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Abstract: The two-domain Schmidt equation of state (EoS), which describes the pressure-specific
volume–temperature (pvT) behavior of polymers in both the equilibrium molten/liquid state and
non-equilibrium solid/glassy state, is often used in the simulation of polymer processing. However,
this empirical model has a discontinuity problem and low fitting accuracy. This work derived a
continuous two-domain pvT model with higher fitting accuracy compared with the Schmidt model.
The cooling rate as an obvious influencing factor on the pvT behavior of polymers was also considered
in the model. The interaction parameters of the equations were fitted with the experimental pvT data
of an amorphous polymer, acrylonitrile-butadiene-styrene (ABS), and a semi-crystalline polymer,
polypropylene (PP). The fitted results by the continuous two-domain EoS were in good agreement
with the experimental data. The average absolute percentage deviations were 0.1% and 0.16% for
the amorphous and semi-crystalline polymers, respectively. As a result, the present work provided
a simple and useful model for the prediction of the specific volume of polymers as a function of
temperature, pressure, and cooling rate.
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1. Introduction

The prediction of the pressure-specific volume-temperature (pvT) behavior of polymers is an
important task, considering that it offers many highly promising applications in polymer physics
and processing. Especially in injection molding, the predictions of shrinkage and warpage of the
injection-molded parts are all based on pvT models [1–4]. In addition, the derived pvT diagrams have
been proven to be very useful for optimal process control and mold design [5–11]. The pvT model
can be used to map process variables to quality variables so that the course of cavity pressure can be
adjusted to the actual path of melt temperature [6–8,11].

Polymers in molten/liquid state can be considered as equilibrium, thus the pvT behavior of the
polymers in molten/liquid state can be represented accurately by the equation of state (EoS). Various
theories have been developed to describe the pvT properties of polymer solutions, including the
cell model [12–14], the hole model [15], the lattice-fluid model [16], and the statistical–mechanical
EoS [17–20]. These theoretical models have been modified and extensively used [21,22]. However, the
solid state is a quasi-equilibrium state, which is dependent on the conditions of pressure and cooling
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rate, and therefore is difficult to model by an analytical approach [21]. The semi-empirical model
of Hartmann–Haque (HH) [23,24], on the other hand, showed satisfactory results for amorphous
polymers but difficulties for semi-crystalline polymers [21]. Additionally, the specific volume is not a
dependent variable in these theoretical and semi-empirical models, leading to difficulties in simulation
or prediction. In comparison, empirical models are often convenient to represent pvT data on polymers
in analytical form, by only giving the parameters in the correspondent equations [25]. Empirical pvT
models include the Spencer–Gilmore model [26], the Schmidt model [27,28], and the Tait model [29,30],
which are used in commercial software, e.g., by Moldflow (Autodesk, Inc.), Moldex 3D (CoreTech
System Co., Ltd.), Sigmasoft (SIGMA Engineering GmbH) and Cadmould (Simcon kunststofftechnische
Software GmbH). The Spencer–Gilmore model is quite simple but less accurate. The Tait model has
been widely used for polymers [21,22,31,32], because of its simple form, convenient application, and
high precision. The two-domain Tait EoS has much more fitting accuracy, especially in the solid state.
The Schmidt model was developed by T.W. Schmidt at the Institute for Plastics Processing (IKV) in
1986 [28]. The two-domain Schmidt EoS is similar to the two-domain Tait EoS, although simpler, and
it is primarily used in German-speaking countries [7,8,10]. The Tait model uses a volume–pressure
relationship, while the Schmidt model considers a volume–temperature relationship. The Schmidt
model has less accuracy than the Tait model [33], and fitting problems occur regularly. Furthermore,
another important problem for the two-domain Tait EoS and the Schmidt EoS is the discontinuity of the
models. Because the EoS describes the pvT behavior of the solid/glassy phase and molten/liquid phase
separately, the two-domain equations consist of two independent sets of equations. The discontinuity
of the specific volume occurs at the transition temperature, destabilizing the data prediction during the
injection molding simulation [34]. The transition regime is crucial to estimate part shrinkage, since
small changes in temperature and pressure lead to significant changes in the specific volume. Even a
small discontinuity in the specific volume can cause large errors in the shrinkage estimates [35].

The cooling rate has an obvious influence on the pvT behavior of polymers [34,36–40]. In injection
molding mainly non-isothermal conditions for polymer solidifications are found, with large cooling
rates up to 3000 ◦C/min close to the mold walls and 60 ◦C/min near the center of the thickness [41].
Therefore, the prediction of pvT data of polymers considering the cooling rate is important. Chang et
al. [42] presented a modified two-domain Tait EoS considering the cooling rate of the part regarding
amorphous polymers. A pvT model for semi-crystalline polymers considering the cooling rate was
also proposed [36], but the equations are inconvenient to use due to the increased experimental and
analytical effort to fit the parameters in the crystallization range. Kowalska [43] summarized the
correspondent criteria of the pvT EoS, e.g., that the EoS should be valid over a wide pressure and
temperature range, not overly complex, and easy to use.

