
 International Journal of 

Molecular Sciences

Review

MicroRNAs: The Link between the Metabolic Syndrome
and Oncogenesis

Adriana Fodor 1,* , Andrada Luciana Lazar 2,* , Cristina Buchman 3,*, Brandusa Tiperciuc 4 ,
Olga Hilda Orasan 5 and Angela Cozma 5

����������
�������

Citation: Fodor, A.; Lazar, A.L.;

Buchman, C.; Tiperciuc, B.; Orasan,

O.H.; Cozma, A. MicroRNAs: The

Link between the Metabolic

Syndrome and Oncogenesis. Int. J.

Mol. Sci. 2021, 22, 6337. https://

doi.org/10.3390/ijms22126337

Academic Editors: Elisabetta Ferretti,

Zein Mersini Besharat and Agnese Po

Received: 1 May 2021

Accepted: 9 June 2021

Published: 13 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Diabetes and Nutrtion, “Iuliu Haţieganu” University of Medicine and Pharmacy,
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Abstract: Metabolic syndrome (MetS) represents a cluster of disorders that increase the risk of a
plethora of conditions, in particular type two diabetes, cardiovascular diseases, and certain types
of cancers. MetS is a complex entity characterized by a chronic inflammatory state that implies
dysregulations of adipokins and proinflammatory cytokins together with hormonal and growth
factors imbalances. Of great interest is the implication of microRNA (miRNA, miR), non-coding
RNA, in cancer genesis, progression, and metastasis. The adipose tissue serves as an important
source of miRs, which represent a novel class of adipokines, that play a crucial role in carcinogenesis.
Altered miRs secretion in the adipose tissue, in the context of MetS, might explain their implication
in the oncogenesis. The interplay between miRs expressed in adipose tissue, their dysregulation
and cancer pathogenesis are still intriguing, taking into consideration the fact that miRNAs show
both carcinogenic and tumor suppressor effects. The aim of our review was to discuss the latest
publications concerning the implication of miRs dysregulation in MetS and their significance in
tumoral signaling pathways. Furthermore, we emphasized the role of miRNAs as potential target
therapies and their implication in cancer progression and metastasis.

Keywords: metabolic syndrome; adipose tissue; miRNA; cancer; metastases

1. Introduction

Metabolic syndrome is a cluster of at least three pathophysiological disorders: ab-
dominal obesity, low-high density lipoprotein (HDL) cholesterol levels, high triglycerides
levels, hypertension, and hyperglycemia [1]. The worldwide prevalence varies between
10 and 40%, depending on lifestyle and genetic background [2]. Diet, lifestyle, and genetic
background not only affect MetS, but there is increasing evidence showing that these factors
play a crucial role in tumorigenesis. MetS has become a predominant risk factor for many
cancer types.

Abdominal obesity represents the central feature of MetS and it is associated with
alterations in immunity and chronic low-grade inflammation. These can lead to the dys-
function of adipose tissue homeostasis, insulin resistance (IR), macrophages infiltration
and polarization, and the release of inflammatory cytokines from both adipose and im-
mune cells. Macrophages are the main immune cells contributing to the activation of
inflammatory pathways in obesity and other metabolic conditions. The metabolic and
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inflammatory changes in adipose tissue can disrupt physiological homeostasis systemically,
with initiation and progression of metabolic syndrome and cancer.

Evidence of the last decade supports the crucial role of inflammation in tumor devel-
opment, progression, and immunosuppression. Most cancers are associated with chronic
inflammation induced by environmental factors, such as asbestos, tobacco smoking, and
dietary factors, or by chronic bacterial and viral infections, like cervical carcinoma, liver and
gastric cancer [3]. Inflammation has been recognized as an essential tumorigenic factor, but
it is also often present in the microenvironment of cancers without inflammatory origins [3].
Obesity produces chronic inflammation and an altered profile of key transcription factors
that promote a procarcinogen microenvironment. People with obesity have a higher risk of
many types of cancers, such as esophagus, gastric, colon, rectum, prostate, liver, prostate,
kidney, ovary, meningioma, multiple myeloma, thyroid [4].

Adipose tissue is a complex endocrine organ secreting not only hormones and cy-
tokines, but also a large number of circulating miRs. Adipose tissue derived-miRs from
people with obesity have proved essential role not only in obesity-associated inflammation
and IR, but in tumor growth and metastasis. Specific miR may act both as miR oncogenic
(oncomiR) by suppressing tumor suppressive mRNAs and tumor-suppressive molecule,
by suppressing oncogenic mRNAs.

This systematic literature review aimed to revise recent publications on the role of
obesity or MetS microRNAs deregulation in adverse prognosis of cancer. Furthermore, we
highlight the potential therapeutic role of adipose tissue-derived miRNAs.

We reviewed all publications from the PubMed database using the terms:
(((((“obesity”[MeSH Terms]) OR (“insulin resistance”[MeSH Terms])) OR (“metabolic

syndrome”[MeSH Terms])) AND (“neoplasms”[MeSH Major Topic]))) AND (micrornas-
[MeSH Terms]).

Each relevant microRNA was included in the present analysis if it fulfilled both searches:

1. (“neoplasm invasiveness/etiology”[MeSH Terms]) AND specific microRNA,
2. ((“obesity”[MeSH Terms]) OR (“insulin resistance”[MeSH Terms])) OR (“metabolic

syndrome”[MeSH Terms]) AND specific microRNA.

2. MicroRNAs Link the Metabolic Syndrome and Cancer

MicroRNAs (miRs) are small (about 18–25 nucleotides), non-coding RNAs, which
negatively regulate gene expression by translational inhibition or mRNA decay. miR
is associated with Argonaut proteins and incorporated into the miR-induced silencing
complex (mRISC), which guides the binding of miRs to the 3′UTR of the target mRNAs.
Due to short binding sequence, with imperfect complementary, an individual miR can
bind and affect the expression of hundreds of mRNAs [5]. In addition, miRs have been
found to be secreted to the extracellular space as membrane-covered microvesicles, such
as exosomes, which can be taken up by neighboring or distant recipient cells. Adipocyte-
derived microvesicles contain about 140 miRs, while in adipose tissue, macrophages-
derived exosomes are identified in about 500 miRs [6,7]. Several pathways, controlled by
miRs, have been proposed in the last decade to explain the increased risk of cancer in the
context of MetS. We emphasize below the most relevant ones (see also Figure 1).
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Figure 1. Signaling pathways and the corresponding miRs implicated in MetS- associated cancer. Several miRs are deregulated in 
both MetS/obesity and various types of cancers. Mir-21 is regulated by B-catenin via STAT3 and plays a role in oncogenesis and 
cancer progression through its direct targets TIMP3, which modulates matrix MMP activity and the PTEN/PI3K/AKT signaling path-
way. PI3K/AKT represents the prevalent pathway implicated in carcinogenesis and MetS/obesity. The Mir221/222 cluster is impli-
cated in both IR and cancer via CAV1, a key regulator for cell proliferation, apoptosis, migration, and metastasis. Other pathways 
implicated in cancer initiation and progression are: NOTCH-induced EMT, HMGA2, SOX2, c-Myc. TAM—tumor associated macro-
phages, MMP—matrix metalloproteinases, EMT—epithelial–mesenchymal transition, ECM–extracellular matrix, STAT3—signal 
transducer and activator of transcription 3, TIMP3—tissue inhibitor of metalloproteinase 3, PPAR-γ—peroxisome proliferator-acti-
vated receptor gamma, PTEN–phosphatase and tensin homolog, PI3K—phosphoinositide 3-kinase, AKT—protein kinase B, mTor—
mammalian target of rapamycin, PPAR-α—Peroxisome proliferator activated receptor alpha, HMGA2—high mobility group AT-
hook 2, SRC—Proto-oncogene tyrosine-protein kinase Src, SOX2—SRY-Box transcription factor 2, c-Myc—Cellular myelocytomato-
sis oncogene, CAV1—Caveolin 1. 

MiR-21 
MiR-21 levels were found to be increased in patients with type 1 (T1D) and type 2 

diabetes (T2D), the circulating levels of miR-21 reflecting the degree of pancreatic inflam-
mation [87]. Contrarily, there are studies that did not find discrepancies in the miR-21 
serum levels in patients with or without diabetes [88]. Interestingly, miR-21 antagomir 
ameliorates metabolic disturbances in T2D patients by up-regulating the expression of the 
target gene TIMP3 [89]. Furthermore, the inhibition of the miR-21 expression may repre-
sent a key point in the improvement of glycemic control through PPARc and GLUT4 reg-
ulation [90]. The expression of mir-21 is reduced in insulin-resistant adipocytes. Addition-
ally, the over-expression of mir-21 improved glucose metabolism and insulinemia via the 
PTEN/PI3K/Akt pathway [91]. 

Low levels of miR-21 were identified in the peripheral blood mononuclear cells of 
obese, regardless of the presence of diabetes, which was negatively correlated with in-
flammatory cytokine production [92]. By targeting 3′UTR of STAT3 mRNA, miR-21 regu-
lates the adipose cell proliferation and differentiation [93]. Additionally, the anti-miR-21 
proved to be efficient for miR-21 inhibition which consequently led to weight loss via its 
target genes: transforming growth factor beta receptor 2 (TGFRB2), PTEN, and Sprouty1 

Figure 1. Signaling pathways and the corresponding miRs implicated in MetS- associated cancer. Several miRs are
deregulated in both MetS/obesity and various types of cancers. Mir-21 is regulated by B-catenin via STAT3 and plays a
role in oncogenesis and cancer progression through its direct targets TIMP3, which modulates matrix MMP activity and
the PTEN/PI3K/AKT signaling pathway. PI3K/AKT represents the prevalent pathway implicated in carcinogenesis and
MetS/obesity. The Mir221/222 cluster is implicated in both IR and cancer via CAV1, a key regulator for cell proliferation,
apoptosis, migration, and metastasis. Other pathways implicated in cancer initiation and progression are: NOTCH-
induced EMT, HMGA2, SOX2, c-Myc. TAM—tumor associated macrophages, MMP—matrix metalloproteinases, EMT—
epithelial–mesenchymal transition, ECM–extracellular matrix, STAT3—signal transducer and activator of transcription
3, TIMP3—tissue inhibitor of metalloproteinase 3, PPAR-γ—peroxisome proliferator-activated receptor gamma, PTEN–
phosphatase and tensin homolog, PI3K—phosphoinositide 3-kinase, AKT—protein kinase B, mTor—mammalian target of
rapamycin, PPAR-α—Peroxisome proliferator activated receptor alpha, HMGA2—high mobility group AT-hook 2, SRC—
Proto-oncogene tyrosine-protein kinase Src, SOX2—SRY-Box transcription factor 2, c-Myc—Cellular myelocytomatosis
oncogene, CAV1—Caveolin 1.

2.1. The Role of miRNAs in Cancer by Modulating Macrophage Phenotypes

The inflammatory tumor microenvironment contains both innate immune cells (like,
macrophages) and adaptive immune cells (B and T lymphocytes) [8]. Tumor-associated
macrophages (TAMs) are derived mainly from circulating monocytes that are recruited
into the tumor in response to various chemokines and growth factors produced by tumor
and stromal cells.

Various signals, such as Toll-like receptor (TLR) ligands and interferon gamma (IFN-γ)
promote polarization of TAMs to a M1-like proinflammatory phenotype, characterized by
activation of proinflammatory genes, such as interleukin-1β and tumor necrosis factors
(TNF)-α. Many factors promote polarization of TAMs to a M2-like phenotype (also termed
alternatively activated), which express high levels of anti-inflammatory cytokines, scav-
enging receptors, angiogenic factors, and proteases that augment tumor progression by
promoting angiogenesis, tumor cell invasion and metastasis, and suppress adaptive im-
munity [9,10]. Repolarization of TAMs to antitumor phenotypes is a potential therapeutic
strategy of cancer [9].
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MiRs may play a key role in tumorigenesis by promoting M2-like TAM polarization
and inhibition of tumor infiltration with CD8+ cytotoxic T lymphocytes (CTLs). Deletion of
the miRNA-processing enzyme DICER in macrophages stimulates M1-like TAM activation
with recruitment of activated CTLs to the tumor. CTL-derived IFN-γ amplified M1 polar-
ization of DICER1-deficient TAMs and inhibited tumor growth [11]. Overexpression of
miR-511-3p in TAMs suppresses protumoral genes and inhibits tumor growth [12]. Increas-
ing miR-511-3p activity in TAMs could be a potential therapeutic strategy to repolarize
them to an antitumor phenotype. MiR-21-3p and -5p have an immunosuppressive effect by
inhibiting the migration of CTLs into the tumor by decreasing the secretion of CCL-3 and
CXCL-10 [13].

