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Abstract

Crested wheatgrass [Agropyron cristatum (L.) Gaertn.] provides high quality, highly palat-

able forage for early season grazing. Genetic improvement of crested wheatgrass has been

challenged by its complex genome, outcrossing nature, long breeding cycle, and lack of

informative molecular markers. Genomic selection (GS) has potential for improving traits of

perennial forage species, and genotyping-by-sequencing (GBS) has enabled the develop-

ment of genome-wide markers in non-model polyploid plants. An attempt was made to

explore the utility of GBS and GS in crested wheatgrass breeding. Sequencing and pheno-

typing 325 genotypes representing 10 diverse breeding lines were performed. Bioinformat-

ics analysis identified 827, 3,616, 14,090 and 46,136 single nucleotide polymorphism

markers at 20%, 30%, 40% and 50% missing marker levels, respectively. Four GS models

(BayesA, BayesB, BayesCπ, and rrBLUP) were examined for the accuracy of predicting

nine agro-morphological and three nutritive value traits. Moderate accuracy (0.20 to 0.32)

was obtained for the prediction of heading days, leaf width, plant height, clump diameter, til-

lers per plant and early spring vigor for genotypes evaluated at Saskatoon, Canada. Similar

accuracy (0.29 to 0.35) was obtained for predicting fall regrowth and plant height for geno-

types evaluated at Swift Current, Canada. The Bayesian models displayed similar or higher

accuracy than rrBLUP. These findings show the feasibility of GS application for a non-model

species to advance plant breeding.

1 Introduction

Crested wheatgrass [Agropyron cristatum (L.) Gaertn.] is a perennial, outcrossing, cool season

grass native to Eurasia. It belongs to the genus Agropyron, and has three ploidy forms: diploids,

tetraploids and hexaploids [1–4]. Crested wheatgrass has acclimatized in the Canadian prairies

since its introduction in early 1900’s [1], and is an important perennial pasture grass in west-

ern Canadian grasslands occupying approximately 1.7 million ha mostly in Alberta and
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Saskatchewan [5, 6]. It is highly valued for early spring growth, high palatability, nutritive

value and yield [7–9]. It is also valued for its drought tolerance, and winter hardiness due to its

extensive fibrous root system [7, 8]. Its persistence and competitiveness have continued to pro-

vide higher yields than native range species even several decades after seeding, irrespective of

heavy grazing and trampling [7, 8, 10]. Crested wheatgrass is also known to possess resistance

to diseases, and tolerance to abiotic stress, which are important to, and have been utilized in,

wheat (Triticum aestivum), and barley (Hordeum vulgare) breeding [11–14]. High palatability

and high nutrient content in crested wheatgrass are short lived during the active growth period

and decline rapidly after plant heading. Thus, developing later maturing crested wheatgrass

cultivars is valuable to maintain yield and nutritive value into the summer grazing season.

Genetic variation within and among crested wheatgrass populations is high, offering ample

possibility of genetic improvement [15]. Breeding and improvement in this species is based on

recurrent phenotypic selection alone or in combination with pedigree information, to assess

the breeding values of individuals [16–18]. Many such traits are quantitative in nature and

under the influence of many genes with small effects. Population improvement involving such

traits is carried out with trait evaluation in replicated trials under different environments.

Varietal improvement of crested wheatgrass through phenotypic evaluation and selection is a

long process, often requiring 10–15 years, leading to a slow rate of genetic gain. The rate of

genetic gain in forage species is< 1% per year [16, 19], which is lower than that of major cereal

crop species. Several factors such as a highly outcrossing nature due to self-incompatibility,

prevalence of high levels of genetic heterozygosity and heterogeneity within crested wheatgrass

species [15], genotypic and environmental effects and their interactions are bottlenecks

towards accelerated breeding of crested wheatgrass. Thus, it is difficult to perform trait evalua-

tion through current methods of phenotypic evaluation alone. Most importantly, lack of an

effective marker system for marker-assisted breeding is another major constraint. In addition,

highly heterozygous individuals and the heterogeneous nature of populations, coupled with

the genetic complexity of traits, can further limit the application of marker assisted selection.

Thus, exploring novel breeding strategies such as genomic selection (GS) that associates DNA

marker variation to phenotypic variation with statistical models is desired for accelerated

breeding of this perennial species.

Availability of molecular markers for non-model polyploid plant species like crested wheat-

grass is a recent development. Next generation sequencing technologies have offered genome-

wide markers for crops with no prior sequence information. Genotyping-by-sequencing

(GBS) is a powerful genomic approach for identification of genome-wide single nucleotide

polymorphisms (SNPs) of non-model plants [20–24]. This approach generates high-density

genotypic information at reduced cost without requiring a reference genome sequence [24].

Peterson et al. [23] and Baral et al. [15] have described the detailed GBS approach. The sam-

ple-by-variant matrix obtained was used for genomic selection application. Irrespective of the

robustness of the GBS application, there are many missing data points, uneven genome cover-

age, complex bioinformatics, and issues related to polyploidy, limiting its application [25–27].

These drawbacks can be overcome with a GBS-based pipeline, called Haplotag [28], which can

generate tag-level haplotype and SNP data for polyploid organisms [15].

Early marker assisted selection (MAS) was largely based on limited number of DNA mark-

ers and their association with quantitative trait loci (QTL) and could out-perform phenotypic

selection alone [29]. However, weak association between the markers and traits across differ-

ent genetic backgrounds, and the small proportion of genetic variation explained by the small

numbers of markers used to trace major QTLs, limits its application [30, 31]. Genomic selec-

tion overcomes some limitations of MAS [30]. Using the genome-wide SNP markers, the abil-

ity to estimate marker effects for a quantitative trait is enhanced, so the prediction of
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individual breeding value (genomic estimated breeding value, GEBV) would be more reliable

[30, 32], and more accurate parental selection can be obtained [33]. Simulations and empirical

studies have confirmed that GS can significantly accelerate breeding programs, and improve

genetic gain compared to phenotypic selection or QTL approaches [32, 34]. The potential of

GS has been recently described for forage crop breeding and has been demonstrated in alfalfa

(Medicago sativa L.) [35–37], intermediate wheatgrass (Thinopyrum intermedium L.) [38],

switchgrass (Panicum virgatum L.) [39–42], and perennial ryegrass (Lolium perenne L.) [43–

45]. However, little is known about the feasibility of GS application in crested wheatgrass

breeding. So far, utilization of available marker systems in crested wheatgrass has been limited

to the study of the genetic relationship of breeding lines, ecotypes and species of crested wheat-

grass [6, 15, 46], linkage mapping [47–49] and identification of flowering time related and dif-

ferentially expressed genes [9, 50].

