yes Yes

Target Bu (total dose mg/kg)

Achieved Cauc mg/L × h

No (17.6) No (10.4)

37

No No No No (10.4)

30–52

Target

70–75

Ped/Adult

Age (yrs)

Ped

(6)

Ped

(14)

Ped

(3)

Ped

(ND)

ND

ND

Mixed

(14–26)

Mixed

(2–27)

Patients n= 1 1 2 1 4 7 9

X-linked CGD % 100 100 50 100 ND 71 100

Colitis % 0 100 50 ND ND 86 11

PGLD % 0 0 0 ND ND 0 22

Lung infection % 100 100 50 ND ND 43 33

Liver abscess % 0 0 0 ND ND 0 11

McLeod % 0 9 0 ND ND ND 0

Donor
Type of transplant

1 haplo 1 haplo 2 haplo 1 haplo 4 haplo 7 haplo 9 autologous

Father 1 1 2 ND ND 5 (1 brother) NA

Mother 0 0 0 ND ND 1 (10/10

phenoident.)

Source PBSC PBSC PBSC ND PBSC PBSC PBSC

Outcome
Med. FU (mo.)

48 9 47 ? ND 36 ND (12–36)

OS% 100 100 100 100 100 71 78

EFS% 100 100 100 100 100 71 66

Myeloid DC% (n=) 90 (1) 100 (1) 100 (2) ND 100 (4) 96–100 (7) 12–46 (7)***

DLI/SCB 0 0 0 ND 0 0 NA

Re-HSCT 0 0 0 ND 0 0 ND

Graft failure % 0 0 0 ND 0 0 22

Acute GVHD III-IV % 0 0 0 ND 0 43 NA

Chronic GvHD % 0 0 0 ND 0 29 NA

Lethal infections (n=) 0 0 0 0 0 2 Pneumonitis

(1)

ICH (1)

De-novo

autoimmunity % Type

(n=)

ND ND ND ND ND ND ND

Reported fertility (n=) ND ND ND ND ND ND ND

Bu, Busulfan; cAUC, cumulative area under the curve; CY, cyclophosphamide; DC, donor chimerism; DLI, donor lymphocyte infusion; EFS, event free survival; Flu, fludarabine; FU, follow-

up; GVHD, chronic graft-versus-host disease; haplo, haploidentical family donor; ICH, intracranial hemorrhage; PGLD, progressive granulomatous lung disease; MAC, myeloablative

conditioning; NA, not applicable; ND, not determined; OS, overall survival; PGLD, progressive granulomatous lung disease; rATG, rabbit Anti T-cell globulin; RIC, reduced intensity

conditioning; RTC, reduced toxicity conditioning; SCB, stem cell boost; TDM, therapeutic drug monitoring; Treo, treosulfan; TT, thiotepa. *Literature citation see main manuscript. **

Presumably patients of the same UK cohort. *** Percentage of functional neutrophils.

HSCT WITH HAPLOIDENTICAL DONORS
AND GENE-THERAPY (TABLE 2)

Hoenig et al. demonstrated for the first time that haploidentical
HSCT was curative CGD (97). They used myeloablative
conditioning (full-dosed busulfan, thiotepa and alemtuzumab)

and in-vitro selected peripheral HSCs and achieved full donor
donor cell engraftment and complete resolution of pulmonary
aspergillosis. More recently, haploidentical TCR alpha-beta -
/CD19-depleted grafts were shown to successfully achieve
myeloid donor cell engraftment without inducing relevant
GVHD (103–105). The advantage of these in-vitro T-cell
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depletion techniques is that chronic GVHD is rare (14, 80, 106).
In-vivo T-cell depletion strategies in haploidentical transplants
include the use post-transplant cyclophosphamide (PT/CY) (50
mg/kg/day), administered on day+3 and day +4 (107). PT/CY
is non-toxic to donor HSCs, but efficiently eliminates activated
alloreactive donor-derived CD3+T-cells while sparing resting
CD3+T-cells with potential anti-infective properties. The first
successful haplo HSCT with PT/CY in CGD was reported in
the USA after the administration of targeted busulfan (cAUC 40
mg/L × h), fludarabine, cyclophosphamide and 2Gy TBI (98).
However, in a very recent follow-up paper by Parta et al. on
seven patients with CGD a rather high rate of severe GVHD
was observed leading to death in two patients (OS and EFS 71%,
respectively). The estimated total cumulative of busulfan ranged
from 30–52mg/L× h (2,461–4,250min×micromol/L× 3 days).
They used a protocol with mainly PBSC grafts and sirolimus for
GVHD-prophylaxis (101). Patients’ age ranged between 14 and
26 years and comprised of mainly adults. Severe grade III acute
GVHD were observed in three patients with enterocolitis.