MiR-let-7b expression is upregulated in prostatic TAMs and promotes prostate car-
cinoma cell mobility and angiogenesis, while treatment with let-7b inhibitors reduce
angiogenesis and cell mobility [14]. Several exosomal miRs have been shown to promote
the M2-like phenotype of TAMs and accelerate tumor progression, such as miR-222-3p and
miR-940 in epithelial ovarian cancer [15,16], miR-145 in colorectal cancer (CRC) cells [17],
miR-103 in lung cancers [18]. Conversely, exosomal miR-21 could be transferred from
M2-like TAM to gastric cancer cells, where it inhibits apoptosis of cancer cells through
regulation of PI3K/Akt signaling and Bcl2 expression [19].

In contrast, miR-155 [20] and miR-19a-3p [21] expression is low in TAM and inhibits
tumor growth and metastasis in a mouse breast cancer model by reprograming M2-like
macrophages toward classic M1-like activation. Similarly, miR-142-3p is downregulated in
TAM and inhibits glioma growth probably by promoting M2-like TAM apoptosis [22].

Cationic Bletilla Striata polysaccharide (cBSP) is a modified herb extract, which ex-
hibits high affinity for macrophages and can be used as a nonviral drug delivery system
targeting these cells [23]. The packaged let-7b into cBSP can be released in response to the
tumor acidic microenvironment with the help of a pH-responsive material PEG-histamine-
modified alginate [24]. This nanocomplex could reprogram TAMs towards M1-like and
inhibit tumor growth in a breast cancer mouse model [24]. Otherwise, miR-18a was packed
in a grapefruit-derived nanovector, which is specifically up taken by Kupffer cells, but not
by other cells, after intravenous administration [25]. MiR-18a inhibits liver metastasis of
colon cancer by inducing M1-like polarization. The therapeutic application of macrophage-
derived miRNAs by using macrophage-specific delivery systems is a promising means.

2.2. The Role of CTBP1 in Cancer by Modulating microRNAs Expression

C-terminal binding protein 1 (CTBP1) is a co-repressor of many tumor suppressor
genes that is activated by either NAD+ or NADH. However, affinity of CTBP1 for NADH
is 100-fold higher, making it a molecular sensor of the metabolic state of the cell [26]. MetS-
like disease, generated by chronic high fat diet (HFD), increases intracellular NADH and
activates CTBP1. CTBP1 represses the gene expression of epithelial cell adhesion molecules,
like E-cadherin, and promotes epithelial to mesenchymal transition (EMT), which con-
tributes to cell proliferation and invasion [27]. CTBP1 upregulation and the resulting
E-cadherin downregulation were correlated with the progression of human hepatocellular
carcinoma (HCC). CTBP1 increased breast [28] and prostate [29] tumor growth and metas-
tasis, in MetS mice, by modulating multiple genes and miRNAs expression implicated in
the extracellular matrix (ECM), cell adhesion, and cell proliferation. Thus, CTBP1 regulates
42 miRNAs in MetS mice with breast cancer. Several miRNAs were previously reported
altered in cancer, such as let-7e-3p, miR-4448, miR-223-3p, miR-3151-5p, miR-940, miR-
378a-3p, miR-146a-5p, and miR-124 [28]. Some of them have been involved in breast cancer
progression and metastasis, miR-378a-3p, miR-146a-5p, let-7e-3p, miR-381-5p, miR-194-5p,
miR-494-3p) [30]. In prostate cancer, CTBP1 regulates a cluster of miRNAs that target cell
adhesion. As prostate cancer progresses in the setting of MetS, CTBP1 increases, resulting
in repression of miR-205-5p together with upregulation of oncomiRs, like: miR-19b-3p,
miR-29c-3p, miR-30b-5p, miR-301a-3p, miR-454-3p [29].
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Altogether, these results suggest that CTBP1 hyperactivation is critical for MetS effect
on cancer progression and metastasis since CTBP1 depletion diminishes the detection of
circulating tumor cells [30] and the number and size of metastasis [29].

2.3. The Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Obesity
and Cancer

PPARγ is a transcription factor highly expressed in adipose tissue with a central role in
differentiation and function of mature adipocytes. PPARγ functions as a tumor suppressor,
it promotes apoptosis and inhibits cancer cell proliferation, angiogenesis, and tumor
microenvironment inflammation [31,32]. Diet-induced obesity and/or IR induce a decline
in the expression of PPARγ, with potential relevance in obesity-related cancers. Epigenetic
regulation of PPARγ may explain its down-regulation, and several microRNAs have been
implicated [33]. MiR-27b, 130b, and 138 are upregulated in obesity. MiR-27b and 130b target
directly PPARγ [34,35], while miR-138 indirectly inhibits the expression of PPARγ [36].
The upregulation of miR-27b, 130b, and 138, as well as PPARγ promoter hypermethylation
in obese patients was responsible for PPARγ suppression and susceptibility to CRC [37].
Similarly, microRNA-130b up-regulation promotes lung cancer progression by suppression
of PPARγ, which in turn activates BCL-2 and VEGF-A [38]. Beside obesity, miR-27b may
be upregulated by human papillomaviruses HPV16 E7 in cervical cancer tissue, which
suppresses the expression of PPARγ and increases the level of oncogenic pH regulator,
Na+/H+ exchanger isoform 1 (NHE1) [39].

Classically, PPARγ exerts an antifibrotic effect by antagonizing TGF-β signaling.
However, an additional mechanism has been proposed recently. PPARγ was identified as a
major transcription factor which regulates a class of 8 miRNAs with antifibrotic properties,
i.e., miR-29c, miR-335, miR-338, let-7a, let-7c, let-7g, miR-30d, and miR-30e. This miRs
network proved to be active in three human fibrosis-associated carcinomas: HCC, breast,
and lung carcinomas [40].

2.4. PI3K/AKT—Common Pathway in MetS and Cancer

A common mechanism which might explain the crosstalk between MetS and cancer is
the PI3K/AKT pathway which represents a direct target of several miRs and is disturbed
in both conditions. Chakraborty et al. systematized the influence of a plethora of miRs
acting on insulin signaling pathway such as: miR-320, miR-383, miR-181b on IGF-1/IGF1R;
miR-128a, miR-96, miR-126 on IRS; miR-29, miR-384-5p, miR-1 on PI3K; miR-143, miR-145,
miR-29, miR-383, miR-33a/b miR-21 on AKT/PKB; and miR-133a/b, miR-223, miR-143 on
GLUT4 [41]. Additionally, miR-221 binds to PI3K mRNA and inhibits glucose uptake in
HepG2 cells [42]. On the other site, the PI3K/AKT pathway represents the direct target of
mir-221 in several types of cancer, like laryngeal cancer [43], pancreatic cancer [44], breast
cancer [45], and prostate cancer [46].

Striking evidence of a crosstalk between adipose tissue and prostate cancer, through
miRNAs, has been recently reported by Massillo et al. [46]. In their study, mice with MetS
characteristics, induced by a high-fat diet, were injected with prostate cancer cells and
assessed for tumor growth and miRs expression. The authors found a group of 5 miRNAs
(miR-221-3p, 27a-3p, 34a-5p, 138- 5p, and 146a- 5p) that were increased in gonadal adipose
tissue, prostate tumors, and plasma of MetS mice compared to control animals. From these,
miR-221-3p, 27a-3p, 34a-5p, and 146a-5p were confirmed to be important in prostate cancer
patients [46].

MiR-221-3p proved again to mediate the crosstalk between adipose tissue and tumor
growth in breast cancer [47]. The overexpression of mir-221-3p in human adipocytes
impairs adipocyte lipid storage and differentiation, while conditioned medium obtained
from miR-221-3p overexpressing adipocytes increased the invasion and proliferation of
MCF-7 cells. Of great interest is the fact that the expression of mir-221-3p in subjects
undergoing mastectomy, in the adipose tissue adjacent to BC, increases with the grade of
BC. A negative correlation between the overexpression of mir-221-3p and AdipoQ was
noticed, thus the inhibitory effects on BC growth of AdipoQ were lost [47].
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Additionally, the PIK/AKT signaling pathway represents a target for mir-145. The
upregulation of mir-145 in obese mice prevents insulin-stimulated AKT activation [41].
The overexpression of mir-145 in CRC leads to the inhibition of the PI3K/AKT signaling
pathway, which in turn increases the sensitivity CRC to oxaliplatin [48]

A recent multi-omics approach and computational analysis on human visceral adipocy-
tes compared the dysregulated miRNAs in obese subjects with or without CRC with normal
weight controls [49]. MiR-193b-3p, miR- 125a-5p, and miR-1247-5p, were found to be
downregulated in both cancer and obese conditions. Both miR-193b-3p and miR-1247-5p
act as tumor suppressors in different types of cancer, suggesting that their repression in
adipose tissue from obese and CRC individuals could have a potential tumorigenic role.
Several pathways were dysregulated in both obesity and CRC networks: inflammatory
signaling, such as IL-37 and IL-13, TGF-beta signaling, PTEN regulation, type I IFN
signaling, SUMOylation, RNA metabolism, pathways related to vesicle budding and
endocytosis [49].

2.5. Caveolin-1 (CAV1) Signaling

CAV1 is the main component of caveolae which are small invaginations at the plasma
membrane, especially in endothelial cells and adipocytes. They are involved in endocytic
and exocytic pathways as well as signal transduction.

CAV1 a critical regulator of the insulin receptor and insulin signaling, by stabilizing
caveolae and their associated insulin receptors [50]. CAV1 is targeted by several miRs,
which are upregulated in obesity and IR, like miR-103/107 [50] and miR-221/222 [51].
Upregulation of CAV-1 upon miR-103/107 or miR-221/222 inactivation improves insulin
sensitivity and decreases glucose levels [50,51]. Interestingly, the expression on miR-
221/222 correlated with BMI and HOMA-IR in postmenopausal women, with DM2 and/or
breast cancer, but the highest serum levels were found in women with both diseases [51].

Downregulation of CAV1 in breast cancer promotes tumor relapse, drug resistance,
and poor outcome [52,53], and has been related to the increased expression of several
growth factors and regulators, like stromal cell-derived factor-1 (SDF-1), epidermal growth
factor (EGF), and fibroblast-specific protein-1 (FSP-1) [54].

It has been shown that hyperglycemia induces epithelial to mesenchymal transition
(EMT), a key process in metastatic disease, in MCF-7 and T47D human breast cancer cells.
By blocking the hyperglycemia-induced EMT phenotype, cell growth was suppressed but
invasive capacity increased through a CAV-1 dependent mechanism [55]. Similarly, diet-
induced obesity increased melanoma progression in male C57BL/6J mice by enhancing
Cav-1 and FASN expression in tumors [56].

2.6. Wnt/β-catenin Signaling

The canonical Wnt/β-cate pathway is involved both in cancer and in various metabolic
processes including adipogenesis and glucose homeostasis [57]. Dysregulation of the
Wnt/β-catenin pathway is one of the most relevant driving forces in cancer development
and metastasis. Several miRs have been implicated in different types of cancer, like: CRC,
breast cancer, ovarian, prostate cancer, through Wnt/β-catenin pathway dysregulation [58].

The mechanism of increased risk of HCC in obese individuals was recently elu-
cidated [59]. It has been demonstrated that infiltrating macrophages induced by liver
steatosis promotes growth of tumor progenitor cells through Wnt/β-catenin activation.
Indeed, activation of Wnt signaling predicts 90% of tumors in a large cohort of patient
samples [59]. Moreover, the obesity-related upregulation of miR-27a has been shown to
promote metastasis of HCC through activated Wnt/β-catenin signaling [60].

2.7. PTEN Signaling

The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10
(PTEN) is a lipid phosphatase with role in obesity and IR [61] and several cancers [62].
PTEN is a potent tumor suppressor, and its loss of function is frequently encountered in
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cancer. Even a slight decrease in PTEN levels and activity results in cancer susceptibility or
tumor progression.

Mostly through the activation of the PI3K/AKT/mTOR pathway, PTEN deficiency in-
fluences a variety of biologic processes that sustain cancer cell growth and proliferation [63].
Because metabolic effects of insulin are mediated through the same pathway, PTEN has a
critical role in modulating insulin-induced glucose uptake and insulin-induced suppression
of hepatic gluconeogenesis. Several miRs have been shown to inhibit the expression of
PTEN at the post-transcriptional level in a variety of cancer types, like miR-21, miR-22,
miR-214, mir-17–92, mir-106b-25, mir-367–302b, and mir-221–222 [64].

Interestingly, it has been shown that astrocyte-derived exosomes, containing anti-
PTEN microRNAs, suppress PTEN expression in the brain metastatic tumor cells [65]. Re-
cently, polyphenols proved to have chemopreventive potential in obesity-induced prostate
cancer by rescuing PTEN expression [66].