In this paper, we derive a two-domain pvT model according to the Schmidt model. The new
model, usable for both amorphous and semi-crystalline polymers, can solve the discontinuity problem
of the traditional two-domain Schmidt and Tait EoS. Compared with the Schmidt model, the new model
has higher accuracy of fitting; compared with the Tait model, the new model is simpler and easier to
use. Moreover, the pvT behavior of polymers under different cooling rates can also be predicted. The
interaction parameters of the equations are fitted with experimental pvT data. The prediction accuracy
of the model is also validated.

2. Materials and Methods

2.1. Materials

Acrylonitrile-butadiene-styrene (ABS) (717C, CHIMEI Corporation, Zhenjiang, China) was used
as the basic amorphous polymer material. The melt flow rate (MFR) of the ABS at 200 ◦C and 5 kg
was 1.3 g/10 min, the density was 1040 kg/m3 at room temperature of 23 ◦C. The semi-crystalline
polymer used in the experiments was polypropylene (PP) (PP 505P, SABIC, Riyadh, Saudi Arabia).
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The melt flow rate (MFR) of the PP at 239 ◦C and 2.16 kg was 2.0 g/10 min, the density was 905 kg/m3

at room temperature.

2.2. pvT Measurement

The pvT behavior of the two polymers was measured on a piston-die pvT instrument (type: PVT
500, GÖTTFERT Werkstoff-Prüfmaschinen GmbH, Buchen, Germany). Since the polymer in the mold
cavity experiences mainly cooling (decreasing temperature) and decompression (decreasing pressure),
the main pvT measurement mode of “isobaric cooling” and then “decompression” was performed. The
initial isobaric pressure level was 2200 bar and was consecutively decreased to 1800, 1400, 1000, 600,
and 200 bar for further isobaric measurement cycles. The temperature changed from 240 ◦C to 40 ◦C
for the amorphous polymer ABS, and changed from 260 ◦C to 40 ◦C for the semi-crystalline polymer
PP. Four cooling rates (20, 10, 5, and 2 ◦C/min) were used for the pvT device. Much higher cooling
rates could not be realized due to the air-cooling system of the device. The exact cooling rates varied
a lot for the set cooling rates of 10 and 20 ◦C/min. The data were recorded in temperature intervals
of 5 ◦C. The pvT data of the isobaric pressure levels of 2200, 1800, 600, and 200 bar were used in the
parameter regression of the equations, while the pvT data of the isobaric pressure levels of 1400 and
1000 bar were used to validate the prediction accuracy of the pvT model.

2.3. Differential Scanning Calorimetry (DSC)

A differential scanning calorimeter (DSC-60, Shimadzu Corporation, Kyoto, Japan) was applied
to validate the state transition temperature under atmospheric pressure. The temperature changed
between 30 and 250 ◦C for the amorphous polymer ABS, and changed between 10 and 260 ◦C for the
semi-crystalline polymer PP. Five heating and cooling rates (±50, ±30, ±10, ±5, and ±2 ◦C/min) were
used. A holding time of 5 min was used after each heating and cooling process.

2.4. Modeling

2.4.1. Continuous Two-Domain EoS

Figure 1 presents the pvT curves for polymers. According to the pvT curves of amorphous
polymers, linear expressions can be used to describe both the liquid state and glassy state. With
semi-crystalline polymers, linear equations can be used for the molten state and a combination of linear
and exponential expressions can be used for the solid state. Therefore, the equation to describe the
pressure and temperature dependency of the specific volume, v (p, T), can be presented as:

v(p, T) = A(p) + B(p)·T + C(p, T) (1)

where A(p) is the reference specific volume as a function of pressure, B(p) is the specific volume gradient
to temperature, C (p,T) is the specific volume decrease due to crystallization. According to the Schmidt
model [28], the pressure was taken into account by a hyperbolic approach for A (p) and B (p):

A(p) =
a1

a2 + p
(2)

B(p) =
b1

b2 + p
(3)

An exponential function is usually used in the Tait model, however, it was found that a polynomial
function fits better [44]. In order to improve the fitting accuracy, a quadratic polynomial expression
was used to replace the hyperbolic expressions in the Schmidt model:

A(p) = a1 − a2·p + a3·p2 (4)
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B(p) = b1 − b2·p + b3·p2 (5)

Constants a1 to a3 are parameters that describe the dependency of the reference specific volume
on pressure. Constants b1 to b3 are the parameters to describe the dependence of the specific volume
gradient on pressure. A comparison between the polynomial model and the Schmidt model is discussed
in this work. The description of the pvT behavior in the crystallization range is approximated by the
following exponential function:

C(p, T) = c1·exp(c2·T − c3·p) (6)

where c1, c2 and c3 are particular parameters of semi-crystalline polymers that describe the form of the
crystallization state. For amorphous polymers, C (p, T) equals zero. The state transition temperature
increases with the pressure. The traditional Tait EoS and Schmidt EoS give the linear rule for the effect
of pressure on the transition temperature.

