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Variance‑resistant PTB7 
and axially‑substituted silicon 
phthalocyanines as active materials 
for high‑Voc organic photovoltaics
Mario C. Vebber1, Nicole A. Rice1, Jaclyn L. Brusso2 & Benoît H. Lessard1,3*

While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such 
devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. 
Moreover, examples of high voltage single‑junction devices, which are necessary for several 
applications, particularly low‑power electronics and rechargeable batteries, are lacking in literature. 
Alternatively, silicon phthalocyanines  (R2‑SiPc) are inexpensive, industrially scalable organic 
semiconductors, having a minimal synthetic complexity (SC) index, and are capable of producing high 
voltages when used as acceptors in OPVs. In the present work, we have developed high voltage OPVs 
composed of poly({4,8‑bis[(2‑ethylhexyl)oxy]benzo[1,2‑b:4,5‑b′]dithiophene‑2,6‑diyl}{3‑fluoro‑2‑[(2‑
ethylhexyl)carbonyl] thieno [3,4 b]thiophenediyl}) (PTB7) and an SiPc derivative ((3BS)2‑SiPc). While 
changes to the solvent system had a strong effect on performance, interestingly, the PTB7:(3BS)2‑SiPc 
active layer were robust to spin speed, annealing and components ratio. This invariance is a desirable 
characteristic for industrial production. All PTB7:(3BS)2‑SiPc devices produced high open circuit 
voltages between 1.0 and 1.07 V, while maintaining 80% of the overall efficiency, when compared to 
their fullerene‑based counterpart.

Organic photovoltaics (OPVs) are a promising solar energy technology with the potential for low manufacturing 
cost and quick energy  payback1,2. OPVs can be fabricated by solution-based techniques, such as spin-coating, 
blade-coating and a variety of printing techniques, facilitating their integration into continuous, high throughput 
processing, which is unachievable with traditional silicon  technology1,3–5. In the past 5 years, single-junction 
OPVs with record power conversion efficiencies (PCE) of 15–19% have been  reported6–9, approaching commer-
cial solar cell performances. However, these high efficiencies are achieved using expensive small molecules and 
polymers, the production of which is not scalable as they require complex multi-step synthesis and purification 
 methods10–14. Most of these state-of-the-art OPVs often excel in high current densities (Jsc) and fill factor (FF), 
while providing middling open-circuit voltage (Voc), between 0.7 and 0.8  V6–9,15.

High-voltage OPVs are of great interest for certain applications, particularly in rechargeable batteries and 
low-power electronics, which always require a minimum voltage to  operate16–18. While high Vocs can be obtained 
by tandem cells or cells in series, this requires all cells to produce similar currents, which is virtually impossible 
to achieve in applications where lighting is  inhomogeneous16. Some ternary BHJs with Vocs above 0.9 V have 
been  reported19,20, albeit relying on high-cost, non-scalable materials. It remains that the Voc of the majority of 
single-junction photovoltaics rarely surpasses 0.8 V, including silicon-based devices. Recently, a few research 
groups have used simple and low-cost small molecules as non-fullerene acceptors (NFAs) in OPVs, and achieved 
Voc ≥ 1.0  V12,21–24. Such architectures may hold the key for commercial viability as they can be manufactured on 
an industrial scale, provided that the efficiency and stability of the devices is sufficiently  high21,25.

Axially substituted silicon phthalocyanines  (R2-SiPc) are ideal candidates for low-cost, high- Voc acceptor 
 materials24,26,27. While metal phthalocyanine (MPc) have been investigated in organic electronic applications 
for more than 50 year,  R2-SiPcs are relatively understudied, having emerged in recent  years28 and successfully 
incorporated in multiple new application, including organic thin-film transistors (OTFTs)29–34, organic light-
emitting diodes (OLEDs)26,35,36 and in  OPVs24,26,37–40. The synthetic complexity (SC)  index41 of  R2-SiPcs have been 
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calculated to be at least three times lower (SC = 12)27 than that of several prominent OPV acceptors materials, 
such as  PC61BM (SC = 36)42, Y6 (SC = 59)43 and ITIC (SC = 67)44. The exceptionally low SC index of  R2-SiPcs 
makes them exceedingly promising organic semiconductors for OPVs. Historically,  R2-SiPcs have mainly been 
employed as ternary additives in  OPVs37–40,45. However, in a recent study by Grant et al., an OPV composed of a 
blend of  R2-SiPc and poly-3-hexylthiophene (P3HT) achieved higher Voc and PCE than the fullerene-based ana-
logue. Remarkably, when paired with poly[[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-
2,6-diyl]-2,5-thiophenediyl [5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]] 
(PBDB-T), yielded a device with an exceptionally high Voc of nearly 1.1  V24. Additionally, relatively simple 
chemical modification of  R2-SiPcs can address other common issues in OPVs, such as stability, by including cross-
linking groups in the SiPc structure to improve the stability of the active layer’s  nanostructure46. Nonetheless, 
there are relatively few reports investigating the use of  R2-SiPc as stand-alone acceptors in  OPVs24,26,27. therefore 
it is vital to investigate pairing these cost-effective molecules with different donor polymers and optimizing these 
devices to exploit their full potential in OPVs.