PTEN interacts and facilitates TGF-β impacts on cell proliferation. Up regulation
of PTEN diminishes TGF-β-mediated AKT phosphorylation, precluding the functions of
TGFβ on cell proliferation while its down-regulation promotes TGF-β effects on induction
of the PI3K pathway.

2.8. The miRNA-Processing Enzyme DICER

DICER has a central role in the final steps of the miRs processing pathway. It has been
involved in both pancreas function and insulin signaling [67]. More recently, it has been
shown that adipose tissue is an important source of circulating exosomal miRs, which can
regulate gene expression in distant tissues. Adipose-tissue-specific knockout of DICER in
mice, as well as humans with lipodystrophy, significantly decreased the circulating levels
of exosomal miRs [68].

Upon deletion of DICER, several molecules and receptor tyrosine kinases, which are
involved in IR and cancer development, were hyperphosphorylated (IGF1, IR, IRS-2, and
STAT3) [69].

Many studies revealed that DICER acts as a tumor suppressor and loss of DICER
protein expression in invasive tumor samples. Low DICER expression was associated with
poor prognosis in ovarian cancer (HR = 1.93), otorhinolaryngological tumors (HR = 2.39),
hematological cancers (HR = 2.45), and neuroblastoma (HR = 4.03) [70]. Several miRs have
been shown to target and repress DICER, like: miR-103/miR-107 in breast cancer [71], miR-
221/miR-222 and miR-29a in triple negative breast cancers [72]. Similarly, miR-103 target
and suppressed DICER and PTEN, promoting proliferation and migration of CRC [73].

In contrast, transcriptional activation of DICER through ERK/Sp1 activation causes
pancreatic cancer progression and resistance to gemcitabine [74].

2.9. PPARα -FOXP4- NOTCH Pathway

MiRs has been shown to regulate PPARα, a known regulator of both adipogenesis and
carcinogenesis, suggesting that miRNAs play a vital role between obesity and cancer [75].

PPARα was demonstrated to act as an oncogene, especially in breast cancer. Thus,
Chen et al. showed that ectopic expression of PPARα increases cell proliferation of
breast and pancreatic cancer cells via a novel target gene, carnitine palmitoyl transferase
1C (CPT1C) [76]. Interestingly, coculture of breast cancer cells with mature adipocytes
increased secretion of proinflammatory cytokines and chemokines and consequently the
proliferation, migration, and invasive of cancer cells. The most deregulated miRs were
miR-3184-5p (upregulated) and miR-181c-3p (downregulated) and they target directly
FOXP4 and PPARα, respectively [77]. These data strongly proved that adipocytes-secreted
factors drive the breast cancer progression and metastasis in obese patients. FOXP4 is a
family of forkhead box transcription factors, with a critical role in cancer growth and metas-
tasis in different types of cancer. Likewise, FOXP4 expression was negatively regulated by
miR-3184-5p in NSCLC [78].
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The Notch signaling pathway is a highly conserved pathway, which is required for
cell–cell communication and many biological processes such as proliferation, organ devel-
opment, differentiation, metabolism, and maintenance of stem cells [79]. The activation of
the Notch pathway is associated with poor patient survival in breast cancer [80]. More inter-
estingly, a recent study demonstrated that activation of Notch induces dedifferentiation of
mature adipocytes and promotes tumorigenic transformation in mice [81]. Battle et al. [82]
demonstrated the role of obesity-induced leptin-Notch signaling in breast cancer. These
studies support the concept that adipocytes activate in the breast tumor microenvironment,
the Notch-EMT signaling, increasing the migration and invasion, which in turn, promote a
more aggressive metastatic tumor.

2.10. SRC/SOX2/c-MYC Pathway

It has been shown recently that co-culture of breast cancer cells with immature
adipocytes or cytokines upregulates miR-302b via activation of SRC. Picon-Ruiz et al. [83]
showed that the SRC action sustains cytokine induction and promotes SOX2-dependent
miR-302b upregulation, to further induce MYC and SOX2 expression and increase malig-
nant stem cells. Feed-forward mechanisms established by SRC-driven SOX2 and miR-302b
induction would sustain subsequent cytokine production after initial exposures.

SRC was shown to activate NF-kB via STAT3 to induce IL6 and oppose Let7-mediated
IL6 repression [84]. SOX2 is amplified in certain cancers and can drive clonogenic tu-
mor growth [85]. Moreover, miR-302b expression in breast cancers was associated with
expression of stem cell markers, nodal metastasis, and poor patient outcome [86].

MiR-21
MiR-21 levels were found to be increased in patients with type 1 (T1D) and type

2 diabetes (T2D), the circulating levels of miR-21 reflecting the degree of pancreatic inflam-
mation [87]. Contrarily, there are studies that did not find discrepancies in the miR-21 serum
levels in patients with or without diabetes [88]. Interestingly, miR-21 antagomir amelio-
rates metabolic disturbances in T2D patients by up-regulating the expression of the target
gene TIMP3 [89]. Furthermore, the inhibition of the miR-21 expression may represent
a key point in the improvement of glycemic control through PPARc and GLUT4 regula-
tion [90]. The expression of mir-21 is reduced in insulin-resistant adipocytes. Additionally,
the over-expression of mir-21 improved glucose metabolism and insulinemia via the
PTEN/PI3K/Akt pathway [91].

Low levels of miR-21 were identified in the peripheral blood mononuclear cells of
obese, regardless of the presence of diabetes, which was negatively correlated with inflam-
matory cytokine production [92]. By targeting 3′UTR of STAT3 mRNA, miR-21 regulates
the adipose cell proliferation and differentiation [93]. Additionally, the anti-miR-21 proved
to be efficient for miR-21 inhibition which consequently led to weight loss via its target
genes: transforming growth factor beta receptor 2 (TGFRB2), PTEN, and Sprouty1 and
2 [94]. In subjects with MetS, the circulatory levels of mir-21 were decreased compared to
the patients without MetS [95].

Dysregulation in the expression miR-21 was also observed in neoplasms, miR-21 be-
ing one of the most studied oncomirs (see Table 1). Thus, its overexpression promotes
metastatic phenotype of cancers by targeting RHOB and suppressing its activity [96].

MiR-21 is a determinant of prostate cancer aggressiveness by targeting 3′-UTRs of
PDCD4 and maspin. Upregulation of mir-21 was mediated by NADPH oxidase system-
ROS generation—Akt pathway [97]. Similarly, increased levels of mir-21 were associated
with the prostate cancer aggressiveness, thus being useful in the identification of high-risk
patients [98]. MiR-21 emerged as an independent risk factor for recurrence of prostate
neoplasia in patients with obesity but not in non-obese subjects [99].

As mentioned above, miR-21 exerts its oncogenic effect on HHC cells by regulating
the protein kinase B (AKT)/extracellular signal-regulated kinase (ERK) pathways [100].

As other miRs, mir-21 is overexpressed in osteosarcoma tissue playing a key role in
tumor invasion and migration, having the tumor suppressor gene, RECK, as a target in the
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aforementioned process [101]. MiR-21 implication in CRC was intensively studied. The in-
terplay between CASC7, mir-21, and IGN3 might have a key role in CRC progression [102].
The long intergenic noncoding RNA, LINC00312 disrupts the proliferation, migration,
and invasion of CRC cells by reducing the expression of miR-21 and consequently in-
creasing PTEN expression [103]. MiR-21 promotes the development of CRC by targeting
directly RHOB, thus promoting the cancer cells proliferation, invasion, and inhibiting
the programmed cell death [104]. Additionally, miR-21 promotes the CRC through the
downregulation of Sec23A [105]. The inhibition of miR-21 and the consequent increased
expression of TIMP-3 and RECK proved to reduce the aggressiveness and the ability to
metastasize [250].

The increased expression of oncomir-21 was identified in breast cancer, being corre-
lated with circulating hormone levels. It plays an important role in tumor progression and
aggressiveness by targeting STAT3 [106] and PI3KR1 [107].

The overexpression of miR-21 in non-small cell lung cancer (NSCLC) was associated
with enhanced tumor aggressiveness and invasiveness through PTEN deregulation [108].

The implication of miR-21 in the pathogenesis of papillary thyroid carcinoma is
mediated by the VHL/PI3K/AKT pathway, thus increasing the aggressiveness of this type
of cancer. In addition, VHL may be a valuable tool in order to counteract the effects exerted
by miR-21 [109].

Gastric cancer progression is promoted by the overexpression of miR-21 which reg-
ulates the expression of tumor suppressor genes PTEN and PDCD4 and consequently
increases the cancers’ aggressiveness [110]. The inhibition of miR-21 in gastric cancer
proved to be a promising strategy for counteracting its biological effects by reducing tumor
aggression [251].

A potential mechanism that explains the aggressiveness of melanoma is the overex-
pression of oncomiR-21 that inhibits TIMP3 which regulates the matrix metalloproteinases
activity. Therefore, the inhibition of miR-21 may be promising in melanoma manage-
ment [111].

MiR-21/Sox2/β-catenin is one of the pathways implicated in glioma pathogenesis.
Sox2 overexpression not only increased the expression of β-catenin but also enhanced
tumor aggressiveness [112]. Additionally, miR-21 also plays a prognostic role in glioma
patients [209]. The miR-21 is also correlated with the histological grade of gliomas and
its expression is modulated by the STAT3/β-catenin pathway. Furthermore, the tumors’
invasion capacities are augmented as a result of the regulatory effect of miR-21 over
RECK [113].

MiR-21 is implicated in the pathogenesis of oral squamous cell carcinoma (OSCC)
through its target gene, PTEN. Additionally, the expression of miR-21 and PTEN were asso-
ciated with the tumors’ grade [114]. Tongue squamous cell carcinoma oncomir-21 increased
tumors’ aggressiveness by inhibiting DKK and consequently activating the Wnt/β-Catenin
pathway [115]. As in OSCC, the miR-21/PTEN pathway is implicated in cervical cancer
pathogenesis [117].

The implication of miR-21 in the progression of renal cell cancer (RCC) was also
established [118]. Regarding nasopharyngeal carcinoma, miR-21 expression proved to be
up-regulated in advanced stages and was also correlated with the presence of metastatic
adenopathy. Additionally, miR-21 seems to regulate the expression of BCL2 protein by
targeting directly the BCL2 mRNA [116].

The aforementioned findings shed some light on the implication of miR-21 and its
pathogenic pathways implicated in both MetS and cancer. Thus, miR-21 PTEN-induced
deregulation is implicated in CRC [103], NSCLC [108], gastric cancer [110], OSCC [114],
and cervical cancer [117], being closely correlated with the tumor aggressiveness [110],
grade [114], and invasiveness [108]. Additionally, the miR-21/PTEN/PI3K/Akt pathway
is implicated in the glucose metabolism and insulin homeostasis [91]. STAT3 represents a
common target for miR-21 which is implicated in both breast cancer pathogenesis [106] and
adipose cell proliferation and differentiation [93]. While the inhibition of miR-21 leads to an
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increased expression of TIMP-3 and a consequent reduction in the CRC aggressiveness [250],
the overexpression of miR-21 inhibits TIMP-3 in melanoma [111]. The up-regulation of
TIMP-3 improves the metabolic imbalances in T2D subjects [89]. Thus, PTEN/PI3K/Akt,
STAT3, and TIMP-3 represent major pathways that mediate the crosstalk between MetS
and cancer.

MiR-24-3p
MiR-24-3p is down-regulated in T2D and MetS subjects. MiRs levels correlated with

serum insulin and HbA1c levels in individuals with T2D or MetS, and with higher BMI,
dyslipidemia, and family history [252]. T2D patients expressed low levels of miR-24-
3p [253]. Obesity induces overexpression of miR-24-3p which in turn suppresses HDL
uptake, lipid metabolism, and steroid hormone intake by inhibiting Scavenger Receptor
B-1 (SRB1) [254].

MiR-24-3p functions as a tumor suppressor. Overexpression of miR-24-3p inhibits
p27Kip1 [122] and Bim expression, therefore increasing growth and proliferation of breast
cancer [123].

In CRC, miR-24-3p has a tumor suppressor function, down-regulation of miR-24-3p
promotes CRC development and progression and plays a potential role in prognosis and
therapy. Overexpression of miR-24-3p inhibited cell proliferation, migration, and invasion,
indicating a key role for dysregulation of miR-24-3p in CRC tumorigenesis, and might have
a therapeutic potential to suppress CRC progression [120].

MiR-26a
MiR-26a is involved in insulin signaling pathways through its action on GSK3β, PKCδ,

and PKCθ, in fatty acid metabolism and gluconeogenesis through its effect on the genes
that regulate PCK1 and TCF7L2 expression. It was demonstrated in animal models that a
slight decrease in miR-26a contributes to the development of IR and T2D, and that a slight
increase can prevent the development of complications associated with obesity [255]. At
the same time, it was proved that miR-26a is a potent inhibitor of adipocyte differentiation,
inhibiting adipogenesis through its suppressive action on Fxl19 [256].