This study was conducted with the objectives: (1) to apply GBS in combination with the

Universal Network Enabled Analysis Kit (UNEAK) and the Haplotag pipelines to identify

genome-wide SNP markers and; (2) to assess the feasibility of GS for complex traits in diploid

and tetraploid crested wheatgrass lines.

2 Materials and methods

I confirm that the University of Saskatchewan and Agriculture and Agri-Food Canada ethics

committees approved this study. We don’t issue field permit. This is a part of our regular

research study.

2.1 Plant materials

The study material comprised ten lines of crested wheatgrass (five cultivars: Fairway, Kirk,

AC-Goliath, AC-Parkland and NewKirk, and five breeding lines: S8959E, S9491, S9516, S9542

and S9556) (Table 1). AC Parkland, Fairway and S9542 were diploid cultivars, while the other

seven lines were tetraploids. These lines were made available from the forage breeding pro-

gram of the University of Saskatchewan. Two field trials were established at the Agriculture

and Agri-Food Canada (AAFC) Saskatoon Research Farm, Saskatoon, SK and Swift Current

Research and Development Center, Swift Current, SK in 2014 using randomized complete

block designs (RCBD) with four replications. Each line had 16 genotypes per replication. Each

genotype was spaced 1m within and between rows. Data on agro-morphological and nutritive

value traits were collected for two years in 2015 and 2016. For the marker data generation,

young leaf tissues were collected from 160 genotypes (16 randomly selected genotypes for each

Table 1. List of the 10 crested wheatgrass (A. cristatum) lines used in the study.

Lines Origin Type Ploidy

Fairway Canada Cultivar Diploid

Kirk Canada Cultivar Tetraploid

AC-Goliath Canada Cultivar Tetraploid

AC-Parkland Canada Cultivar Diploid

NewKirk Canada Cultivar Tetraploid

S8959E Siberia/Canada Breeding line Tetraploid

S9491 Canada Breeding line Tetraploid

S9516 Canada Breeding line Tetraploid

S9542 Canada Breeding line Diploid

S9556 Canada Breeding line Tetraploid

https://doi.org/10.1371/journal.pone.0239609.t001
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of the 10 lines in four replications) from Saskatoon and 165 genotypes (16 randomly selected

genotypes for each of the 10 lines in four replications and additional randomly selected 5 geno-

types) from Swift Current and stored at -80˚C prior to DNA extraction. A total of 325 geno-

types from the 10 lines were used for bioinformatics analysis.

2.2 Agro-morphological traits

The agro-morphological traits evaluated for the 160 genotypes in Saskatoon and 165 genotypes

in Swift Current included early spring vigor score (ESV), heading days (DTH), plant height

(PH), leaf width (LW), clump diameter (CD), dry matter yield (DMY), regrowth score after

harvest (RGAH) and fall regrowth score (FRG). Tillers per plant (TPP) was evaluated at the

Saskatoon site. Descriptions of the measurement of these agro-morphological traits are pre-

sented in Table 2. DTH were expressed as growing degree days (GDD) [39] using a base tem-

perature of 0˚C.

2.3 Nutritive value traits

The genotypes were sub-sampled after dry matter determination during the growing seasons

of 2015 and 2016 for forage nutritive value determination. The sub-samples were ground

through a 1-mm screen Wiley mill (Thomas-Wiley, Philadelphia, PA). The ground samples

were stored in plastic bags prior to determination of crude protein (CP), neutral detergent

fiber (NDF) and acid detergent fiber (ADF). Nitrogen concentration was determined by the

Dumas combustion method using the Leco CN 628 Dumas analyzer (Leco Corporation,

St. Joseph, MI) for all the Saskatoon samples and the 2015 Swift Current samples, while the

Kjeldahl method was used for samples from Swift Current in the year 2016. Then, nitrogen

content was converted to CP multiplying by a conversion factor of 6.25. NDF and ADF con-

centrations were determined using an automated Ankom2000 fiber analyzer (ANKOM Tech-

nology Corporation, New York, USA) following manufacturer’s instructions.

Table 2. Description of the measurement of agro-morphological traits.

Traits Trait description Year

Early spring vigor (ESV) 1 = least vigorous; 5 = most vigorous, visually scored on first week of May. 2015–

2016

Heading days (DTH) 50% of stems have 50% emerged panicles. 2015–

2016

Plant height (PH) Height measured in centimeter from base of the stem to tip of the panicle. 2015–

2016

Leaf width (mm) (LW) Widest part of penultimate leaf measured in millimeter. 2015–

2016

Clump diameter (CD) Measured on clump after harvest in centimeter. 2015–

2016

Tillers per plant (TPP) Number of tillers in each genotype. 2015–

2016

Dry matter yield (DMY) Each genotype harvested were dried for 48h at 60 ˚C in a forced air oven

and weighed in gram, harvesting done on last week of July.

2015–

2016

Regrowth score after

harvest (RGAH)

1 = least vigorous; 5 = most vigorous, visually scored on last week of

August.

2015–

2016

Fall regrowth score (FRG) 1 = least vigorous; 5 = most vigorous, visually scored on first week of

October.