Tt(p) = d1 + d2·p (7)
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state (EoS).

However, many published articles [45,46] have shown a nonlinear relationship between the
transition temperature and the pressure. Therefore, we used a quadratic polynomial Equation in order
to have a more accurate model:

Tt(p) = d1 + d2·p + d3·p2 (8)

where d1, d2, and d3 are the constants that describe the transition temperature as a function of pressure.
The two domains are related to two states of polymers, solid state and molten state for

semi-crystalline polymer, glass state and liquid state for amorphous polymer. The transition temperature
(Tt) is the crystallization temperature (Tc) for semi-crystalline polymer and the glass transition
temperature (Tg) for amorphous polymer. To deal with the discontinuity problem of the traditional
two-domain EoS, the two-domain equations should be connected by the transition temperature and
the corresponding specific volume. Thus, we used a reference temperature, T, instead of T in the
Equations:

T(p, T) = T − Tt(p) (9)

where T is the exact temperature. It was noted that the equation, T = T − d1, has been used in the
two-domain Tait EoS in many publications [11,22,30,42]. However, it will cause large deviations
without the dependency on pressure [34], because d1 only represents the transition temperature at
zero pressure, which cannot combine the pressure effects. Equation (9) combined with Equation (8)
becomes:

T(p, T) = T − d1 − d2·p− d3·p2 (10)
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The material-dependent constants A, B, and C differ for the two domains. Therefore, the following
sets of equations can be used for specific cases:

When T > Tt(p)
v(p, T) = Am + Bm·T (11)

Am =
a1m

a2m + p
(12)

or:
Am = a1m − a2m·p + a3m·p2 (13)

Bm =
b1m

b2m + p
(14)

or:
Bm = b1m − b2m·p + b3m·p2 (15)

when T < Tt(p):
v(p, T) = As + Bs·T + C (16)

As =
a1s

a2s + p
(17)

or:
As = a1s − a2s·p + a3s·p2 (18)

Bs =
b1s

b2s + p
(19)

or:
Bs = b1s − b2s·p + b3s·p2 (20)

C = c1·exp
(
c2·T − c3·p

)
(21)

The subscripts “m” and “s” denote the parameter values for the molten/liquid and solid/glassy
states, respectively. The estimation of these constants is conducted separately. Figure 2a shows the
order of the parameter regression for the discontinuous two-domain EoS. Firstly, d1, d2, and d3 can be
estimated by Equation (8) from the data of transition temperature at different pressures, and then the
parameter values are used in the regression of the molten/liquid and glassy/solid parameters. The
molten/liquid parameters (a1m, a2m, a3m, b1m, b2m, and b3m) and glassy/solid parameters (a1s, a2s, a3s,
b1s, b2s, b3s, c1, c2, and c3) can be estimated separately from the corresponding data. C (c1, c2, and c3)
equals zero for amorphous polymers.
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In order to connect the two domains, the key parameters are the transition temperature, Tt, and the
correlating specific volume, vt. When the temperature equals Tt, the specific volume of the solid/glassy
state, vs, and the specific volume of the molten/liquid state, vm, should be equal. For this case, T = Tt,
T = T − Tt = 0, the specific volume at the transition temperature is assigned as:

vm = Am = vs = As (22)
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for amorphous polymers and:

vm = Am = vs = As + c1·exp(−c3·p) (23)

for semi-crystalline polymers. The coefficients equal to:

c1·exp(−c3·p) = Am −As (24)

As = Am − c1·exp(−c3·p) (25)

Therefore, the continuous two-domain equations with considering the transition points could be
derived as Equations (8) and (9).