MiR-26a plays a dual role in tumorigenesis, functioning both as a tumor suppressor
and as an oncomir. Studies have shown that miR-26a acts as a tumor suppressor in lung
cancer, breast cancer, HCC, rhabdomyosarcoma, prostate cancer, melanoma, papillary
thyroid carcinoma, gastrointestinal carcinomas through its action on key proteins involved
in the control of cell proliferation such as p53, SMAD1, EZH2, IL-6-Stat3, CTDSP1/2/L,
SODD, CKS2, FGF9. On the other hand, miR-26a is involved in tumor pathogenesis through
its oncogenic effect. For example, in glioma, miR-26a acts as a tumor promoter through its
action on the PTEN and PHB signaling pathways, in ovarian cancer through effect on ERα,
and in cholangiocarcinoma by reducing GSK3 [124].

MiR-26 was involved in triple-negative breast cancer development by down-regulating
the expression of BRCA1 [126]. Additionally, in breast cancer, miR-26 expression was
correlated with tumor size, HER2 status, and ki-67 value [125].

An interesting clinical implication could be the use of miR-26a for therapeutic pur-
poses, a number of studies demonstrating that it can influence sensitivity to conventional
chemotherapy [124]. For example, in pancreatic cancer, miR-26a overexpression facilitates
local accumulation and sensitivity to gemcitabine [257].

Mir-26b
MiR-26b is among the obesity-related miRNAs, being reduced in adipocytes from vis-

ceral obesity and IR. The expression level of miR-26b negatively correlates with increasing
BMI and IR in human obese subjects [258]. MiR-26b promotes Glut4 translocation to the
plasma membrane and insulin-stimulated glucose uptake in human mature adipocytes.
MiR-26b increases insulin sensitivity via the PTEN/PI3K/AKT pathway [127].

The MiR-26 family of microRNAs (miR-26a-1, miR-26a-2, and miR-26b) was proved to
be a major inhibitor of adipogenesis, at least in part, by repressing expression of Fbxl19 [116].
Deletion of all miR-26 in mice resulted in excess body fat and dyslipidemia in animals fed
normal chow due to precocious differentiation of adipocyte progenitor cells [126].
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MiR-26b was shown to be down regulated and exhibited an antitumor effect in glioma
and lung cancer cells by targeting cyclooxygenase (COX)-2 [127,128], and in HCC by
targeting EphA2 [129]. Overexpression of miR-26b inhibited proliferation, invasion, and
migration of cancer cells and might be a therapeutic strategy in these tumors [127,129].

MiR-27
MiR-27 has shown to be overexpressed in obesity due to hypoxic condition. The

miR-27 family inhibits PPAR-γ function, activates Wnt1 signaling [259], and suppresses
GLUT-4 and PI3K signaling, leading to hyperglycemia, IR, and hyperlipidemia [34].

The MiR-27 family was upregulated in multipotent stem cells isolated from omen-
tum of morbidly obese patient compared to lean subjects, leading to a dysregulation of
important pathways implicated in the early stages of adipocyte differentiation such as
Wnt, TGFβ/Smad, and PPARγ/C/EBPα pathways [260]. Kang et al. described MiR-27
(miR-27a and miR-27b) as an anti-adipogenic microRNA by targeting prohibitin (PHB) and
impairing mitochondrial function, which leads to a reduction of adipogenesis [131].

MiR-27 acts as a tumor suppressor in breast cancer, by targeting SPRY1, BAK, FOXO1,
and CBLB/GRB2 [132,261,262]. Upregulation of miRNA-27 was correlated with a higher
risk of gastric cancer, by promoting transformation of cancer-associated fibroblasts [130].

MiR-27b
MiR-27b was shown to be upregulated in different models of IR [131]. miR-27b

directly suppresses the expression of insulin receptor (INSR) by targeting 3’UTR of INSR.
Modulation of miR-27b expression in a HFD-induced IR mice model improved glucose
tolerance and insulin sensitivity in adipose tissue by increasing the expression of its target
gene INSR [131].

The upregulation of miR- 27b in obese patients was associated with susceptibility to
CRC through PPARγ promoter hypermethylation and downregulation [37].

MiR-27b was upregulated in cervical cancer cells and tissues [263]. It acts as an
oncogene with a role in the progression of cervical cancer. Upregulation of miR-27b
increased proliferation, cell cycle transition from G1 to S phase, migration, and invasion
of C33A cells, by modulating cadherin 11 (CDH11) and EMT [133]. Recently, it has been
shown that miR-27b may be upregulated by human papillomaviruses HPV16 E7, which
suppresses the expression of PPARγ and increases the level of Na+/H+ exchanger isoform
1 (NHE1) [39].

Contrary, MiR-27b has been reported as a tumor suppressor in several cancers. MiR-
27b was decreased in both NSCLC tissues and cell lines, while its overexpression sup-
pressed NSCLC cells proliferation and invasion, by targeting LIM kinase 1 (LIMK1) [264]
and Sp1 [134].

Mir-30
The miRs expression analysis in ATMs of high fat diet (HFD)-induced obesity in

mice compared to lean normal chow diet mice revealed substantial dysregulations of
miR-30 which led to a M1 polarization of ATM in the HFD mice. The inhibition of miR-
30 proved to induce inflammation through the DLL4-Notch signaling-pathway, thus the
anti-inflammatory role of miR-30 in macrophages [265].

Aside from obesity and inflammation, miR-30 is also implicated in breast cancer [135],
NSCLC [136], and pancreatic cancer [137]. In breast cancer cells, miR-30 was the highest
expressed miRs and its expression was much higher in invasive tumor cells than in mass
tumor cells. Additionally, silencing miR-30 reduced the invasion and growth abilities of
cancer cells but at the same time prolonged their survival time [135].

In NSCLC, the levels of miR-30 are down-regulated which leads to the overexpression
of MMP19 in pulmonary cancer. MMP19 is implicated in the promotion of tumor genesis
and metastasis so it can be a predictor of a poor prognosis in lung cancer patients. Explana-
tory for the prognostic implications of miR-30/MMP19 pathway is the effect of MMP19 on
EMT that results in loss of intercellular adhesion. Furthermore, MMP19 is responsible for
high expression levels of proliferative growth factors [136].
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In pancreatic cancer, miR-30 was implicated in gemcitabine treatment resistant cancer
lines and increased invasiveness but had no impact on cell proliferation [137].

MiR-31
MiR-31 has a higher expression in visceral adipose tissue of obese and diabetic patients

compared to healthy subjects, but it is not clear yet if this is the cause or the consequence
of obesity or T2D. The target genes are involved in adipogenesis (PPARg, PRKAA1, and
ACACA) and insulin signaling (GLUT4 and IRS1) [266]. The secretion of miR-31 from
adipose tissue-derived stem cells promote angiogenesis by targeting the factor inhibiting
HIF-1a, indicating a possible correlation between dysfunction of adipose tissue and tumori-
genesis [267]. The expression of miR-31 in tumor tissue of patients with head and neck
squamous cell carcinoma (HNSCC) was higher than that in adjacent normal tissues. Highly
expressed MiR-31 was associated with tumor differentiation, metastasis, and poor progno-
sis. The expression of miR-31 significantly reduced the expression of the tumor suppressor
gene, adenine thymine-rich interactive domain 1A (ARIDIA) [138]. Similarly, higher miR-31 ex-
pression was detected in rectal cancer tissues compared with adjacent tissues [139]. In vitro
overexpression of miR-31 increases invasiveness, while the proliferation and invasion of
rectal cancer cells were inhibited by inhibiting the expression of miR- 31 [139]. Similarly,
increased miR-31 expression in CRC tissue was associated with disease invasiveness and
poor prognosis, by targeting factor-inhibiting HIF-1α (FIH-1) [140].

MiR-31 proved to have a dual effect on breast cancer. It increases the primary tumor
growth but most important, it is key anti-metastatic miRs in breast cancer. MiR-31 expres-
sion was four-fold reduced in a non-metastatic breast cancer cell line (MCF-7), while its
expression in a metastatic breast cancer line (MDA-MB231) was decreased 100-fold [141].
MiR-31 targets RhoA mRNA, which is implicated in cell movement and cytoskeleton. An-
other study confirmed that miR-31 expression is lost during breast cancer progression [268].
MiR-31 directly binds to the 3′-UTR of G protein alpha-13 (GNA13) and suppresses its
activity. GNA13 is most highly expressed in more aggressive breast cancer cells [268].

Similarly, the pro-tumorigenic effect of miR-31 loss has been described in malignant
mesothelioma (MM) of pleura [142]. MM cell lines derived from patients with aggressive
tumors did not express miR-31 due to homozygous deletion of the miR-31-encoding
gene that resides in 9p21.3. Re-introduction of miR-31 inhibited proliferation, migration,
invasion, and clonogenicity of MM cells. The pro-survival phosphatase PPP6C possesses
three potential binding sites for miR-31 in its 3′-UTR and was down-regulated by miR-
31 introduction and up-regulated in clinical MM specimens [142].

MiR-31 demonstrated a tumor suppressive role in glioma tumor. Its expression was
markedly reduced both in glioma cell lines and in glioma tumor specimens compared
with the adjacent human brain tissues [143]. miR-31 downregulation was due to hyperme-
thylation of its promoter region. It modulates Dock1 expression, while Dock1 promotes
the IL8-induced chemotaxis and mesenchymal transition of glioma cells through the NF-
jB/Snail signaling pathway. Moreover, the therapy with a DNA methyltransferase inhibitor
restored miR-31 expression in glioma cells and inhibited cell invasion. Similarly, miR-31 is
downregulated and acts as a tumor suppressor in gastric [269] and serous ovarian cancer
cell lines as well in serous ovarian tumors via regulation of zeste homolog 2 (ZH2) [144].
Overexpression of miR-31 causes cell cycle arrest, inhibition of proliferation, migration,
and invasion of the gastric, ovarian, osteosarcoma, and prostate cancer cell lines [144,269].

MiR-34a
Overexpression of miR-34a in visceral fat of overweight/obese subjects is associated

with IR and metabolic inflammation. Lipid loaded mature adipocyte-secreted exosomes
transport miR-34a to macrophages and suppress the anti-inflammatory M2 phenotype by
repressing Kruppel-like factor 4 (Klf-4) [270]. MiR-34a is a key mediator in exacerbating
obesity-related systemic inflammation and metabolic dysregulation [270]. MiR-34 was
also described to be increased in humans with non-alcoholic fatty liver disease (NAFLD)
and T2D [271,272], and some experimental evidence indicates that increased miR-34a
levels in the liver are associated with metabolic alterations [273]. MiR-34 suppresses WAT
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browning in obesity, by targeting Fibroblast Growth Factor Receptor 19 (FGFR19) and
SIRT1 (sirtuin 1). SIRT1 suppression is linked to impaired transcriptional regulation of
brown and beige markers through deacetylation of PPARGC1-α [274].

Many studies reported that miR-34a is down-regulated and acts as a tumor suppressor
in human breast tissue [157]. MiR-34a acts as a tumor suppressor miR by down-regulating
its target genes such as BCL-2 and SIRT1 [145] and Notch1 [146], Wnt/β-catenin signaling
pathway [147], fra-1 [148] and MYC [149].

In CRC, Siemens et al. showed that the formation of distant metastases is associated
with epigenetic silencing of miR-34a in primary tumors. In addition, they found that
patients who subsequently developed distant metastases had a preferential up-regulation
of the miR-34a targets Snail, c-Met, and β-catenin, which have prometastatic functions, in
the primary tumors. Notably, the authors indicate that the detection of enhanced c-Met and
β-catenin expression alongside miR-34a CpG methylation can have prognostic value [152].

Fujita et al. studied the role of miR-34a in anticancer drug resistance in prostate cancer
cell lines. They found a significantly reduced expression of miR-34a in p53-null PC3 cells
and p53-mutated DU145 cells compared to wild-type p53 LNCaP cells. Ectopic expression
of miR-34a can decrease SIRT1 mRNA and protein levels, lead to cell cycle arrest and
growth inhibition, and mitigate chemoresistance to the anticancer drug camptothecin by
inducing apoptosis [275].

MiR-96
MiR-96 targets directly the 3’UTRs of INSR and IRS-1, and decreases their expression at

the post-transcriptional level. Induction of miR-96 by dietary saturated fatty acids impairs
insulin signaling and exacerbates hepatic insulin resistance through the suppression of
INSR and IRS-1 [276]. Grape seed proanthocyanidins extracts significantly decreases HFD-
induced miR-96 upregulation in mice, and reduces the expressions of miR-96 downstream
molecules, FOXO1, p-mTOR, mTOR, and LC3A/B [277].