2015–

2016

https://doi.org/10.1371/journal.pone.0239609.t002
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2.4 Genotyping-by-sequencing

For each of the 325 genotypes, protocols of NucleoSpin1 Plant II Kit (Macherey-Nagel, Beth-

lehem, PA, USA) were used to extract DNA from 0.1 g finely ground tissue and was eluted in a

1.5 mL Eppendorf tube with Elution Buffer. DNA quality was measured by comparing the

absorptions at 260 and 280 nm using NanoDrop 8000 (Thermo Fisher Scientific, Waltham,

MT, USA). Further quantification of the DNA samples was through the Quant-iTTM Pico-

Green1 dsDNA assay kit (Invitrogen, Carisbad, CA, USA) and final dilution to 60 ng/μl with

1× TE buffer was done before sequencing analysis.

A genetic diversity-focused GBS (gd-GBS) protocol was used for the preparation of multi-

plexed GBS libraries [15, 23]. Briefly, restriction enzyme combinations PstI and MspI (New

England Biolabs, Whitby, ON, Canada) digested 200 ng of purified genomic DNA in each

library. On to the 50 and 30 ends of the restriction fragments, ligation of customized adapters

by T4 ligase was carried out. Then, AMPure XP kit (Beckman Coulter, Brea, CA, USA) was

used for purification of the ligated fragments. Through PCR amplification, Illumina TruSeq

HT multiplexing primers were added following the purification. The amplicon fragments were

further quantified, concentrated, and pooled to form 4 subgroups of 12 samples each. Using a

Pippin Prep instrument (Sage Science, Beverly, MA, USA), pre-selection of the samples in the

subgroups for an insert size range of 100–400 bp were done before pooling the samples into a

library. Each pooled library was diluted to 6 pM, and denatured with 5% of sequencing-ready

Illumina PhiX Library Control (Illumina, San Diego, CA, USA) that can serve for calibration.

Sequencing was completed using an Illumina Hiseq2500 Instrument with paired-ends of 125

bp in length. HiSeq runs of 6 libraries generated 672 FASTQ sequence files from 336 genotypes

(including randomly selected 11 technical replicates) of 10 lines (one forward and one reverse

for each of 336 genotypes). All FASTQ files were deposited to Sequence Read Archive (SRA)

database under NCBI with SRA accession PRJNA599212 and submission ID SUB6703766

(https://www.ncbi.nlm.nih.gov/sra/PRJNA599212).

2.5 Bioinformatics analysis

Bioinformatics analysis began with sequence (FASTQ) data cleaning, using Trimmomatic ver-

sion 0.36 [51] to remove any sequenced-through Illumina adapters, low quality sequences

(sliding window of 10 bases, average Phred of 20), and fragments under 64 bases long. As the

UNEAK-GBS pipeline [52] only considers sequences of 64 bp (after barcode removal) with an

intact 5-base PstI residue (TGCAG) at the beginning, each FASTQ file of 125 bp was split with

a custom Perl script fastqHiseqCutandCode-Pst.pl available via Figshare (10.6084/m9.figshare.

11530677, S1 Text) to get the first 64 bases with the PstI residual restriction site. The script also

provided an arbitrary barcode sequence (CATCAT) at the start of each sequence fragment,

since the UNEAK pipeline expects to de-convolute barcoded sequence reads which are not

already separated by sample. The 70-base-long fragments formed, thereafter, were recognized

by the UNEAK-GBS pipeline [52], and passed into UNEAK.

The fragment set (70 bases long) was analyzed with UNEAK and the Haplotag pipeline

[28], resulting in the analysis of a total of 59 bases of genetic sequence. S2 Text, Section B avail-

able in Figshare (10.6084/m9.figshare.11530677) describes the procedures to run UNEAK.

Two types of meta data files, a single mergedAll.txt (all tags observed more than 10 times) pro-

vided as S3 Text in Figshare (10.6084/m9.figshare.11530677) and a set of individual tagCount

files (one per sample) needed for the Haplotag pipeline were generated from the UNEAK run.

Haplotag was run with the parameters and filtering threshold settings described in the

HTinput.txt file available via Figshare (10.6084/m9.figshare.11530677, S4 Text) and generated

a matrix of samples by SNP loci as described in S2 Text, Section B. A set of tag-level haplotypes
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(“HTgenos”) are first generated by Haplotag, followed by a set of SNP data derived from these

haplotypes (“HTSNPgenos”). These two data types are technically redundant, so choosing one

of them relies on the implementation and preference of software. In the present study, most

(97.5%) haplotypes were found to contain only a single SNP; thus, we decided to analyze the

SNP dataset for simplicity and compatibility with downstream analysis software.

The character by Taxa (CbyT) program supplied by N. Tinker [28] was used to generate a

filtered SNP file. In brief, Haplotag generated “HTSNPGenos” file, which was run with CbyT.

The “minimum presence” value in CbyT was set to 80%, 70%, 60%, and 50% for 20%, 30%,

40%, and 50% missing data, respectively. A SNP-by-sample matrix in the output files available

via Figshare (10.6084/m9.figshare.11530677, S5–S8 Text) was used in further analyses. Addi-

tionally, S1–S4 Files and S9–S15 Text available via Figshare (10.6084/m9.figshare.11530677)

provide descriptions of the genotypes, phenotypes, the batch files, and custom Perl and Shell

scripts used. Analyses from FASTQ file separation to SNP generation were conducted using

Microsoft Windows 7 64-bit OS with an Intel (R) Xeon (R) CPU E5-2623 v3 @ 3.00 GHz (8

threads) and 32 GB RAM.

2.6 GBS SNP data imputation and filtering

The SNP marker information for the missing markers at each level (20%, 30%, 40% and 50%)

were reconstructed using a probabilistic Principal Component Analysis (probabilistic PCA)

that integrates expectation maximization approach with probabilistic models using the R pack-

age “pcaMethods” [53, 54]. Following the imputation, SNPs were filtered using the technical

replicates to get the same SNP information at each locus in the original and the replicate.