When T > Tt(p), see Equation (11), when T < Tt(p),

v(p, T) = Am(p) + Bs(p)·T (26)

for amorphous polymers,

v(p, T) = As(p) + Bs(p)·T + [Am(p) −As(p)]·exp
(
c2·T

)
(27)

or,
v(p, T) = Am(p) + Bs(p)·T + c1 exp(−c3·p)

[
exp

(
c2 T

)
− 1

]
(28)

for semi-crystalline polymers.
The modified Equations (26)–(28) established a link between the two states of polymers. The

specific volume equals Am(p) when T equals zero—Am(p) is the specific volume at the transition
temperature. When the transition temperature and the correspondent specific volume have been
fixed, the parameters for the two domains can be fitted separately. The new two-domain EoS does
not only solve the problem of discontinuity, but also saves two or more parameters. For amorphous
polymers, Am(p) is used directly to replace As(p); for semi-crystalline polymers, c1 and c3, can be saved
by Equation (27), or As(p) can be saved by Equation (28). Equation (28) is preferred over Equation (27)
because it can save more parameters. Finally, Equations (8), (9), (11), (26), and (28) in combination
with Equations (12–15), (19) and (20) form the continuous two-domain pvT model. Fifteen parameters
are included in these equations. Figure 2b presents the order of the parameter regression for the
continuous two-domain EoS. The values of d1, d2, and d3 are firstly estimated by Equation (8) from
the data of transition temperature at different pressures, and the values of a1m=a1s=a1, a2m=a2s=a2,
and a3m=a3s=a3 are estimated by Equation (13) or (18) from the data of transition specific volume at
different pressures. Then, the estimated values of d1, d2, d3, a1, a2, and a3 are used in the following
regressions. The melt/liquid parameters (b1m, b2m, and b3m) and solid/glassy parameters (b1s, b2s, b3s,
c1, c2, and c3) can be estimated separately.

2.4.2. Two-Domain EoS Considering Cooling Rate

In principle, the proposed functions are furthermore able to determine the cooling rate dependent
pvT behavior. Dependencies between the transition temperature and the specific volume need to be
determined regarding the cooling rate. The parameters on the transition temperature and their specific
volume with cooling rate effects are d1 and a1. Chang et al. [42] suggested a logarithmic relationship
between the transition temperature and the cooling rate. When the cooling rate increases from

.
T0 to

.
T = dT/dt, the transition temperature shifts and the corresponding parameter d1 can be integrated.

d1 = d′1 + d′′1 · ln(q) (29)
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q =

.
T
.
T0

(30)

Constants d1′ and d1′ ’ are two parameters to describe the transition temperature as a function of
the cooling rate. The correspondent transition specific volume also changes to:

a1 = a′1 + a′′1 · ln(q) (31)

where the constants a1′ and a1′ ’ are two parameters to describe the specific volume at the transition
temperature as a function of the cooling rate.

The continuous two-domain equations including cooling rate effects to describe the pvT behavior
of both amorphous and semi-crystalline polymers are presented in Equations (29)–(31) and following
final set of equations:

v(p, T, q) = A(p, q) + B(p)·T(p, T, q) + C(p, T, q) (32)

A(p, q) = a1 − a2·p + a3·p2 (33)

T(p, T, q) = T − Tt(p, q) (34)

Tt(p, q) = d1 + d2·p + d3·p2 (35)

when T > Tt(p, q), see Equation (15) and

C(p, T, q) = 0 (36)

when T < Tt(p, q), see Equation (20) and

C(p, T, q) = c1·exp(−c3·p)·
[
exp

(
c2·T

)
− 1

]
(37)

Seventeen parameters are included in these equations. Figure 3 presents the modeling parameters.
The values of d1′ , d1′ ’, d2, and d3 are estimated by Equation (35) and Equation (29) from the data
of transition temperature at different pressures and cooling rates. The values of a1′ , a1′ ’, a2, and a3

are estimated by Equation (33) and Equation (31) from data of the specific volume at the transition
temperature. For amorphous polymers, c1, c2, and c3 all equal zero. For the cooling rate, 0.001 ◦C/s is
used as the initial value of the cooling rate,

.
T0, due to the asymptote of the natural logarithm at zero.
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3. Results and Discussion

3.1. Influence of the Ccooling Rate

The effect of the cooling rate cannot be neglected regarding the pvT behavior of polymers [36,37,42].
However, the cooling rate is not constant during the pvT measurement as well as in the injection
molding process. Figure 4 shows the cooling rate as a function of the temperature during the pvT
measurement. The cooling rate was calculated from the gradient of the temperature over time. Cooling
rates of 2 and 5 ◦C/min were obtained accurately, but cooling rates of 10 and 20 ◦C/min were not
realized well. The maximum cooling rates for the set cooling rates of 10 and 20 ◦C/min were around 9.6
and 12.4 ◦C/min, respectively. The cooling rate varied a lot during the starting and ending phases of
the measurement cycle. In reality, the cooling rate is never constant because it dependents on the heat
flux and the temperature of the coolant in combination with the heat capacity of the sample-holding
area. Therefore, the actual temperature history was used in the analysis of the experimental results,
where the maximum in the time derivative of the temperature was defined as the cooling rate