MiR-96 functions as an oncogene in several types of cancers. Thus, miR-96 is overex-
pressed in HCC and promotes cell proliferation, migration, and invasion by inhibiting the
tumor suppressors SOX6 [159] and EphrinA5 [160]. It is upregulated in breast cancer and
enhances tumor growth and progression by silencing the protein tyrosine phosphatase,
PTPN9 [161] and the tumor suppressor genes FOXO1 [162] and FOXO3a [163]. PTPN9 may
contribute to tumor suppression by dephosphorylation and silencing of EGFR, ErbB2, and
STAT3 in breast cancer [161]. Similarly, miR-96 is significantly upregulated in NSCLC
and functions as an onco-miRNA via targeting FOXO3 [164]. MiR-96 up-regulation was
demonstrated in esophageal cancer, where it promotes proliferation and chemo- or radio
resistance by RECK down-regulation [165].

Contrary, miR-96 may act as a tumor suppressor, inhibiting migration, invasion, and
proliferation of glioblastoma multiforme cells via down regulation of astrocyte elevated
gene-1 (AEG-1) at the mRNA and protein levels [166]. It suppresses renal cell carcinoma
invasion by downregulation of Ezrin expression [167]. Similarly, Yu et al. showed that
miR-96 functions as a tumor-suppressor in pancreatic cancer cells, where it decreased
cell migration and invasion and decreased tumor growth via downregulation of KRAS
oncogene [168]. More recently, it has been shown that lncRNA TP53TG1 is upregulated in
pancreatic ductal adenocarcinoma and contributes to the tumor growth and progression.
TP53TG1 operates as a sponge for miR-96 to weaken the suppressive effect of miR-96 on
KRAS, and thus increases the expression of KRAS [278].

MiR-100
It has been demonstrated that normoglycemic and T2D obese patients have a reduced

miR-100 expression. Obese patients with T2D show a much more reduced expression com-
pared to normoglycemic obese patients, particularly in visceral adipose tissue compared
to subcutaneous tissue. These low values are correlated with high values of TGL, basal
glycemia and hsCRP. Low miR-100 induces an increase in VLDLR and differentiation of
preadipocytes into mature adipocytes capable of accumulating higher lipid amounts, thus
contributing to the pathogenesis of obesity.
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The mTOR and IGFR signaling pathways represent direct targets of miR-100, being in-
volved in adipogenesis, IR, as well as carcinogenesis. Inhibition of mTOR by rapamycin in-
hibits adipogenesis through its effect on PPAR-γ activity. IGFR mediates similar metabolic
effects regarding glucose influx and IR adipogenesis. Because of structural similarities,
IGFR and IR can form hybrid IR receptors [279].

Regarding carcinogenesis, miR-100 overexpression inhibits the transcription of a
number of proteins in the IGF/mTOR signaling pathway, such as IGF1R, IGF2, MCL1,
with a role in tumor proliferation and survival and involved in the development of several
types of cancers: urinary bladder urothelial carcinoma, chondrosarcoma, endometrioid
endometrial carcinoma, breast carcinoma, esophageal squamous cell carcinoma (ESCC),
acute leukemia, pancreatic adenocarcinoma, H&N cancers, HCC, prostatic adenocarcinoma,
NSCLC [280].

In addition to its pathogenic role, miR-100 also has a potential diagnostic, prognostic,
and therapeutic role. For example, in urinary bladder cancer, studies have demonstrated
that low miR-100 values represent an independent negative prognostic factor that is corre-
lated with shorter PFS (progression-free survival) and OS (overall survival), and might be
a useful instrument in patient stratification [169]. Similarly, the negative prognostic role of
low miR-100 expression was demonstrated for HCC, RCC, bladder cancer, NSCLC and
epithelial ovarian cancer [170], endometrioid endometrial carcinoma [171], CRC [172].

MiR-125b
A study showed that hepatic miR-125b expression is much higher in persons with

T2DM compared to healthy individuals, and this contributes to the development of insulin
resistance. The inhibition of endogenous miR-125b contributes to increasing insulin sensi-
tivity in insulin resistance conditions. The authors also demonstrated that this effect is the
result of the action of miR-125b on PI3K, which determines a decrease of insulin-induced
AKT phosphorylation in hepatocytes [281].

In contrast, a study on animals showed that miR-125b expression is lower in the
pancreatic cells of mice with T2D, but these presented a higher expression of DACT1, JNK,
and c-Jun, demonstrating that miR-125b stimulates the increase of insulin sensitivity and
pancreatic beta cell function through the inhibition of the JNK signaling pathway due to
the suppressive effect on DACT1 [282].

SIRTs represent a group of enzymes with an important role in cell metabolism, inflam-
mation, reactive oxygen species (ROS) production, and in the balance between apoptosis,
survival, and cell proliferation. It was demonstrated that SIRT1 values are lower in the
adipose tissue of obese persons compared to normal weight subjects, and that they are
negatively correlated with miR-125b expression. SIRT1 stimulates lipolysis through its
action on FOXO1 and suppresses the expression of some pro-inflammatory genes in the
adipocytes and macrophages present in adipose tissue by interference with the NF-κB
signaling pathway, which increases insulin sensitivity [283].

In cancer, miR-125b has an oncogenic effect in hematological cancers and a tumor
suppressive effect in solid cancers. For example, in diffuse large B-cell lymphoma (DL-
BCL), constitutive activation of the NF-κB signaling pathway occurs through the sup-
pressive effect of TNFAIP3 which normally inhibits the activation of this pathway by
miR-125b [173]. Other targets of miR-125 involved in the development of hematological
cancers are MAPK11, IRF4, and the TET2-VEGFA pathway in acute leukemia [174]. Tumor
suppressive effects were observed in HCC, CRC, RCC, salivary gland carcinoma, thyroid
cancer, laryngeal carcinoma, osteosarcoma, prostatic adenocarcinoma, melanoma, Ewing
sarcoma, glioblastoma, gallbladder cancer through its action on mRNA genes, with effects
on many pathways involved in carcinogenesis such as Wnt, PI3K/Akt, STAT-3, MAPK,
NF-κB, p53 [175].

Overexpression of miR-125b was associated with resistance to cetuximab treatment
in CRC and SCCHN, while in other cancers such as NSCLC, HCC, breast cancer, uterine
cervical cancer, its overexpression increased sensitivity to chemotherapy. MiR-125b was
also proposed as a potential marker of response to immunotherapy in NSCLC [284].
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Mir-125b is implicated in the crosstalk between IR/MetS and cancer via its direct
action on the PI3K/Akt pathway. Mir-125b decreases insulin sensitivity and disrupts
glucose homeostasis by targeting PI3K in liver cells [281]. Additionally, mir-125 and its
direct targets ErbB2, ErbB3 are implicated in prostate cancer initiation and progression
through the PI3K/Akt pathway [285]

MiR-126
One of the targets of miR-126 is IRS-1, a protein with an important role in signal

transduction in the insulin signaling pathway. It was demonstrated that low miR-126 ex-
pression is involved in the development of IR through the increase in the expression of
these proteins [41]. Low values of miR-126 are also found in subjects with prediabetes
compared to healthy individuals, a study even demonstrating the correlation of its serum
values with the risk for subsequent T2D [286]. Another mechanism by which miR-126 is
involved in the pathogenesis of inflammation and IR is through its effect on CCL-2 release
from human adipocytes and macrophages [287].

In addition to the regulatory effect on the insulin signaling pathway [41], the miR-
126/IRS-1 axis is involved in cancer pathogenesis [176]. IRS-1 disruptive effect on cell
growth and DNA repair and replication might explain the mir-126 implication in cancer
development and progression. MiR-126 acts as a tumor suppressor and a low expression
has been observed in many cancers–carcinomas of the GI tract, lung, breast, prostate,
thyroid. Downregulation of this miR facilitates tumor progression, migration, angiogenesis,
and survival through its action on several genes and molecular pathways involved in
oncogenesis such as PI3K, KRAS, EGFL7, CRK, ADAM9, HOXA9, IRS-1, SOX-2, CADM1,
PAX4, SLC7A5, and VEGF [176].

Mir-130
Among white adipose tissue deregulated miRs, of great importance is miR-130 which

might be overexpressed in the context of inflammatory stimulation, by TNF-alpha, lead-
ing to adipose cell dysfunction [177]. In diet induced obesity, mir-130 inhibition of
APCDD1 leads to defective adipose cell differentiation through a plethora of laborious
pathways [288]. Adolescents suffering from obesity proved to have higher plasmatic levels
of mir-130 [289].

In gastric cancer cells, mir-130 enhanced their proliferation and invasion abilities. By
targeting miR-130 with MRPL39, the aforementioned effects were counteracted through an
anti-tumor effect [290].

Mir-143
Upregulation of mir-143 in dietary mouse models of obesity impairs insulin-stimulated

AKT activation, through downregulation of oxysterol-binding protein-related protein 8
(ORP8) underlying the mechanism implicated in the obesity associated-IR [291]. Mir-
143 expression proved to be deregulated in the mesenteric fat tissue of mice with high-
fat-diet induced obesity. The overexpression of mir-143 was associated with leptin levels
and IR. Furthermore, mir-143 disrupted the expression of PPARg and Ap2, adipocyte
differentiation markers [292]. The overexpression of mir-143 was also identified in obese
and morbidly obese patients [289,293]. Furthermore, the expression of mir-143 proved to
be deregulated in the pediatric population suffering from obesity and its low levels were
associated with disturbances in the lipid metabolism [289]. On the contrary, in the study
conducted by Viesti A Collares R, no difference was identified regarding mir-143 expression
between obese and non-obese patients [294].

While the overexpression of mir-143 is closely associated with IR [292] and obe-
sity [291], its implication in oncogenesis was also established firstly through the in-
hibitory effect over the expression of Bcl2, extracellular signal-regulated kinase-5(ERK5),
and KRAS [178]. Mir-143 proved to have antitumor effects in BC cells, thus abolishing the
cancer cells growth by reducing the expression of ERBB3 [179], Kras, Vimentin, CXCR4,
MMP-9 and increasing the expression of E-Cadherin [180]. Moreover, it acts synergically
with miR-145, thus the cluster miR-143/145 exerts a greater anti-tumor effect than each
individual miR [179].
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The expression of miR-143 was also downregulated in ESCC. Mir-143 exerts its tumor
suppressor capacities by targeting FAM83F and by inhibiting its activity, thus possess-
ing anti-proliferative affects in ESCC cells [181]. Furthermore, miR-143 proved an anti-
cancerous effect in gastric cancer (via DNMT3A) [182]. It has been shown that miR-143 has
different expression patterns in colon vs. rectal cancer although the clinical implication of
this phenomenon is unknown [295]. In the case of hepatocellular carcinoma, miR-143 reg-
ulates a plethora of genes. Thus, miR-143 downregulates the expression of TLR2, NF-κB,
MMP-2, MMP-9, CD44, MMP14, integrin β1, and integrin β4 and upregulates the expression
of E-cadherin [183].

Regarding osteosarcoma, miR-143 reduces the tumors’ capacity for lung metastasis
with no influence on the neoplastic cell proliferation rate, mainly through the downregula-
tion of PAI-1 [184].

TGF-B upregulates the miR-143 expression in NSCLC. Additionally, miR-143 sup-
pressed the migration and invasion of NSCLC cells [185].

Taking into consideration the aforementioned findings, it is obvious that KRAS rep-
resents a crucial target that links the tumor suppressor miR-143 and various types of
cancers (cervical cancer, prostate cancer, CRC, breast cancer NSCLC). KRAS is implicated
in a plethora of essential pathways implicated in cancer cells proliferation, angiogenesis,
invasion, and dissemination [296].

MiR-145
MiR-145 regulates AKT enzyme expression, which couples PI3K and GLUT4 acti-

vation, an important part in the insulin signaling pathway. A study demonstrated that
obese mice present upregulation of miR-145, which prevents insulin-stimulated AKT acti-
vation [41]. Kirby et al. subsequently demonstrated in a study evaluating the expression of
some miRs in subcutaneous adipose tissue in individuals with preserved insulin sensitivity
and in persons with insulin resistance that miR-145 expression is at least three times lower
in insulin resistant persons. In the same study, the authors evidence the target genes of
miR-145: ADAM22, MYO5A, LOX, and GM2A [297].

Studies have shown that miR-145, along with miR-143, plays a role in controlling
vascular homeostasis by regulating smooth muscle cell plasticity and responsiveness to
the action of ACE (angiotensin-converting enzyme), which suggests a possible connection
between the imbalance of miR-145/143 associated with obesity, increased cardiovascular
risk, and poor blood pressure control, representing in this way a potential therapeutic
target. It should be mentioned that low miR-143/145 expression was observed in several
types of cancer, which might limit therapeutic potential in metabolic diseases [291].