Later, allele frequency of these SNPs was calculated independently for the 160 genotypes for

nine agro-morphological and three nutritive value traits in Saskatoon, and 159 genotypes for

eight agro-morphological traits and 156 genotypes for three nutritive value traits in Swift Cur-

rent, respectively. The number of genotypes for agro-morphological and nutritive value traits

evaluated at Swift Current differed as the genotypes with missing phenotypic records in one or

both the years were excluded from further analysis. Within each of these subsets, SNPs with

minor allele frequency (MAF) < 0.05 were removed prior to their use in genomic selection

models.

2.7 Genetic structure analysis

Our study materials consisted of diploid and tetraploid crested wheatgrass lines. Thus, it was

important to determine the existence of genetic structure in the study material and estimate

the effect of SNPs arising from the genetic structure prior to genomic selection analysis. For

this, a principal coordinates analysis (PCoA) was conducted using the R routine AveDissR

[55] to assess genotypic associations of the assayed samples. Plots of the first two resulting

principal coordinates were generated. Based on the resulting genotypic associations, we rea-

soned that the first two PCoAs of the imputed markers (filtered with technical replicates but

without filtering for MAF < 0.05) at each missing level would sufficiently account for these

genetic differences due to ploidy. Hence, we fitted a model of Best Linear Unbiased Predictor

(BLUP) for each trait where trait was the response variable and the first two PCoAs were the

explanatory variables. The residuals obtained from each model fitting were used for genomic

selection.

2.8 Phenotypic evaluation

Outliers for each of the phenotypic traits at each location were examined using studentized

deleted residuals [56] from a mixed linear model including year and line as random effects in
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SAS 9.4 [57]. Then, the Box-cox procedure was implemented to determine the optimal trans-

formation of the traits [58]. Best linear unbiased predictors were estimated for each trait in

each genotype across year using a mixed linear model with genotype and year as random

effects fitted in R using the package “lme4” [59]. Variance component estimates from the

model used to obtain the BLUPs were applied to estimate broad sense heritability (repeatabil-

ity) on a genotype mean basis (Ĥ) [60, 61].

2.9 Genomic selection using SNP data

To assess the applicability of genome-wide markers to predict phenotypes of agro-morphologi-

cal and nutritive value traits in crested wheatgrass, four additive genomic selection models,

including BayesA [30], BayesB [30], BayesCπ [62], and Ridge Regression Best Linear Unbiased

Predictor (rrBLUP) [30] were chosen. These models differ in their assumptions of the marker

effects. BayesA assumes each marker has a distinct variance such that there are many markers

with small effects and few markers with moderate effects. BayesB assumes only a portion of the

markers explain total variance and most markers explain zero variance [30]. BayesCπ assumes

a common marker effect variance and allows some markers to have no effect [62]. rrBLUP

assumes that all markers have common variance with small but non-zero effect and thus

shrinks equally for each marker effect [30]. All statistical modeling was done in R 3.5.1 [63].

The rrBLUP model was implemented using “rr-BLUP” package [64] while Bayesian models

were implemented using the “BGLR” package [65]. The model parameters were considered

following the package instructions.

The prediction accuracy of the models was assessed by splitting the data into a training set

and a validation set and repeated 500 times. The genotypes were randomly partitioned into

two equally sized subgroups. Then, for each repeat, the randomly sampled half of the sub-

groups was used as the training set and the remaining half as the validation set. The validation

set was used to assess the correlation between observed and predicted trait values (GEBVs).

For GS model comparison, the same training and validation sets were used for all four GS

models. Prediction accuracy of each model for each trait was the average Pearson correlation

coefficient across the 500 repeats. A nonparametric ANOVA with two factors was considered

to assess the effects of GS model and location, as the estimates in this study were not always

normally distributed, and the R “ARTool” package [66] was applied for each trait, where pre-

diction accuracy of each trait at each repeat was considered as response. Pairwise comparison

was made for the prediction accuracies of GS models by each location using the R “emmeans”

package [67].

3 Results

3.1 Phenotypic variation

There was substantial variation in each of the agro-morphological and nutritive value traits

(Tables 3 and 4). In Saskatoon, the difference between minimum and maximum values ranged

from 1.3-fold for NDF to 13-fold for TPP (Table 3). The average broad-sense heritability for

the agro-morphological traits was 0.57 with a range of 0.38 (ESV) to 0.73 (TPP). For nutritive

value, broad-sense heritability ranged from 0.27 (CP) to 0.54 (ADF). In Swift Current, the dif-

ference between minimum and maximum values ranged from 1.2-fold for DTH to 9-fold for

DMY (Table 4). Heritability among the agro-morphological traits ranged from 0.31 (FRG) to

0.74 (PH) with an average heritability of 0.53. Heritability among the nutritive value traits ran-

ged from 0.28 (CP) to 0.58 (ADF).
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3.2 Genotyping-by-sequencing for SNP discovery

The HiSeq run of 336 genotypes from the 10 crested wheatgrass lines (Table 1) yielded approx-

imately 888.2 million raw forward sequence reads from six libraries. The number of raw for-

ward sequence reads per sample ranged from 677,492 to 5,578,827 with an average of

2,643,717. Combined UNEAK and Haplotag analysis at the 20%, 30%, 40%, and 50% levels of

missing data generated 827, 3,616, 14,090, and 46,136 SNPs, respectively, across the 336 geno-

types (Table 5 and S1 File available via Figshare (10.6084/m9.figshare.11530677). In addition,

this analysis also generated many meta-genomic files associated with the SNP discovery, which

are described and accessible via Figshare (10.6084/m9.figshare.11530677, S2 Text). The data

filtering done by removal of SNPs differing with technical replicates and again with SNPs hav-

ing MAF <0.05 resulted in 286, 1,206, 5,437 and 17,003 SNPs at 20%, 30%, 40%, and 50% lev-

els of missing data in Saskatoon, respectively (Table 5). Likewise, 257, 1,154, 5,321 and 16,771

SNPs were found for agro-morphological traits and 255, 1,142, 5,278 and 16,692 SNPs for

nutritive value traits at 20%, 30%, 40%, and 50% levels of missing data respectively in Swift

Current (Table 5). The number of genotypes available for evaluation varied in Swift Current

for agro-morphological (159 genotypes) and nutritive value traits (156 genotypes) resulting in

the difference in the final SNPs counts after filtering.