.
T [36],

which was used for the fitting of the parameters. It should be noted that the maximum cooling rate in
injection molding can be as high as 3000 ◦C/min [41]. Several laboratories have reported that they can
realize equally high cooling rates [36,41,45], but no commercial pvT instrument is available with such
abilities. This further indicates the necessity of predictive models to extrapolate pvT data for higher
cooling rates. Due to the limitation of the experimental device, only cooling rates up to 12.4 ◦C/min
were used in this study.
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3.2. Transition Temperature and the Corresponding Specific Volume

Regarding the regression of the two-domain equations, the pvT data at the transition phase are
very important. In order to confirm the accuracy, for each group of isobaric pvT data, we used linear
equations to fit the data for the molten state and quadratic polynomial equations to fit the data for the
crystallization state. Then, we calculated the data at the transition phase, which is the intersect point
of these two equations. Data of the transition temperature and pressure were used in the regression
of Equations (35) and (29), and the data of the corresponding specific volume and pressure were
used in the regression of Equations (33) and (31). Figure 5 shows the transition temperature, Tt, as a
function of the cooling rate. The glass transition temperature, Tg, of the amorphous polymer increased
with increasing cooling rate, and the transition/crystallization temperature, Tc, of the semi-crystalline
polymer decreased. The data were fitted very well. The estimated parameter values are shown in
Table 1. The R-squared (R2) value from the quadratic polynomial regression model was 99.7% for
both amorphous and semi-crystalline polymers. The predictions and additional experimental results
at isobaric pressure levels of 1400 and 1000 bar were mostly consistent. In addition, DSC was used
to obtain the state transition temperatures of the ABS and PP samples under atmospheric pressure.
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The comparison of state transition temperatures between the DSC and the prediction is shown in
Figure 5. Good agreement could be obtained especially for the semi-crystalline PP. Due to the process
dependency, the amorphous polymer did not exhibit clear glass transition temperatures.
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Table 1. Parameters for the transition temperature, Tt, estimated by the quadratic polynomial regression
model considering the cooling rate, Equations (35) and (29).

Polymer Parameter Estimate Std. Error R2 (%)

ABS d1’ (◦C) 111.217 1.536 99.7
d1” (◦C) 0.865 0.306
d2 (◦C/bar) 0.008 0.002
d3 (◦C/bar2) 3.74 × 10−6 6.58 × 10−7

PP d1’ (◦C) 144.71 2.053 99.7
d1” (◦C) −6.401 0.406
d2 (◦C/bar) 0.03 0.002
d3 (◦C/bar2) 3.852 × 10−6 8.94 × 10−7

Figure 6 shows the corresponding specific volume at the transition temperature, vt, as a function
of the cooling rate. As the cooling rate increased, the corresponding specific volume of the amorphous
ABS increased. The corresponding specific volume of the semi-crystalline PP increased but less than
the amorphous polymer. The calculated data by Equations (33) and (31) are shown by “vt_cal.1”,
with good matching of experimental data and predictions. For comparison, Equation (2) from the
Schmidt model combined with Equation (31) was also used in the fitting. However, the predicted
results as shown by “vt_cal.2” present a larger deviation than the quadratic polynomial equation.
Table 2 lists different parameters for the corresponding specific volume at the transition temperature.
The polynomial Equation (33) combined with Equation (31) was compared with the Schmidt Equation
(2) combined with Equation (31). From the R-squared (R2) values, the Schmidt model accounted for
99.7% of the variance, while the polynomial model accounted for 99.9%. Therefore, the polynomial
approach seems to have less error for both materials, ABS and PP.
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Figure 6. The corresponding specific volume at the transition temperature of the amorphous ABS (a)
and the semi-crystalline PP (b) as a function of the cooling rate.

Table 2. Parameters for the correspondent specific volume at the transition temperature, vt, estimated
by the continuous two-domain EoS considering the cooling rate.

Polymer Model Equation Parameter Estimate Std. Error R2 (%)

ABS cal.1 (33) a1’ (mm3/g) 952.781 1.601 99.9
Polynomial (31) a1” (mm3/g) 3.414 0.319

a2 (mm3/(g·bar)) 0.049 0.002
a3 (mm3/(g·bar2)) 5.789 × 10−6 6.86 × 10−7

cal.2 (2) a1’ (mm3
·bar/g) 23,649,719 374,659 99.7

Schmidt (31) a1” (mm3
·bar/g) 88,851 17,092

a2 (bar) 24,925.451 403.474

PP cal.1 (33) a1’ (mm3/g) 1219.121 2.534 99.9
Polynomial (31) a1” (mm3/g) 0.704 0.502