MiR-145 is one of the most studied miRs in cancer, being involved in tumor prolifera-
tion, differentiation, apoptosis, metastasis, angiogenesis processes, as well as in therapeutic
resistance. A meta-analysis showed that low miR-145 expression is associated with shorter
OS in ovarian, CRC, glioma, osteosarcoma [186].

Like in the case of other miRs, the actions of miR-145 are multiple. In urinary bladder
urothelial carcinoma, it has a suppressive action by acting on KLF4, which disturbs the
Warburg effect and induces cell proliferation inhibition. Suppressive action has also been
demonstrated in ESCC through the action on c-Myc, and in gastric cancer where miR-
145 suppression increases Ets1 expression, facilitating in this way tumor metastasis and
angiogenesis. In TNBC, it plays a role in cell adhesion, regulating the activity of E-cadherin.
Certain targets of miR-145 are involved in the pathogenesis of some cancers. Through the
effect on the FSCN1 gene, it is involved in the tumorigenesis of urinary bladder, esophageal,
nasopharyngeal, liver, prostate cancer [186].

It has been demonstrated that miR-145 overexpression can increase the efficacy of
chemotherapy. For example, in BC, miR-145 may induce intracellular doxorubicin accumu-
lation through the suppressive effect on MRP1. The inhibition of the PI3K/AKT signaling
pathway, which in turn induces MRP1 and P-gp inhibition, increases the sensitivity of
esophageal squamous cell carcinoma to cisplatin and that of CRC to oxaliplatin. An increase



Int. J. Mol. Sci. 2021, 22, 6337 17 of 41

in tumor cell sensitivity to the cytotoxic action of cetuximab in CRC was also observed,
through a reduction of BCL2 and an increase in the activity of caspases 3/7 [48].

Noteworthy is the implication of mir-145 in the development of breast cancer associ-
ated with T2D [298]. The mir-145/PI3K/Akt axis might represent a common pathway that
links mir-145 expression to both MetS and cancer, taking into consideration its implication
in the insulin signaling pathway [41] and in cancer pathogenesis [48].

MIR-155
MiR-155 is implicated in the glucose metabolism via C/EBPβand HDAC4. Overexpres-

sion of miR-155 was associated with an improvement of glucose serum levels. Additionally,
the miR-155 knockout not only causes hyperglycemia but also increases the IR [299]. Up-
regulated miR-155 levels were also identified in the IR associated with Polycystic Ovary
Syndrome (PCOS) model in rats. The IL-6/pSTAT3/miR-155/miR-21/PPAR-c pathway
might represent the core mechanism which underlies the PCOS-associated IR [90].

MiR-155 has been found to be implicated in diet-induced obesity. Thus, miR-155 loss
in mice resulted in less weight gain associated with a high-fat diet due to the upregulation
of several genes implicated in adipogenesis (Creb1, Cebpb, Pnpla2, Fabp4, Fasn, Ucp1, Cidea,
PPARg), insulin sensitivity (Irs1, Glut4), and inflammation (AdipoQ) [300]. A higher ex-
pression of miR-155, induced by NF-kB/TNF-alpha, was detected in subjects with obesity.
Concerning the chronic inflammatory state associated with obesity, miR-155 mediates this
process by inducing the expression of a plethora of genes and chemokines [301]. The
adipose tissue associated macrophages represent a cellular source of miR-155 in the fat
tissue [302]. In obese mice, ATM expressed higher levels of intracellular mir-155. The
higher expression of miR-155 led to deregulations in the glucose metabolism, decreasing
the glucose cellular uptake [7]. An interesting finding is that miR-155 may play a role in
the mechanisms underlaying the obesity paradox [303].

Table 1. Adiposity-related miRs with potential role in cancer.

miRNAs Target Genes and Functions
in Obesity/IR/MeS

Target Genes or
Pathway in Cancer

Type of Cancer
(Oncomir/Tumor

Suppressor)

References for Cancer
Genes or Pathway

miR-21

TIMP3
PPAR-c, GLUT4

PTEN/PI3K/Akt pathway;
STAT3,

TGFRB2, PTEN,
Sprouty1 and Sprouty 2

RhoB HCC, Breast cancer ↑ [96]

PDCD4 and Maspin Prostate cancer ↑ [97,98]

Prostate cancer ↓ [99]

AKT/ERK pathways HCC ↑ [100]

RECK Osteosarcoma ↑ [101]

CASC7 and IGN3 Colorectal cancer ↑ [102]

PTEN Colorectal cancer ↑ [103]

RhoB Colorectal cancer ↑ [104]

Sec23A Colorectal cancer ↑ [105]

TIMP-3 and RECK Colorectal cancer ↑ [105]

STAT3, PIK3R1 Breast cancer ↑ [106,107]

PTEN NSCLC ↑ [108]

VHL/PI3K/AKT Papillary thyroid cancer ↑ [109]

PTEN and PDCD4 Gastric cancer ↑ [110]

TIMP3 Melanoma ↑ [111]

Sox2/β-catenin, RECK Glioma ↑ [112,113]

PTEN, DKK, BCL2 OSCC ↑ [114–116]

PTEN Cervical cancer ↑ [117]

RCC ↑ [118]
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Table 1. Cont.

miRNAs Target Genes and Functions
in Obesity/IR/MeS

Target Genes or
Pathway in Cancer

Type of Cancer
(Oncomir/Tumor

Suppressor)

References for Cancer
Genes or Pathway

miR-24-3p
SR-B1, HMGCR, DHCR24,

SREBP2
KCNQ1

LPAATβ Osteosarcoma ↓ [119]

CCK8 Colorectal cancer ↓ [120,121]

p27Kip1, Bim Breast cancer ↓ [122,123]

miR-26a
GSK3β, PKCδ, PKCθ,

ACSL3, ACSL4, PCK1,
TCF7L2, FXl19

p53, SMAD1, EZH2,
IL-6-Stat3,

CTDSP1/2/L, SODD,
CKS2, FGF9

Lung, breast, HCC,
rabdomyosarcoma,

prostate, melanoma,
papillary thyroid, gastric,

pancreatic cancer ↓

[124]

MCL-1
BRCA1

Breast cancer ↓
Triple-negative BC↓

[125]
[126]

PTEN and PHB, ERα,
GSK3

Glioma, ovarian cancer,
colon cancer,

cholangiocarcinoma ↑
[124]

miR-26b Glut 4, PTEN/PI3K/AK,
Fbxl19

Cox-2 Glioma, NSCLC ↓ [127,128]

EphA2 HCC ↓ [129]

miR-27
PPAR-γ, Wnt1, GLUT-4 PI3K,

PRDM16, PPARα, CREB,
PGC1β

ZEB1, ZEB2, Slug,
Vimentin, E-cadherin Gastric cancer ↓ [130]

MDR1/P-glycoprotein Cancer cells ↑ [130]

SPRY1, BAK, FOXO1,
CBLB/GRB2 Breast cancer ↓ [131,132]

miR-27b PHB, INSR, PPARγ

PPARγ CRC ↑ [37]

CDH11, EMT,
PPARγ-

NHE1 pathway
Cervical cancer ↑ [39,133]

LIMK1, Sp1 NSCLC ↓ [48,134]

miR-30 DDL40-Notch-1

Breast cancer ↑ [135]

MMP19 NSCLC ↑ [136]

Fibronectin, Vimentin,
N-cadherin Pancreatic cancer ↑ [137]

miR-31
PPARg, PRKAA1, ACACA,

GLUT4, IRS1, HIF-1a

ARIDIA HNSCC ↑ [138]

Rectal cancer ↑ [139]

FIH-1 CRC ↑ [140]

RhoA, GNA13 Breast cancer ↑ [140,141]

PPP6C Mezothelioma ↓ [142]

Dock1, NF-jB/Snail Glioma ↓ [143]

ZH2, p53 pathway
Gastric, ovarian,

osteosarcoma, prostate
cancer ↓

[63,144]



Int. J. Mol. Sci. 2021, 22, 6337 19 of 41

Table 1. Cont.

miRNAs Target Genes and Functions
in Obesity/IR/MeS

Target Genes or
Pathway in Cancer

Type of Cancer
(Oncomir/Tumor

Suppressor)

References for Cancer
Genes or Pathway

miR-34a
Inhibit macrophage
M2 induced adipose

inflammation

BCL-2 and SIRT1 Breast cancer↓ [145]

Notch1 Breast cancer↓ [146]

Wnt/β-catenin
signaling pathway Breast cancer↓ [147]

Fra-1 Breast cancer↓ [148]

MYC, P53 Breast cancer↓ [149,150]

E2F3 Neuroblastoma ↓ [151]

c-Met and β-catenin Colon cancer ↓ [152]

P53 Osteosarcoma ↓ [153]

MET, P53 Ovarian cancer ↓ [154,155]

CD44 Prostatic cancer ↓ [156]

AXL Solid cancer ↓ [157,158]

miR96 INSR, IRS

SOX6, EphrinA5 HCC ↑ [159,160]

PTPN9, FOXO1,
FOXO3a Breast cancer ↑ [161–163]

FOXO3 NSCLC ↑ [164]

RECK ESCC ↑ [165]

AEG-1 Glioblastoma ↓ [166]

Ezrin RCC ↓ [167]

KRAS Pancreatic cancer ↓ [168]

miR-100 mTOR, IGFR, VLDLR

Bladder cancer ↓ [169]

HOXA1, Rac1, ICMT,
EphB6, AGO2, Plk1,
Wnt, β-catenin or

RBSP3

HCC, RCC, bladder cancer,
NSCLC, and epithelial

ovarian cancer ↓

[170]
[171]

mTOR kinase Endometrioid endometrial
carcinoma ↓ [171]

CRC ↓ [172]

miR-125b

PI3K/AKT
JNK signaling pathway,

SIRTs

NF-κB, DLBCL ↑ [173]

MAPK11, IRF4,
TET2-VEGFA Acute leukemia ↑ [174]

Wnt, PI3K/Akt,
STAT-3, MAPK, NF-κB,

p53

HCC, CRC, RCC, thyroid
larynx, osteosarcoma,

prostate melanoma, Ewing
sarcoma, glioblastoma,

gallbladder, ovarian cancer
↓

[175]

miR-126 IRS-1, CCL2

PI3K, KRAS, EGFL7,
CRK, ADAM9,

HOXA9, IRS-1, SOX-2,
SLC7A5 and VEGF

Gastrointestinal tract,
genital tracts, breast,

thyroid, lung cancers ↓
[176]

NSCLC ↓ [177]

CRC ↓ [176]

RCC ↓ [176]
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Table 1. Cont.

miRNAs Target Genes and Functions
in Obesity/IR/MeS

Target Genes or
Pathway in Cancer

Type of Cancer
(Oncomir/Tumor

Suppressor)

References for Cancer
Genes or Pathway

miR-143
ORP8/insulin-AKT pathway,

PPARg and aP2
Leptin

Bcl2, ERK5, KRAS Cervical, prostate, CRC ↓ [178]

ERBB3 Breast cancer ↓ [179]

KRAS, Vimentin,
CXCR4, MMP-9 Breast cancer ↓ [180]

FAM83F Esophageal squamous cell
carcinoma ↓ [181]

DNMT3A Gastric cancer ↓ [182]

TLR2, NF-κB, MMP-2,
MMP-9, CD44, MMP14,
integrin β1, integrin β4

HCC ↓ [183]

PAI-1/MMP-13 Osteosarcoma ↓ [184]

Smad3, CD44, and
K-Ras NSCLC ↓ [185]

miR-145
AKT/PI3K/GLUT4

ADAM22, MYO5A, LOX,
and GM2A

PI3K/AKT, MRP1,
SMAD, KLF4, c-myc,

Ets1, E-cadherin,
FSCN1, BCL2

BC, gastric, CRC, NSCLC,
glioma, HCC,

osteosarcoma, ovarian,
cervical, prostate, bladder,
nasopharyngeal cancer ↓

[186]

miR-148a-3p inhibit DNMT1

DNMT1 Esophageal Cancer↓ [187]

WNT5A, TGF-α,
BTG2 and MYCBP Chordoma ↑ [188]

miR-155

C/EBPβ, HDAC4,
PPARγ,
GLUT4,

IRS1,
PPAR-c,
Creb1,

Cebpb, Pparg,
Pnpla2, Fabp4,
Fasn, AdipoQ,

TNF∝, NF-kB pathway,
ERK pathway, Caspase

3
Osteosarcoma ↑ [189]

[190]

RhoA, PEG10 and MYB Breast cancer ↑ [191,192]

Gallbladder cancer ↑ [193]