Table 3. Statistics for the distributions of nine agro-morphological and three nutritive value traits, and estimated broad-sense heritability on genotype-mean basis

for crested wheatgrass evaluated in two summers at Saskatoon, Canada.

Traits Unit No. genotype Year Mean Standard deviation Range Heritability (H2)

Early spring vigor (ESV) 160 2015 3.7 0.9 1.0–5.0 0.38

2016 4.28 0.9 2.0–5.0

Heading days (DTH) GDD 160 2015 703.0 63.7 543.2–864.5 0.36

2016 708.7 82.0 543.8–925.0

Plant height (PH) cm 160 2015 82.2 13.9 30.0–118.0 0.72

2016 97.9 16.7 35.0–133.0

Tillers per plant (TPP) 160 2015 133.4 53.4 33.0–290.0 0.73

2016 379.7 135.8 64.0–833.0

Leaf width (LW) mm 160 2015 9.3 1.6 4.0–13.7 0.62

2016 7.3 1.4 4.0–11.0

Clump diameter (CD) cm 160 2015 18.8 3.8 8.0–29.0 0.63

2016 22.1 3.6 14.0–30.0

Regrowth score (RGAH) 160 2015 3.8 0.9 1.0–5.0 0.55

2016 3.5 1.2 1.0–5.0

Dry matter yield (DMY) g 160 2015 258.8 78.5 70.8–504.9 0.67

2016 417.4 109.8 71.7–709.7

Fall regrowth score (FRG) 160 2015 2.9 1.1 1.0–5.0 0.51

2016 3.8 1.0 1.0–5.0

Acid detergent fiber (ADF) % 160 2015 36.6 3.6 24.1–46.3 0.54

2016 37.3 2.9 31.3–45.8

Neutral detergent fiber (NDF) % 160 2015 59.5 3.9 49.6–69.9 0.42

2016 59.9 3.2 50.9–68.6

Crude protein (CP) % 160 2015 4.4 1.1 2.1–7.9 0.27

2016 3.2 0.8 2.0–6.4

https://doi.org/10.1371/journal.pone.0239609.t003
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3.3 Genetic structure of assayed samples

Investigation of the genetic structure with PCoA revealed that diploid lines clustered separately

from the tetraploid cultivars and breeding lines with little overlap (Fig 1). This suggests the

first two PCoAs of the SNPs were able to infer a sufficient level of genetic discrepancy between

the two ploidy levels and support our hypothesis of the effectiveness of using the first two

PCoAs to mitigate the SNP effect arising from the population structure prior to a genomic

selection analysis.

3.4 Accuracy of genomic prediction in crested wheatgrass

The average prediction accuracy of the four genomic selection models evaluated for crested

wheatgrass varied for each trait at the four SNP densities corresponding to the missing marker

Table 4. Statistics for the distributions of eight agro-morphological and three nutritive values traits, and estimated broad-sense heritability on genotype-mean

basis for crested wheatgrass evaluated in two summers at Swift Current, Canada.

Traits Unit No. genotypes Year Mean Standard deviation Range Heritability (H2)

Early spring vigor (ESV) 159 2015 3.8 1.0 1.0–5.0 0.43

2016 3.9 0.7 2.0–5.0

Heading days (DTH) GDD 159 2015 683.6 44.5 648.8–819.9 0.39

2016 748.3 70.0 698.3–845.7

Plant height (PH) cm 159 2015 85.5 12.6 43.8–114.2 0.74

2016 81.1 13.9 46.8–110.7

Leaf width (LW) mm 159 2015 9.0 1.6 5.8–13.2 0.65

2016 6.8 1.2 4.2–10.80

Clump diameter (CD) cm 159 2015 17.3 2.7 11.0–25.0 0.62

2016 28.1 3.8 16.0–37.0

Regrowth score (RGAH) 159 2015 3.7 1.1 1.0–5.0 0.48

2016 4.1 0.7 1.0–5.0

Dry matter yield (DMY) g 159 2015 492.5 128.2 106.7–829.8 0.60

2016 525.5 153.6 122.0–1104.0

Fall regrowth score (FRG) 159 2015 3.4 0.7 2.0–5.0 0.31

2016 4.2 0.6 2.0–5.0

Acid detergent fiber (ADF) % 156 2015 33.8 4.0 24.7–48.6 0.58

2016 35.4 3.0 27.5–46.9

Neutral detergent fiber (NDF) % 156 2015 56.6 4.6 46.6–69.0 0.45

2016 61.8 3.9 51.8–77.6

Crude protein (CP) % 156 2015 4.6 0.9 2.6–7.3 0.28

2016 9.4 2.1 4.6–14.9

https://doi.org/10.1371/journal.pone.0239609.t004

Table 5. Counts of SNPs at four levels of missing data and different filtering criteria.

Missing

level

SNP

Counts

Average missing

rate of SNPs (%)

SNPs filtered with

technical replicates

SNPs with MAFa�

0.05 Saskatoon

SNPs with MAF�0.05 agro-

morphological traits, Swift Current

SNPs with MAF�0.05

nutritive value traits, Swift

Current

20% 827 15.01 659 286 257 255

30% 3616 23.51 2149 1206 1154 1142

40% 14,090 32.79 8091 5437 5321 5278

50% 46,136 41.95 21,957 17,003 16,771 16,692

a MAF, minor allele frequency.

https://doi.org/10.1371/journal.pone.0239609.t005
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levels (20%, 30%, 40% and 50%) of SNP markers (Table 6 and Figs 2 and 3). However, the pre-

diction accuracy of the GS models except rrBLUP were similar for most of the traits. The geno-

mic selection models were implemented separately for genotypes evaluated in Saskatoon and

Swift Current. In Saskatoon, the average prediction accuracy of GS models at the 50% missing

level of SNP information ranged from low to moderate prediction abilities (0.030 to 0.319) for

DMY, DTH, LW, PH, CD, TPP. The prediction accuracy of ESV, RGAH and FRG ranged

from -0.054 to 0.231. While, for ADF, NDF and CP, prediction accuracy ranged from -0.108 to

0.032 (Table 6). In Swift Current, the average prediction accuracy of GS models at 50% missing

level of SNPs information ranged from -0.077 to 0.350 for DMY, DTH, LW, PH, and CD. The

prediction accuracy of ESV, RGAH and FRG ranged from -0.088 to 0.323; while, for ADF,

NDF and CP prediction accuracy ranged from -0.079 to 0.084 (Table 6).