a2 (mm3/(g·bar)) 0.089 0.003
a3 (mm3/(g·bar2)) 1.1483 × 10−5 1.103 × 10−6

cal.2 (2) a1’ (mm3
·bar/g) 20,850,700 339,448 99.7

Schmidt (31) a1” (mm3
·bar/g) 13,276 20,676

a2 (bar) 17,190.134 285.183

3.3. Comparison between the Experimental Data and the Fitted Data

Figure 7 shows the comparison between the experimental data and the fitted data by discontinuous
and continuous pvT models. The “m” and “s” denote the parameter values for the molten/liquid
and solid/glassy states, respectively. The quadratic polynomial model and Schmidt model were used
separately in the description of the pressure dependence, and their fitted results are shown by “cal.
1” and “cal. 2” respectively. Good agreement between the experimental and the calculated specific
volumes was obtained. In comparison with the Schmidt model (cal. 2), smaller deviation and better
fitting can be realized by the quadratic polynomial model (cal. 1). No significant difference between the
discontinuous and continuous models can be seen in the fitting of experimental results. The estimated
values of these characteristic parameters are shown in Tables 3 and 4. The R2 values of the quadratic
polynomial model (cal. 1) were all higher than those of the Schmidt model (cal. 2). In comparison
with the discontinuous model, the R2 values of the continuous model were slightly lower due to the
limiting situation of the specific volume at the transition temperature.
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Table 3. Parameters estimated by the continuous two-domain EoS considering the cooling rate.

Polymer Model Equation Parameter Estimate Std. Error R2 (%)

ABS cal.1 (32) b1m (mm3/(g·◦C)) 0.559 0.003 99.91
(15) b2m (mm3/(g·◦C·bar)) 2.11521 × 10−4 8.131 × 10−6

b3m (mm3/(g·◦C·bar2)) 4.2 × 10−8 3 × 10−9

(32) b1s (mm3/(g·◦C)) 0.175 0.004 99.81
(20) b2s (mm3/(g·◦C·bar)) 2.1499 × 10−4 9.644 × 10−6

b3s (mm3/(g·◦C·bar2)) 6.7 × 10−8 4 × 10−9

cal.2 (32) b1m (mm3/(g·◦C)) 1216.716 29.363 99.79
(14) b2m (bar) 2113.472 61.924

(32) b1s (mm3/(g·◦C)) 44.271 3.652 99.72
(19) b2s (bar) 154.237 33.575

PP cal.1 (32) b1m (mm3/(g·◦C)) 0.846 0.005 99.90
(15) b2m (mm3/(g·◦C·bar)) 4.14538 × 10−4 1.3043 × 10−5

b3m (mm3/(g·◦C·bar2)) 9.2 × 10−8 6 × 10−9

(32) b1s (mm3/(g·◦C)) 0.496 0.023 99.43
(20) b2s (mm3/(g·◦C·bar)) 3.31605 × 10−4 2.6266 × 10−5

(37) b3s (mm3/(g·◦C·bar2)) 8.8 × 10−8 8 × 10−9

c1 (mm3/g) 90.531 1.336
c2 (1/◦C) 0.109 0.003
c3 (1/bar) 3.1409 × 10−4 8.201 × 10−6

cal.2 (32) b1m (mm3/(g·◦C)) 1280.478 29.722 99.79
(14) b2m (bar) 1432.768 41.907

(32) b1s (mm3/(g·◦C)) 713.539 73.594 99.19
(19) b2s (bar) 1718.018 278.007
(37) c1 (mm3/g) 94.12 1.654

c2 (1/◦C) 0.104 0.003
c3 (1/bar) 3.4312 × 10−4 9.75 × 10−6
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Table 4. Parameters estimated by the discontinuous two-domain EoS considering the cooling rate.

Polymer Model Equation Parameter Estimate Std. Error R2 (%)

ABS cal.1 (11) a1m’ (mm3/g) 954.108 0.598 99.91
(13) a1m” (mm3/g) 2.945 0.093
(15) a2m (mm3/(g·bar)) 0.046 0.001
(31) a3m (mm3/(g·bar2)) 4.668 × 10−6 4.49 × 10−7

b1m (mm3/(g·◦C)) 0.571 0.006
b2m (mm3/(g·◦C·bar)) 2.49678 × 10−4 1.7266 × 10−5

b3m (mm3/(g·◦C·bar2)) 5.9 × 10−8 7 × 10−9

(16) a1s (mm3/g) 956.846 0.603 99.81
(18) a2s (mm3/(g·bar)) 2.535 0.088
(20) a3s (mm3/(g·bar2)) 4.6 × 10−8 1 × 10−9