NDFIP1 Melanoma ↑ [194]

FGF2 ESCC ↑ [195]

Nasopharyngeal carcinoma
↑ [196]

IGF-1 Colon cancer ↑ [197]

181c-3p PPARα; reduced inhibition
of PPARα, BC proliferation

PPARα Breast cancer ↓ [77]

PTEN Breast cancer ↑ [198]

PTEN/PI3K/pAkt CRC ↓ [199]

PTEN/PI3K/AKT NSCLC ↓ [200]

XIAP, caspase 9,
caspase 3 Gastric cancer ↓ [201]

CTGF, BIRC5, BLC2L1 Pancreatic cancer ↑ [202]

MGMT Glioblastoma ↓ [203]

SPP1 HCC ↓ [204]

SMAD7, TGF-β Osteosarcoma ↓ [205]
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Table 1. Cont.

miRNAs Target Genes and Functions
in Obesity/IR/MeS

Target Genes or
Pathway in Cancer

Type of Cancer
(Oncomir/Tumor

Suppressor)

References for Cancer
Genes or Pathway

MiR-193b CCL2, NTFYα si NRIP1

DDAH1 Triple-negative breast
cancer ↓ [206]

TGF-β, SMAD3, NF1 CRC, Glioma, Head and
neck SCC↑ [207]

K-Ras, ERBB4 Lung cancer↓ [207]

MAX, KRAS, TGF-β,
CCND1, ETS1, MAPK

ESCC, Gastric cancer, HCC,
Pancreatic cancer ↓ [207]

Mcl-1, c-kit, MYB Melanoma, Leukemia ↓ [207]

caspase 3 and 7, uPA Ovarian, Prostate cancer ↓ [207]

miR-210 NDUFA4
GPD1L

LOXL4 Lung adenocarcinoma ↑ [208]

Glioma ↑ [209]

Osteosarcoma ↑ [210]

HOXA 9 Pancreatic cancer ↑ [211]

miR-221
SIRT1

IRS/PI3K/AKT

PTEN/TRAIL Breast cancer↑ [212,213]

ERα, PR, HIF1-α,
SLUG Endometrial cancer↑ [214]

Prostate cancer ↑ [98],

MBD2 OSCC ↑ [215]

Kit NSCLC ↑ [216]

PTEN, PPP2R2A Osteosarcoma↑ [217,218]

AKT/ERK pathway HCC ↑ [100]

miR-222
CXCR4

GLUT4 ERs, BTG2, adipor1

p27 (kip1) NSLCC [216]

MST3 CRC ↑ [219]

PPP2R2A Papillary thyroid cancer ↑ [220]

miR-221/222 CAV1

CAV1 Breast cancer↑ [51]

β4 integrin, STAT5A,
and ADAM-17 Breast cancer↑ [221]

p27, p57, ER∝ Breast cancer↑ [222]

Wnt/β-catenin, WIF1,
SFRP2, DKK2, AXIN2 Breast cancer↑ [223]

TIMP2 Gliomas ↑ [224]

Retinoblastomas ↑ [225]

miR-302
Maintain SOX2 and c-Myc by
targeting repressor of c-Myc

MACC1 HCC ↓ [83]

Sox2, c-Myc, Nanog Breast cancer ↑ [226]

RUNX2 Breast cancer ↓ [227]

TGF-β
Mucoepidermoid

carcinoma of salivary
glands ↑

[228]

TGFBR2/SMAD3 RAB11A/Wnt/β-
Catenin Pituitary Tumors ↑ [229]
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Table 1. Cont.

miRNAs Target Genes and Functions
in Obesity/IR/MeS

Target Genes or
Pathway in Cancer

Type of Cancer
(Oncomir/Tumor

Suppressor)

References for Cancer
Genes or Pathway

miR-365 Cebpα, Fabp4, and Pparγ

BTG2 Pancreas ↑ [230]

ETS1 NSCLC ↓ [231]

ADAM1 Triple negative breast
cancer ↓ [232]

miR-375
ERK 1

2
Myotrophin

PSAT1 ESCC ↓ [233]

AEG-1 HCC, Head and neck
cancers ↓ [234,235]

PDK1, YWHAZ Gastric ↓ [236]

miR 3184-3p FOXP4–NOTCH induced
EMT

N-cadherin, vimentin,
E-cadherin Breast cancer ↓ [77]

Let 7

Inhibit HMGA2, inhibit
preadipocyte proliferation,
insulin-PI3K-mTOR IGF1R,

INSR, IRS2

HMGA2 Breast cancer ↓ [302]

lin-41, hbl-1/lin-57
RAS Lung cancer ↓ [229,237,238]

KDM3A/DCLK1/FXYD3 Lung cancer ↓ [239]

HGMA2 Lung cancer ↓ [240]

RAS, c-MYC CRC ↑ [241]

HGMA2
LIN 28 CRC ↓ [242–244]

E2F2, CCND2 Prostate cancer↓ [245]

RAS Ovarian cancer ↓ [246]

MYCN Neuroblastoma ↓ [247,248]

Aurora-B Osteosarcoma ↓ [249]

The increased expression of oncomiR-155 in the osteosarcoma cancer cells was asso-
ciated with the upregulation of several cancer stem cell surface markers, transcriptional
factors, and Actinomycin D treatment resistance. Additionally, a positive feedback loop
was identified between TNF-alpha and miR-155 which resulted in increased cancer cells
aggressiveness [189]. MiR-155 downregulation suppresses cell proliferation and leads to
cell programmed death via the NF-kB pathway [190].

OncomiR-155 plays a part in the breast cancers’ pathophysiological process. Thus,
miR-155 was correlated with tumor-associated inflammation, metastatic adenopathy [191],
and aggressiveness [192].

The overexpression of oncomiR-155 in gallbladder cancer was demonstrated and
proved to be a marker of tumors’ aggressiveness and unfavorable prognosis being associ-
ated with cancers’ progression and lymph-node metastasis [193].

The implication of miR-155 was also observed in other types of cancers, for example:
uveal melanoma via Nedd4-family interacting protein 1 [194], esophageal cancer via
FGF2 [195], nasopharyngeal carcinoma [196], and colon cancer [197].

A common target of mir-155 that links MetS/obesity and cancer is PPARg. PPARg medi-
ates the mir-155 effect on adipose cells. Thus, mir-155, by targeting the PPAR mRNA 3′UTR,
regulates the chemokine expression in adipocytes, the overexpression of mir-155 being
associated with the adipose tissue inflammation [282]. Furthermore, the downregulation of
PPARg disrupts the metabolic homeostasis in adipose tissue and favours the beige/brown
differentiation of fat cells. More important is that the upregulation of PPARg proved to be
helpful in combating breast cancer-associated cachexia [304].
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MiR-193b
High values of miR-193b were detected in the serum of persons with IR compared

to the serum of subjects with preserved insulin sensitivity, as well as in patients with
prediabetes compared to those with T2D, suggesting the utility of this biomarker in the
early diagnosis of these disorders [305,306]. MiR-193b is expressed in high amounts in
adipose tissue, where it contributes to the differentiation of brown adipocytes and to the
decrease of inflammation through its inhibitory action on CCL-2 (chemokine C-C motif
ligand 2), a key factor involved in inflammation associated with obesity. Low MiR-193b
expression was found in subcutaneous adipose tissue of people with obesity [177].

Regarding its implication in carcinogenesis, miR-193b seems to play a dual role, acting
as an oncogene in some types of cancers and as a tumor suppressor in others [207].

Several molecular pathways have been proposed to explain the pathogenic role of miR-
193 in cancer. For example, in triple negative breast carcinoma, there is a low expression
of miR-193b, which is correlated with a high expression of its target DDAH1, a protein
with an important role in tumor angiogenesis [206]. In CRC and gastric adenocarcinoma,
miR-193 acts on the TGF-beta signaling pathway, with a role in cell proliferation and
apoptosis. In SCCHN, miR-193b acts as an oncogene through its action on NF1, and in
pancreatic cancer, it acts as a tumor suppressor by directly targeting KRAS through AKT,
ERK, and MAPK pathways [207].

MiR-181c-3p
MiR-181c-3p is a member of the miR-181 family and has been considered to be a novel

tumor-associated miRNA in recent years. The role of miR-181c in cancer progression is
controversial [77].

MiR-181c commonly appears to be a suppressing factor in various malignancies. In
gastric cancer, miR-181c is significantly down-regulated and correlates with a relatively
poor prognosis [201]. In breast cancer, miR-181c is the up-streaming regulator of PPAR-α
implicated in EMT, being remarkably decreased in cancer cells [77]. Down-regulation of
PPARα was significant, while expression of miR-181c-3p was induced by ectopically using
miR-181c-3p mimic. Based on our study, miR-181c-3p would be considered as a tumor
suppressor miRNA, and PPARα as a direct target gene for miR-181c-3p.

According to Wang, SPP1 is one of the genes likely to participate in the enhancement
of HCC growth, which provides a new potential target for the prevention and treatment of
HCC. Furthermore, miR-181c in HCC cells presents characteristic direct interaction with
SPP1 as an up-streaming inhibitor, which strongly suggests new strategies in HCC research
and treatment for establishing interventional practice at the molecular level.

Zhang et al. demonstrated the role of miR-181 oncomir by suppression of PTEN in
breast cancer [198]. In pancreatic cancer, miR-181c is significantly increased [198].

Liu et al. demonstrated that overexpression of miR-181 in A549/DDP cells induced
apoptosis and autophagy, reducing cell proliferation and migration via the PTEN/PI3K/
AKT/mTOR pathway [307]. Thus, miR-181 could be useful in elucidating the poten-
tial molecular mechanisms underlying chemotherapy drug resistance in NSCLC, pro-
viding a foundation for novel therapeutic strategies for the treatment of NSCLC in the
clinical setting.

MiR-210
In patients suffering from obesity, mir-210 is overexpressed in ATM [283]. Moreover,

miR-210 resulted from ATM is implicated in the pathogenesis of diabetes in obese mouse
models by altering glucose uptake and mitochondrial complex IV activity by targeting
NADH dehydrogenase ubiquinone 1 alpha subcomplex 4 gene [308].

The mir-210 disrupted mitochondrial metabolic functions might also be implicated
in cancer. GPD1L is a direct target of mir-210, which is implicated in mitochondrial
homeostasis in hypoxic conditions. A valid hypothesis is that mir-210 might adjust its
functions according to the oxygenation of the tumor microenvironment. Thus, it might
act as a tumor suppressor in the initial stages of tumor growth and as an oncomir as the
cancerous process evolves and the hypoxia becomes more important [309].
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MiR-210 exerts its effects in lung adenocarcinoma cells by targeting Lysyl oxidase-like
4 (LOXL4). Consequently, the tumor cells exhibit enhanced capacities of proliferation,
migration, and invasion [208].

Oncomir-210 is a marker for poor prognosis in gliomas [250] and its overexpression
was demonstrated in osteosarcoma cells [210].

In pancreatic cancer cells, an increased expression of mir-210 under hypoxic conditions
can be noticed. Additionally, hypoxia conditions cause gemcitabine treatment resistance
and epithelial–mesenchymal transition [211].

MiR-221
Decreased plasmatic levels of miR-221 in obese subjects have been described in several

studies [310,311]. Furthermore, reduced levels of miR-221 were associated with gestational
obesity [312]. The pattern of miR-221 expression among morbidly obese patients changed
once the weight loss surgery was performed. Thus, the levels of miR-221 were upregulated
in patients that underwent gastric-bypass surgery [310]. The dysregulation of circulating
miRs in obesity and diabetes has been further assessed by Nunez Lopez et al. [313].

By reducing Sirtuin-1 (SIRT1) protein levels, miR-221 induces white adipose tissue
inflammation and IR [314]. Palmitic acid upregulated the expression of miR-221 which
consequently disturbed the IRS/PI3K/AKT signaling in the initial phases of IR [42].

MiR-221 could be responsible for tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) resistance in breast cancer cells by regulating PTEN, thus inducing EMT
and increasing migration and invasiveness of breast cancer cells. Interestingly, TRAIL
sensitization and a reduction of migration abilities and invasiveness of the neoplastic cells
were noticed after oncomir-221 knockdown [212]. MiR-221 is implicated in trastuzumab
resistance of the HER2 -positive breast cancer cell line by targeting PTEN. On the other
hand, the PTEN overexpression reversed the trastuzumab resistance in breast cancer cells
and suppressed their invasion capacities [213].

The link between estrogen-receptor-alpha (ERα), progesterone receptor (PR), hypoxia-
inducible factor 1-alpha (HIF1-α), SLUG, and miR-221 circuit was also investigated in
obese and nonobese women diagnosed with endometrial cancer [214], but further studies
are needed in this regard.