Comparison of four additive GS models, BayesA, BayesB, BayesCπ and rrBLUP at a SNP

density corresponding to 50% missing level for traits evaluated at Saskatoon exhibited similar

prediction abilities of the Bayesian models for CD, DMY, ESV, TPP, RGAH, and ADF, while

Fig 1. Genetic associations of diploid and tetraploid crested wheatgrass genotypes used for the genomic selection study as explained by PCoA1

and PCoA2 of principal coordinate analysis. (i) SNPs at 20% missing level; (ii) SNPs at 30% missing level; (iii) SNPs at 40% missing level; and (iv)

SNPs at 50% missing level.

https://doi.org/10.1371/journal.pone.0239609.g001
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prediction accuracy of rrBLUP was the lowest (Table 6) for these traits. This is evident from

average prediction accuracy of the models and associated standard errors (Table 6). Overall,

prediction accuracy of rrBLUP was lower compared to the other three models for all of the

evaluated traits. Prediction accuracy of Bayes A was always the highest or similar whereas, the

prediction accuracy of BayesCπ was lower or similar to the remaining Bayesian models

(Table 6). Similarly, the prediction accuracy of the four GS models at SNP density correspond-

ing to 50% missing level for traits evaluated at Swift Current were similar for CD, ESV. The

prediction accuracy of the Bayesian models were similar for DMY, PH, FRG, ADF, and NDF,

whereas, prediction accuracy of rrBLUP was lower than the Bayesian models (Table 6). Over-

all, the prediction accuracy of rrBLUP was lower compared to BayesA, BayesB, and BayesCπ
for all evaluated traits except ESV. Prediction accuracy of Bayes A was always highest or similar

whereas, prediction accuracy of BayesCπ was always lower, or similar, to the remaining Bayes-

ian models (Table 6). The prediction accuracies of the GS models were statistically significant

except for two traits at Swift Current according to the pairwise comparison of the prediction

accuracies for most of the traits (Table 6). The prediction accuracies were statistically signifi-

cant for the GS models, location and their interactions for most of the traits as observed from

the conservative nonparametric ANOVA (Table 7).

Our results demonstrated prediction accuracy of the GS models varied for each trait at each

level of SNP density (corresponding to missing SNPs levels) at each location. Overall, in Saska-

toon, the prediction accuracy improved with increase in SNP densities for DMY and LW. An

increase in prediction accuracy with increasing SNP density from 20 to 30% missing levels,

then a decrease at the 40% missing level, followed by an increase at the 50% missing level was

observed for DTH, PH, CD,TPP and ESV. While, for RGAH, ADF, NDF, and CP, prediction

accuracy of the models decreased with increasing SNP densities up to the 40% missing level

and then improved with increasing SNP densities at 50% missing level except for rrBLUP. The

prediction accuracy of the models for FRG increased up to 30% missing level and later

decreased with increasing SNP densities up to 50% missing levels (Fig 2). Evaluation of each

prediction model at each level of SNP density revealed higher prediction accuracy of BayesCπ
at lower SNP densities (20 and/or 30% missing levels) for DMY, DTH, LW, RGAH, FRG,

Table 6. Prediction accuracies of four genomic selection models at 50% missing level of SNPs information for agro-morphological and nutritive value traits of

crested wheatgrass evaluated at Saskatoon and Swift Current, Canada.

Models Saskatoon Swift Current

Traits/Location BayesA BayesB BayesCπ rrBLUP BayesA BayesB BayesCπ rrBLUP

Early spring vigor 0.231a (0.004) 0.230a (0.004) 0.228a (0.004) 0.206b (0.004) -0.086a (0.003)a -0.084a (0.003) -0.084a (0.003) -0.088a (0.003)

Heading days 0.196a (0.004) 0.187a (0.004) 0.170b (0.004) 0.053c (0.004) 0.049a (0.004) 0.045a (0.004) 0.036a (0.004) -0.047b (0.004)

Leaf width 0.240a (0.004) 0.234ab (0.004) 0.221b (0.004) 0.082c (0.004) 0.036a (0.004) 0.032ab (0.004) 0.020b (0.004) -0.061c (0.003)

Plant height 0.274a (0.004) 0.268ab (0.004) 0.256b (0.004) 0.126c (0.005) 0.350a (0.003) 0.348a (0.003) 0.345a (0.003) 0.300b (0.004)

Clump diameter 0.319a (0.003) 0.316a (0.004) 0.310a (0.004) 0.291b (0.003) 0.001a (0.004) 0.001a (0.004) 0.001a (0.004) -0.006a (0.004)

Regrowth score 0.093a (0.004) 0.090a (0.004) 0.088a (0.004) 0.039b (0.004) -0.016b (0.004) -0.015b (0.004) -0.007ab (0.004) 0.000a (0.004)

Dry matter yield 0.076a (0.004) 0.073a (0.004) 0.069a (0.004) 0.030b (0.004) -0.055a (0.004) -0.058a (0.004) -0.063a (0.004) -0.077b (0.003)

Fall regrowth 0.043a (0.004) 0.031ab (0.004) 0.018b (0.004) -0.054c (0.004) 0.323a (0.004) 0.320a (0.004) 0.318a (0.004) 0.291b (0.003)

Acid detergent fiber 0.013a (0.004) 0.014a (0.004) 0.009a (0.004) -0.033b (0.004) 0.084a (0.004) 0.082a (0.004) 0.078a (0.004) 0.020b (0.004)