(31) b1s (mm3/(g·◦C)) 4.344 0.448
b2s (mm3/(g·◦C·bar)) 1.79 × 10−7 9 × 10−9

b3s (mm3/(g·◦C·bar2)) 1.75542 × 10−4 1.89 × 10−5

cal.2 (11) a1m’ (mm3
·bar/g) 25,081,194 30,453 99.79

(12) a1m” (mm3
·bar/g) 80,827 60,364

(14) a2m (bar) 26,415.869 3.761
(31) b1m (mm3

·bar /(g·◦C)) 906.314 170.66
b2m (bar) 1452.427 156.634

(16) a1s’ (mm3
·bar/g) 24,400,643 111,151 99.72

(17) a1s” (mm3
·bar/g) 66,735 3007

(19) a2s (bar) 25,614.391 121.87
(31) b1s (mm3

·bar /(g·◦C)) 75.047 8.844
b2s (bar) 446.842 81.5

PP cal.1 (11) a1m’ (mm3/g) 1225.188 0.87 99.9
(13) a1m” (mm3/g) −0.789 0.143
(15) a2m (mm3/(g·bar)) 0.086 0.001
(31) a3m (mm3/(g·bar2)) 1.0111 × 10−5 6.19 × 10−7

b1m (mm3/(g·◦C)) 0.857 0.008
b2m (mm3/(g·◦C·bar)) 4.5284 × 10−4 2.25 × 10−5

b3m (mm3 /(g·◦C·bar2)) 1.11 × 10−7 1 × 10−8

(16) a1s’ (mm3/g) 1119.039 1.293 99.43
(18) a1s” (mm3/g) 3.082 0.15
(20) a2s (mm3/(g·bar)) 0.058 0.002
(21) a3s (mm3/(g·bar2)) 6.272 × 10−6 7.13 × 10−7

(31) b1s (mm3/(g·◦C)) 0.508 0.018
b2s (mm3/(g·◦C·bar)) 2.78594 × 10−4 3.005 × 10−5

b3s (mm3/(g·◦C·bar2)) 6 × 10−8 1.1 × 10−8

c1 (mm3/g) 115.55 3.59
c2 (1/◦C) 0.144 0.005
c3 (1/bar) 2.46612 × 10−4 2.7623 × 10−5

cal.2 (11) a1m’ (mm3
·bar/g) 21,997,152 27,796 99.79

(12) a1m” (mm3
·bar/g) −13,713 36,456

(14) a2m (bar) 18,064.71 90.388
(31) b1m (mm3

·bar /(g·◦C)) 1001.603 105.288
b2m (bar) 1032.106 4.03

(16) a1s’ (mm3
·bar/g) 28,469,060 340,822 99.19

(17) a1s” (mm3
·bar/g) 83,976 4960

(19) a2s (bar) 25,644.56 327.387
(21) b1s (mm3

·bar/(g·◦C)) 799.37 58.416
(31) b2s (bar) 1883.346 212.861

c1 (mm3/g) 120.666 4.016
c2 (1/◦C) 0.13 0.005
c3 (1/bar) 3.81297 × 10−4 3.1849 × 10−5
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To quantify the accuracies of the models, the average absolute percentage deviation, PDave, was
calculated by the following Equations:

PDi = 100×

(
vi,exp − vi,cal

)
vi,exp

(38)

PDave =

∑n
i=1|PDi|

n
(39)

where vi,exp is the specific volume, vi,cal is the calculated specific volume, and PDi is the percentage
deviation. Figure 8 shows the average absolute percentage deviation for all the fitting with
different models. The polynomial model had a lower deviation than the Schmidt model. The
continuous model had a slightly higher deviation than the discontinuous model. The average absolute
percentage deviations of the fitting by the continuous polynomial model for the amorphous ABS and
semi-crystalline PP were 0.1% and 0.16%, respectively.
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3.4. Validation of the Models

Figure 9 shows the comparison between the experimental results and the prediction results at two
isobaric levels of 1400 and 1000 bar. Experimental data at the two isobaric pressures (1400, 1000 bar)
were not used in the regression, they were only used for validation. Good prediction was shown by
both of the continuous and discontinuous models. The R2 values in Figure 10 show better prediction
accuracy by the continuous model in the molten/liquid state but worse accuracy in the solid state of
the semi-crystalline PP compared with the discontinuous model. Figure 11 shows the average absolute
percentage deviations for all the validation with different models. In comparison with the Schmidt
model, the polynomial model possessed higher ability to predict with lower error. The continuous
model, although it provided a good correlation in prediction, had a slightly lower accuracy than the
discontinuous model. The average absolute percentage deviations of the continuous polynomial model
were 0.09% and 0.17% for the amorphous ABS and semi-crystalline PP, respectively.
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3.5. Prediction with the Model