Another currently investigated RTC-protocol is currently used
in our institution. It comprises of up-front rabbit ATG (30–
40 mg/kg), fludarabine (180 mg/sqm) and targeted busulfan
(cAUC 65–75 mg/L × h) followed by haplo-HSCT with PT/CY
and GVHD prophylaxis with CSA and MMF (starting at day
+5). We believe that both haploidentical HSCT with PT/CY
and with antibodies containing magnetic beads are promising
alternatives in high-risk patients with CGD when HLA-matched
related or unrelated donors are unavailable (105). To further
explore the rates of graft failure and cGVHD after haploidentical
HSCT comparative studies of both techniques are urgently
needed (Table 2).

Autologous gene-therapy (GT) of HSCs leads to partially
functional correction of defective phagocytes and is a potentially
curative treatment approach in CGD. Graft failure may occur
after GT, but the risk of GVHD is zero (102, 108, 109). While
early studies with unconditioned transfusions of retrovirally
transducedHSCs were unsuccessful (110), autologous infusion of
HSCs transduced with a gamma-retroviral vector after busulfan-
based conditioning helped to successfully engraft 4 CGD-patients
(2 adults, 2 children) (109). Approximately 15% of gp91phox-
expressing neutrophils had been detectable within the first
5 months after GT leading to resolution of life-threatening
invasive fungal infections. Unfortunately, methylation with
downregulation of the transduced gene and clonal expansion
of transduced myeloid cells due to random viral integrations
were observed, leading to activation of endogenous oncogenes
and development of MDS with or without monosomy 7. Both

children treated with GT survived after subsequent allogeneic
HSCT (65), while 2 adult patients died due to secondary MDS
and AML, respectively. Recently, nine X-CGD-patients (age 2–
27 years) received GT using a self-inactivating lentiviral vector
designed to limit the risk of mutagenesis (102). Patients were
pretreated with myeloablative busulfan exposures (cAUC 70–75
mg/L × h). Two patients died within 3 months from GT due
to severe pulmonary disease and hemorrhage. At 12 months,
6/7 surviving patients demonstrated persistence of sufficiently
NADPH-oxidase-expressing neutrophils (16–46%) and stable
vector copy numbers. One patient had graft failure with a decline
<5% enzyme-producing neutrophils. There was no evidence of
clonal dysregulation or transgene silencing. Surviving patients
did not develop new CGD-related infections, and six have been
able to discontinue antibiotic prophylaxis (OS/EFS >12 mo.:
78/66%, respectively) (Table 2).

INDICATIONS FOR CELLULAR THERAPIES
TODAY AND OUTLOOK

Traditionally, indications for HSCT in CGD had been the
following: (1) > 1 invasive life-threatening infections, (2) non-
tolerability of prophylactic drugs, (3) non-compliance, (4) severe
autoinflammation, or (5) unavailability of a CGD-experienced
physician (14, 21, 22, 111). Due to the above mentioned favorable
results, there is nowadays agreement that HLA-matched HSCT
is indicated in any CGD-patient with absent NADPH-oxidase
enzyme activity (16). Small children with CGD may clearly
benefit from 5/6- or 6/6-HLA-matched CBT in experienced
centers. Less than 10/10-HLA-MUD should probably not be
offered to asymptomatic CGD-patients since the rates of graft
failure and chronic GVHD are higher than in completely
matched transplants. The indication for HSCT in adults should
be carefully assessed by the treating physician, although the
results in recent years have been encouraging (38, 63, 67, 78, 84,
112). We believe that haploidentical transplants and GT in X-
CGD should only be offered to high-risk CGD-patients suffering
from severe infectious and/or autoinflammatory complications
with no other treatment alternatives. Ideally, high-risk CGD-
patients without matched donors should be prospectively
investigated in trials comparing GT vs. haploidentical HSCT.
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