Neutral detergent fiber 0.032a (0.004) 0.028a (0.004) 0.020a (0.004) -0.036b (0.004) 0.030a (0.004) 0.025a (0.004) 0.020a (0.004) -0.022b (0.003)

Crude protein -0.053a (0.004) -0.060a (0.004) -0.072b (0.004) -0.108c (0.003) 0.059a (0.004) 0.052a (0.004) 0.033b (0.004) -0.079c (0.003)

Tillers per plant 0.260a (0.004) 0.256a (0.004) 0.250a (0.004) 0.200b (0.004) - - - -

Within each location the prediction accuracies followed by same letters are not significantly different at α = 0.05. The values in the parenthesis are standard errors.

https://doi.org/10.1371/journal.pone.0239609.t006
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Fig 2. Prediction accuracy of four genomic selection models for genotypes evaluated at Saskatoon, Canada.

https://doi.org/10.1371/journal.pone.0239609.g002
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Fig 3. Prediction accuracy of four genomic selection models for genotypes evaluated at Swift Current, Canada.

https://doi.org/10.1371/journal.pone.0239609.g003
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ADF, NDF and CP. Whereas, lower prediction accuracy of BayesCπ at higher SNP density

(50% missing level) was observed for DTH, LW, PH, CD, TPP and FRG. The prediction accu-

racy of rrBLUP was the lowest compared to the other three models except for similar predic-

tion accuracy as Bayesian models for DTH at 20 and 30% missing levels and BayesA, and

BayesCπ for PH at 30% missing level (Fig 2).

Similarly, for the traits evaluated at Swift Current, an increase in the prediction accuracy

with increasing SNP density was observed for FRG and CP. An increase in prediction accuracy

with increasing SNP density from 20 to 30% missing level, then a decrease at 40% missing

level, followed by an increase with increasing SNP density at the 50% missing level was

observed for LW and PH. Increase in prediction accuracy with increasing SNP density from

20 to 30% missing level followed by a decrease with increasing SNP density up to 50% missing

level was observed for DMY, DTH, ESV, ADF and NDF. Decreasing prediction accuracy with

increasing SNP density was observed for CD and RGAH (Fig 3). Evaluation of each prediction

model at each level of SNP densities revealed a higher prediction accuracy of BayesCπ at lower

SNP densities (20 and/or 30% missing levels) for DMY, DTH, LW, PH, CD, ESV, RGAH,

FRG, and CP at Swift Current. A higher prediction accuracy of BayesA at higher SNP density

was observed for DTH, LW, NDF and CP. Likewise, BayesB and BayesCπ were higher in pre-

diction accuracy at higher SNP density for ESV. Bayesian models were similar in prediction

accuracy at higher SNP densities for DMY, PH, CD, FRG and ADF. The prediction accuracy

of rrBLUP was the lowest except for higher prediction accuracy at the 50% missing level for

RGAH. The prediction accuracy of rrBLUP was similar to that of Bayesian models for DMY,

ESV and ADF at 20, 30 and 40% missing levels, respectively (Fig 3).

4 Discussion

This study, for the first time, investigated the prediction accuracy of genomic selection models

in crested wheatgrass breeding utilizing the gd-GBS application for SNP marker generation.

This study assessed and compared the prediction accuracy of four GS models at four levels of

SNP densities. Overall, the GS models varied in prediction accuracy of the evaluated traits at

each level of SNP density at each location. The findings revealed Bayesian models provided

higher prediction accuracies than rrBLUP for the agro-morphological and nutritive value traits

Table 7. Analysis of variance with genomic selection model and location as factors for 11 measured traits.

Agro-morphological trait

Source df Dry matter yield Clump diameter Heading days Leaf width Plant height

Model 3 37.13���a 8.05��� 434.85��� 449.16��� 296.04���

Location 1 2383.21��� 11208.69��� 2575.55��� 5017.65��� 1763.52���

Model × Location 3 5.1�� 2.42 17.41��� 27.40��� 79.78���

Source df Early spring vigor Fall regrowth score Regrowth after harvest

Model 3 9.10��� 128.84��� 15.54���

Location 1 11176.05��� 10647.93��� 1230.37���

Model × Location 3 4.68�� 31.42��� 41.00���

Nutritive value trait

Source df Acid detergent fiber Neutral detergent fiber Crude protein

Model 3 105.16��� 117.89��� 324.09���

Location 1 606.03��� 0.86 1253.39���

Model × Location 3 2.85� 2.73� 67.88���

a Significance level with ��� for P�0.001; �� for P�0.01; and � for P�0.05.

https://doi.org/10.1371/journal.pone.0239609.t007
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in crested wheatgrass. The traits with unknown genetic architecture in crested wheatgrass

might have been under the influence of certain QTLs rather than a large number of QTLs,

which would result for the higher prediction accuracies of Baysesian models compared to

rrBLUP as rrBLUP assumes that all markers have common variance with small but non-zero

effect [30]. The relationship between the prediction accuracy of the models, traits evaluated

and the density of the SNP markers showed different trends with increased SNP densities.

These findings show the feasibility of the GBS-based GS application in crested wheatgrass

breeding, even for quantitative traits such as DMY.

Given the long breeding cycles required for varietal development in crested wheatgrass,

genomic selection could significantly reduce the time for each breeding cycle by estimation of

GEBVs at the seedling stages without phenotyping over multiple site-years. The prediction

accuracies for the agro-morphological traits and the three forage nutritive value traits in our

study are comparable to findings in other perennial forage crops [37, 39]. Moderate prediction

accuracies (in the range of 0.20–0.35) for traits such as DTH, LW, PH, CD, ESV, FRG and TPP

indicate the possibility of the application of genomic selection in crested wheatgrass to

improve the genetic gain per unit of time for these traits. In studies on other plant species,

genetic gain per year with GS was greater than MAS for the traits with prediction accuracies of

0.2 in maize (Zea mays) and 0.3 in winter wheat [68].