The superiority of the continuous EoS became significant when the models with their estimated
parameters were used in the prediction. Figure 12 shows the prediction data at the pressures of 0, 1500,
and 2500 bar and the cooling rates of 0 and 1800 ◦C/s. The discontinuous problems are shown clearly
in the prediction results by the discontinuous models. Large deviations in the specific volume at the
transition phase could be seen using the discontinuous model. The deviations at the transition phase
were much larger for the semi-crystalline polymer than for the amorphous polymer. The continuous
equations performed very well in the prediction, even at high pressures and high cooling rates. It
was noted that the pvT data at the pressure of 0 bar and the cooling rates of 0, 1800 ◦C/s could not be
measured by the experimental device. Due to the limitation of the pvT measurement device for much
faster cooling, the four maximum cooling rates of 2, 5, 9.6, and 12.4 ◦C/min used in this work may not
be enough to confirm the accuracy of Equation (31). For much higher cooling rates, it still needs more
experimental data to validate the model and then the related parameters of the model, such as a1′ , a1′ ’,
a2, and a3, could be modified.Polymers 2020, 12, x FOR PEER REVIEW 16 of 19 

 

 
Figure 12. Predicted specific volume as a function of temperature, pressure, and cooling rate by the 
discontinuous two-domain EoS for amorphous polymers (a) and semi-crystalline polymers (b) and 
the continuous two-domain EoS for amorphous polymers (c) and semi-crystalline polymers (d). 

4. Conclusions 

In order to deal with the discontinuity problems of the traditional two-domain EoS in the 
description of the pvT behavior of polymers and further improve the accuracy of the models, a 
continuous two-domain pvT model was derived in this work. The predicted results by this proposed 
pvT model can closely correlate with the experimental data, both performed in amorphous polymers 
and semi-crystalline polymers. The quadratic polynomial equations were used in the modeling of the 
pressure dependence regarding the transition temperature, the specific volume, and the specific 
volume gradient. In comparison with the Schmidt model, the polynomial model showed higher 
accuracy. The two-domain pvT data for the two states of polymers (molten and solid states for semi-
crystalline polymers, and liquid and glassy states for amorphous polymers) were connected by the 
fixed transition temperatures and their correspondent specific volumes. Although the accuracy of the 
continuous model was slightly lower than the discontinuous model due to the limiting accuracy of 
the specific volume at the transition temperature, no deviation of specific volume at the transition 
phase occurred when using the continuous model in prediction. The new pvT model can also be 
applied to describe the influence of the cooling rate. Logarithmic functions were used to model the 
cooling rate dependence regarding the transition temperature and the corresponding specific 
volume. High R-squared values, >99.43%, and low average absolute percent deviations, <0.16%, in 
the regression of the continuous two-domain EoS were obtained. The results presented here could be 
employed to improve the prediction accuracy of the shrinkage and warpage of polymer processing.  

Author Contributions: Conceptualization, J.W.; methodology, J.W.; validation, T.H. and J.A.; formal analysis, 
data curation, J.W.; writing—original draft preparation, J.W.; writing—review and editing, M.R., T.H. and C.K.; 

Figure 12. Predicted specific volume as a function of temperature, pressure, and cooling rate by the
discontinuous two-domain EoS for amorphous polymers (a) and semi-crystalline polymers (b) and the
continuous two-domain EoS for amorphous polymers (c) and semi-crystalline polymers (d).

4. Conclusions

In order to deal with the discontinuity problems of the traditional two-domain EoS in the
description of the pvT behavior of polymers and further improve the accuracy of the models, a
continuous two-domain pvT model was derived in this work. The predicted results by this proposed
pvT model can closely correlate with the experimental data, both performed in amorphous polymers
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and semi-crystalline polymers. The quadratic polynomial equations were used in the modeling of
the pressure dependence regarding the transition temperature, the specific volume, and the specific
volume gradient. In comparison with the Schmidt model, the polynomial model showed higher
accuracy. The two-domain pvT data for the two states of polymers (molten and solid states for
semi-crystalline polymers, and liquid and glassy states for amorphous polymers) were connected by
the fixed transition temperatures and their correspondent specific volumes. Although the accuracy of
the continuous model was slightly lower than the discontinuous model due to the limiting accuracy of
the specific volume at the transition temperature, no deviation of specific volume at the transition phase
occurred when using the continuous model in prediction. The new pvT model can also be applied
to describe the influence of the cooling rate. Logarithmic functions were used to model the cooling
rate dependence regarding the transition temperature and the corresponding specific volume. High
R-squared values, >99.43%, and low average absolute percent deviations, <0.16%, in the regression
of the continuous two-domain EoS were obtained. The results presented here could be employed to
improve the prediction accuracy of the shrinkage and warpage of polymer processing.
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