OSCC invasion and migration were augmented by the direct interaction of miR-
221 and its target 3-UTR of methyl-CpG binding domain protein 2 (MBD2) with a conse-
quent reduction of the MBD2 protein [215].

The profile of miRs regulating the TNF-related apoptosis-inducing ligand (TRAIL)
in NSCL revealed that TRAIL resistant cells overexpressed five miRs among which are
miR-221 and -222. TRAIL-induced apoptotic cell death proved to be mediated by the
oncomirs-221 and -222 and their target 3-UTR of Kit and p27 (kip1) mRNAs [216].

The overexpression of miR-221 in osteosarcoma cells increased their aggressiveness
not only by enhancing their proliferation and migration abilities but also by augmenting
their invasiveness. The underlying mechanism that may explain this process is PTEN sup-
pression [217]. MiR-221 is responsible for cisplatin resistance in osteosarcoma cells through
protein phosphatase 2 regulatory subunit B alpha (PPP2R2A) downregulation [218].

The tumor microenvironment plays a decisive role in cancer progression and metasta-
sis as shown in the study of the interactions between extracellular vesicles (EVs)-derived
oncomirs, HCC cells, and cancer-associated hepatic stellate cells (caHSCs). In this regard,
miR-221 together with miR-21 and -151 proved to have an oncogenic effect on HHC cells
by modulating the protein kinase B (AKT)/extracellular signal-regulated kinase (ERK)
pathways [100].

The oncomiR-221 upregulation is associated with the gastric cancer’ progression,
invasiveness, lymph node metastasis, and an overall poor prognostic [315].

Regarding prostate cancer, there is a cluster of miRs (miR-20a, miR-21, miR-145, and
miR-221) which proved to be helpful in the differentiation between high risk and low
risk patients concerning the aggressiveness of prostate cancer [89]. Interestingly, the miR-
221 expression in prostate cancer patients is reduced by the AR agonists (mibolerone (MIB)
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and dihydrotestosterone (DHT)) [316]. This unpredictable effect should be evaluated in
future studies in order to establish the clinical implications of these findings.

SRT1 represents the common pathway that links cancer and IR/adipose tissue inflam-
mation. Thus, an increased expression of mir-221 not only decreases the SIRT1 protein level
resulting in IR and inflammation in adipocytes [314] but also regulates the prostate cancer
progression. Even though SIRT1 does not represent a direct target of mir-221, in prostate
cancer cell transfected with mir-221, the inhibitor SIRT1 protein was up-regulated [317].

MiR-222
MiR-222 is not only overexpressed in adult patients with obesity [310], but also in obese

children and adolescents [289,318]. Moreover, the alterations in the expression of miR-222 in
those patients are associated with imbalances of MetS biological markers [286]. T2D was
also associated with disturbances in the circulating levels of miR-222. Noteworthy is the fact
that insulin infusion reduced the circulating levels of miR-222. Furthermore, miR-222 levels
were inversely correlated with the metformin dose administrated in T2D subjects [319].
De Mendonça M. et al. found that miR-222 mediates the effect of pioglitazone on insulin
sensitivity in skeletal muscle of diet-induced obese mice, independent of PPAR [320].

In placenta and/or pancreatic tissues of patients and animal models with gestational
diabetes (GDM), the expression of miR-222 and NLR family pyrin domain containing
3 (NLRP3) inflammasomes were up-regulated while C-X-C chemokine receptor type 4
(CXCR4) was downregulated. Improvement of insulin sensitivity in GDM mice through
the inhibition of miR-222 together with the overexpression of CXCR4 was noticed. The up-
regulation of miR-222 together with the downregulation of glucose transporter 4 (GLUT4)
and estrogen receptors (ERs) were strongly correlated with the serum concentration of
estradiol. Thus, the hypothesis that the action of miR-222 on GLUT4 and ERs is responsible
for the estrogen-induced IR [321].

MiR-222 promotes the proliferation of preadipocytes and the accumulation of lipids in
mature adipocytes by inhibiting the lipolysis. Increasing evidence links miR-222 to MetS,
making it a valuable potential therapeutic target in the management of obesity and IR [322].

The mir-222/CXCR4 pathway is not only implicated in GDM but also in breast cancer.
Mir-222 expression was downregulated in breast cancer-associated TAMs. Mir-222 regu-
lates the macrophage migration in breast cancer through the CXCR4 pathway. Mir-222 is
inversely correlated with TAM chemotaxis [323]. OncomiR-222 overexpression proved
to increase colon cancer cell aggressiveness by promoting their migration and invasion
abilities. MiR-222 alters the colon cancer cell migration through the downregulation of
its target gene mammalian STE20-like protein kinase 3 (MST3) which plays a key role in
the phosphorylation of paxillin, thus reducing the intercellular adhesion. Furthermore,
miR-222 together with MST3 play a crucial role in the production of inadopodia [219]. Fur-
thermore, the overexpression of miR-222 in aggressive papillary thyroid cancer tissues was
established. In vitro studies revealed that miR-222 exerts its effects via 3′-UTR of protein
phosphatase 2 regulatory subunit B alpha (PPP2R2A), thus enhancing the invasiveness
and the migration of thyroid cancer cells. The AKT signaling pathway also proved to play
a role in miR-222-mediated invasion and metastasis of papillary thyroid cancer [220]. As
in colon cancer, miR-222 proved to enhance the formation of lung metastasis in thyroid
cancer patients [219,220].

Mir-221/222
The miR-221/222 cluster is implicated in both IR and breast cancer pathogene-

sis through its downregulating effect on CAV1. Mir-221/222-induced deregulation of
CAV1 represents a key pathway involved in breast cancers’ invasion, migration, and
metastasis [51].

Furthermore, the cluster mir-222/221 is implicated in both IR and cancer by targeting
genes that are implicated in both MetS and cancer pathogenesis: transcription factor v-ets
erythroblastosis virus E26 oncogene homolog 1 (ETS1), DICER, PTEN [324].
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Regarding the implication of miR-221/-222 in the cancers’ pathological process, it
targets the following genes p27Kip1, CDKN1C/p57, E-cadherin, PTPµ, PUMA, ARID1A,
AHR1 [324].

Cancer lack of responsiveness to treatment remains an ongoing impediment for
clinicians. The aggressiveness of this disease is in part the result of miR-221/-222-mediated
signaling by targeting β4 integrin, STAT5A, and ADAM-17 [221]. Thus, the role of the miR-
221/-222 cluster and its target genes (p27, p57, estrogen receptor alpha) in BC cells survival
and the lack of response to estrogen was established [222]. The increased expression of
miR-221/-222 in breast cancer cells enhances tumor aggressiveness through the activation
of Wnt/β-catenin signaling by downregulating the target genes WIF1, DKK2, SFRP2, and
AXIN2 [223].

Deregulation of miR-221/-222 is also implicated in other solid malignancies such as
gliomas, by targeting TIMP2 [224] and retinoblastomas [225].

MiR-365
Along with miR-193b, miR-365 plays an important role in differentiation of brown

adipocytes. Recently, it has been demonstrated that brown adipose tissue (BAT) plays
a more important role in humans than was initially considered. The amount of BAT is
inversely correlated with BMI and the basal metabolic rate. The decrease in BAT activity
may contribute to the development of obesity and IR. In vitro inhibition of miR-193a/b and
miR-365 expression inhibits brown adipocyte differentiation as a result of the inhibition of
some key genes involved in adipogenesis such as adiponectin, Cebpα, Fabp4, and Pparγ [325].

In pancreatic ductal adenocarcinoma, miR-365 values were associated with the thera-
peutic response [230]. In NSCLC, the values of miR-365 are correlated with prognosis, and
this is involved in tumor pathogenesis through its action on TTF1, ETS1, PTEN [231]. In
triple-negative breast cancer, miR-365 inhibits tumor proliferation, migration, and invasion
through its action on ADAM1, the miR-365/ADAM1 axis being suggested as a possible
therapeutic target [232].

MIR-375
MiR-375 is one of the miRs specific to pancreatic beta cells with a role in the suppres-

sion of glucose-stimulated insulin secretion through inhibition of myotrophin expression.
Additionally, it plays an important role in glucose homeostasis, cell turnover, and in the
differentiation of pancreatic beta cells [326]. In addition, it stimulates adipogenesis in
preadipocytes by regulation of the ERK1/2 signaling pathway [327].

Some studies showed a significant increase in miR-375 in the plasma of patients with
T2D compared to normoglycemic persons, suggesting its potential utility as a biomarker [272].

Numerous studies demonstrated the implication of miR-345 in the process of carcino-
genesis. For example, miR-375 inhibits AEG-1 oncogene expression, and low miR-375 val-
ues accompanied by AEG-1 overexpression are involved in tumor growth and invasion
in HCC and head and neck cancers [234,235]. In gastric cancer, low expression stimulates
cell proliferation by attenuating the effect on the JAK2 signaling pathway and through the
action on PDK1 and YWHAZ [236]. The tumor suppressive effect of miR-365 in esophageal
squamous cell carcinoma was demonstrated in vivo and in vitro by identifying IGF1R as a
target of miR-365, an important component of the PI3K-AKT/PKB pathway. Other cancers
in which a low miR-365 expression was observed are uterine cervical cancer through the
action on SP1, prostate cancer, CRC, melanoma, pancreatic cancer [233].

Let-7
Let-7 is downregulated in obesity and it targets HMGA2 [328]. The let-7 family

is involved in adipocyte differentiation by targeting the high-mobility group AT-Hook
2 (HMGA2) protein, which reduces adipose tissue in obese leptin-deficient mice [329],
suggesting, once again, a role for leptin and obesity in CRC [330].

In breast cancer, many studies have shown that let-7 inhibits HMGA2, MYC, JAK-
STAT-3, caspase-3, RAS, CCND2, Erα [331–333].

In lung cancer, let-7 miRNA expression levels are changed [237] and low let-7 ex-
pression is significantly associated with shorter postoperative survival. In contrast, the
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study of Inamura [238] shows that decreased expression of let-7 occurs early during tumor
progression and does not correlate with prognosis of bronchioloalveolar carcinoma. In lung
cancers, up-regulation of HMGA2 and down-regulation of let-7 has been reported [240].
The effect of let-7 on HMGA2 was determined by multiple target sites in the 3’ untrans-
lated region (UTR), and overexpression of the HMGA2 ORF without a 3’UTR rescued the
growth-suppressive effect of let-7 on lung cancer cells. These results offer a novel example
of suppression of an oncogene by a tumor-suppressive miRNA and indicate that the onco-
gene is activated by some tumors through chromosomal translocations that remove the
oncogene’s 3’UTR containing the let-7 target sites.

Overexpression of let-7 has been shown to inhibit proliferation of ovarian cancer [246],
prostate cancer [245], colon cancer [242], osteosarcoma [249], and neuroblastoma [247].
Several important cell cycle regulators including cyclins, cyclin-dependent kinases (CDKs),
Ras, HMGA2, MYCN, and c-Myc have been confirmed to be targets of let-7 (see Table 1).

Let-7 functions as an onco-miR in CRC [241].
The important roles played by LIN28/let-7 in tumor progression involve this pathway

as an attractive therapeutic target. Reversal of LIN28 expression in a full-blown tumor has
been demonstrated to induce tumor cell differentiation and decreased tumor invasiveness,
and antagonizing LIN28 would induce tumor cell differentiation and might have beneficial
effects alongside chemotherapy, given that well-differentiated tumors are generally less
aggressive and less drug-resistant, having better clinical outcomes [245]. He et al. [243]
showed that the PVT1-214/Lin28/let-7 axis performs the function of a critical regula-
tor of CRC pathogenesis, which may provide a new direction for the development of
CRC therapy.

3. Conclusions

Obesity/Mets can induce cancer by deregulation of several miRs that are involved in
metabolic processes, inflammation, and proliferation signaling. On the other side, different
miRs are deregulated in cancer patients with comorbid obesity/MS, suggesting that there
are some sharing mechanisms involved in adipogenesis and carcinogenesis. Currently,
there is no single miR that can predict the prognosis or serve as a single biomarker. Some
combinations of miRs have the potential to become prognostic markers, specific to different
types of cancer, but this possibility needs to be further explored and validated.

Based on the tight connection between cancer and inflammation, targeting the in-
flammatory factors of the tumor microenvironment is a promising strategy for cancer
prevention and treatment.

Modulation of these miRs with mimics or inhibitors could serve as a promising cancer
gene therapy for tumor control and metastasis inhibition.

A variety of dietary compounds and supplements found in cruciferous vegetables,
green tea, soya, turmeric, red grapes, blueberries, and spices like curry and black pepper
proved beneficial in cancer prevention by modulation of microRNAs [334]. They are able to
modify the epigenome and can be incorporated into the ‘epigenetic diet’ to protect against
cancer and the aging process.
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