The present study also showed certain negative prediction values ranging from -0.11 to

-0.01, for DMY, DTH, LW, CD, ESV, RGAH, FRG, ADF, NDF, and CP, in particular, at Swift

Current site. Negative prediction values have also been reported from genomic selection stud-

ies in maize [68, 69], sugar beet (Beta vulgaris L.) [70], perennial ryegrass [44, 45] and switch-

grass [39–41]. These negative predictions could have resulted from opposite linkage phases

between markers and QTLs in training and prediction sets as discussed in other studies [70].

In this study, genotypes in the training and validation sets were half-sibs from different fami-

lies selected for different traits, which could result in opposite linkage phase among the geno-

types of training and validation sets. A previous simulation study suggested that more accurate

predictions are obtained with the inclusion of multiple populations that have marker-QTLs in

the same LD phase in the training set [71]. Low to negative prediction accuracies were found

for biomass across growing seasons and years in a GS study of perennial ryegrass, which was

suggested to be caused by environmental distinctness, prevalence of G x E effect or even

unusual climatic factors between seasons and years [44]. In this study, the negative prediction

accuracies, especially for Swift Current, could be because of trait variation between years

resulting G x E as Swift Current is located at semi-arid environment, with large year-to-year

variation for soil moisture and temperature. It also might be associated with lack of highly

effective SNP markers for certain traits, such as dry matter yield.

Our study showed differences in the prediction accuracy of models for the same trait evalu-

ated in two different environments, and the prediction accuracy was statistically significant for

the GS models, location and their interactions for most of the traits. The prediction accuracy

was moderate for forage yield related traits in Saskatoon, while it was moderate for PH and

FRG in Swift Current. This difference can be attributed partly to the difference in the geno-

types being used in the study and the inability of the genomic selection models used to account

for G × E effect. SNP variation within-family is significantly higher than among families in

crested wheatgrass [15] owing to the genetic differences among genotypes. In addition, Saska-

toon (moist mixed grassland ecoregion and Dark Brown soil zone) differs in agro-climatic and

soil zone from Swift Current (mixed grassland ecoregion with semi-arid condition and Brown

soil zone) [72]. Similarly, in previous studies, prediction accuracy was variable between two

different environments for alfalfa [35], and across seasons and years for perennial ryegrass

[44]. This could be the effect of different gene actions involved in two different environments.
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A GS study in rice (Oryza sativa L.) reported reduction in prediction accuracies with incorpo-

ration of data from uncorrelated environments [73].

In this study, we also investigated the effect of SNP densities in the prediction accuracy of

GS models with the use of four different SNP densities corresponding to the SNP missing lev-

els. Our results showed increasing, decreasing and a mixture of increasing and decreasing

trends of prediction accuracy with increasing SNP densities for the agro-morphological and

nutritive value traits (Figs 2 and 3). Higher marker densities that are evenly distributed across

the genome have been reported to improve the prediction accuracies by increasing the proba-

bility of each QTL to be in LD with at least one marker [71, 74, 75]. In contrast to this assump-

tion, little improvement in prediction accuracy (increasing trend) with increasing SNP

densities in our study could have resulted from uneven genome coverage of the GBS markers

in which most of the SNPs are often generated from small portion of DNA samples, missing

markers, and the imputation method implemented to reconstruct the missing markers,

although a large number of SNPs are generated through the GBS [41, 76, 77]. This decreases

the actual markers affecting the trait controlled by large number of QTLs, consequently limit-

ing the prediction accuracy of the GS models. Prediction accuracy of GS in switchgrass was

not affected by reducing the SNP densities to 3000 [41]. In a GS study in perennial ryegrass

[78], utilizing SNP markers generated from GBS, the prediction accuracy was similar with

about a threefold increase in the marker numbers. Increase in prediction accuracy for traits

with complex genetic architecture, and a decrease in prediction accuracy for traits with simple

genetic architecture with increasing marker density have been reported [79]. However, both

decreasing and increasing trends of the prediction accuracy with increasing SNP density

observed for complex traits in the present study could be explained by the genetic makeup of

the traits, inability of GBS markers to cover the large genome and inability of the models to

account for gene interactions. Differences in the trends of prediction accuracy for traits evalu-

ated at Saskatoon and Swift Current could be the result of different genetic interactions in dif-

ferent environments. Difference in the prediction accuracy of oil content in rapeseed (Brassica
napus) evaluated in two different years were reasoned to be influenced by pleiotropic effects of

certain genetic factors in specific environments [80].

This study assessed whether SNPs generated using the GBS application in diploid and tetra-

ploid crested wheatgrass plants could predict the GEBVs of agro-morphological and nutritive

value traits in crested wheatgrass using four GS models. Overall, the moderate prediction accu-

racies observed for DTH, LW, PH, CD, ESV and FRG, demonstrate that a genomic selection

approach could increase the genetic gain for these traits in a cost-effective way by reducing the

length of the selection cycle. This approach could be utilized for the development of high-qual-

ity, high-yielding, late maturing crested wheatgrass for extended summer grazing. However,

the low prediction accuracies observed for certain traits in our study might be improved by

increasing the number of replications for improved phenotyping, refining the training popula-

tion using a higher number of breeding lines, increasing the population size, using different

genotyping approach to increase the genome coverage and using different genomic selection

models that account for additive and dominant gene actions [81–83], and G x E interactions

[84–86]. In addition to this, the genetic architecture of the traits under study influences the

prediction accuracy of the GS models, and thus, for the traits with unknown genetic architec-

ture in crested wheatgrass, studies are needed for the comparison of parametric models with

the non-parametric models which are reported to perform better under epistatic gene effects.

We foresee that the development of high-density markers with a higher level of genome cover-

age would enhance the use of GS applications in crested wheatgrass breeding.
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5 Conclusions

This genomic selection analysis in combination with GBS revealed moderate predication accu-

racies (0.20 to 0.35) for several agro-morphological traits in crested wheatgrass breeding. This

finding is encouraging for the application of GS in perennial forage crop breeding.
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