In the present work we have fabricated OPVs using poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]
dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno[3,4-b]thiophenediyl]] (PTB7, Fig. 1) and 
bis(tri-n-butylsilyl oxide) silicon phthalocyanine ((3BS)2-SiPc; Fig. 1). Our group has recently reported similar 
devices, by pairing ((3BS)2-SiPc with PBDB-T, and here we continue to explore this NFA with PTB7, another high 
performing polymer, that possesses more adequate energy level alignment with respect to (3BS)2-SiPc (Fig. 1).
These devices were characterized by atomic force microscopy (AFM) and external quantum efficiency (EQE). 
The OPVs were optimized and yielded devices with a high Voc of 1.05 V, while maintaining 80% of the overall 
PCE, when compared to a fullerene-based analogue.

Experimental section
Materials. Two different molecular weights of PTB7 (93 kg  mol−1, PDI 2.6 and 16 kg  mol−1, PDI 2.4) was 
purchased from 1-Material and used as received. Bis(tri-n-butyl siloxy) silicon phthalocyanine ((3BS)2-SiPc) 
was synthesized and purified according to the  literature45. Dichlorobenzene (DCB, 99%), chlorobenzene (CB, 
99%), chloroform (CF, 99%), dichloromethane (DCM, 99%), diiodooctane (DIO, 98%) and diphenylether (DPE, 
99%), zinc acetate dehydrate (Zn(Ac)2 ∙ 2  H2O, 99%), ethylamine (97%) were all purchased from Sigma-Aldrich 
and used without further purification. Ag (99.99%) was purchased from Angstrom Engineering Inc. and  MoO3 
(99.99%) was purchased from Strem.

Devices. Indium-tin-oxide (ITO) coated glass substrates (100 nm, 20 Ω/sq, 1 in by 1 in), purchased from 
Thin Film Devices Inc., were cleaned in an ultrasound bath sequentially with soapy water, DI water, acetone 
(99%) and methanol (95%) to remove any debris. The ITO slides were then dried with a  N2 jet and placed in an 
air plasma cleaner for 15 min to remove any residual organics. The zinc oxide (ZnO) electron-transport layer 
was deposited by spin coating 150 µl of an ethanolic solution of Zn(Ac)2 ∙ 2  H2O (3.3%) and ethanolamine (0.9%) 
at 2000 RPM, followed by annealing for 1 h in air at 180 °C. The substrates were then move into a  N2 glovebox 
where the remainder of the procedure was carried out. Preparation of the active layer was achieved using a 
variety of conditions, details of which are provided in Table 1. The active layer components are illustrated in 
Fig. 1a. After deposition, the films were dried in the glovebox, at room temperature, for 1 h before being trans-
ferred to an evaporation chamber (Angstrom EvoVac), where  MoO3 (7 nm) and silver electrodes (70 nm) were 
deposited by physical vapor deposition at a pressure below  10−6 torr, to yield 5 individual 0.32  cm2 devices per 
substrate, as defined by shadow masks. Energy level diagram and device architecture are shown in Fig. 1b and c, 

Figure 1.  (a) Chemical structure of donor and acceptor materials; (b) energy level diagram of the device 
components; and (c) schematic representation of device architecture.
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respectively. Device performance was characterized using a custom push pin probe station connected to multi-
plexer and Keithley 2400 source meter. All OPVs were assessed under 1000 W  m−2 light intensity, provided by 
a solar simulator (Xenon lamp, AM1.5) and scanned between − 2.0 and 2.0 V. Light intensity was verified using 
an NREL certified silicon standard cell prior to every run. Series and shunt resistances have been calculated 
from the slope of the IV curves, at the Jsc and Voc, respectively. External quantum efficiency (EQE) plots were 
recorded using a Newport Quantx-300 instrument outside of the glovebox. Prior to EQE measurements, the 
devices were encapsulated in an epoxy resin (Norland NOA61) cured under UV-light. Atomic force microscopy 
(AFM) topography images of the active layer films were obtained using a Bruker Dimension Icon instrument, 
with ScanAsyst-Air probes in tapping mode, at a frequency of 0.8 Hz; image processing was performed with 
NanoScope Analysis v1.8.

Results and discussion
Bulk heterojunction (BHJ) OPV devices (Fig. 1c) were fabricated by combining PTB7 (donor) with (3BS)2-SiPc 
(acceptor, Fig. 1a). The energy levels of PTB7, (3BS)2-SiPc and the other materials in the BHJ OPV devices are 
shown in Fig. 1b. Extensive optimization of the active layer was performed, as shown in Table 1. The optimized 
parameters were spin-rate, annealing, donor:acceptor ratio and choice of solvent. Parameters including spin-rate, 
annealing time and temperature, donor:acceptor ratio, and choice of solvent were all investigated.

The best PTB7:(3BS)2-SiPc BHJ OPV device (12) was obtained with an excess of (3BS)2-SiPc (1:1.8 ratio) 
in CB, at a spin rate of 1500 RPM, resulting in a high Voc of 1.05 ± 0.01 V, a modest JSC of 7.68 ± 0.07 mA  cm−2, 
fill factor (FF) of 0.48 ± 0.01 and an overall PCE of 3.82 ± 0.04 (Table 1). While benchmark OPVs often have FF 
between 0.6 and 0.747, these values are comparable to those of the PTB7:PC61BM baseline device prepared (1). 
The average performance of device 12 is comparable to the champion device in the series, which achieved a 
PCE of 3.85% (Voc = 1.06 V, JSC = 7.71 mA·cm−2, FF = 0.47), within one standard deviation. These results are also 
slightly superior to the high-Voc devices previously reported by our group, based on PBDB-T/:(3BS)2-SiPc devices 
(PCE = 3.4%)24. This improvement comes from a 10% improvement in current density, which can be attributed 
to the favourable energy level alignment between PTB7 and (3BS)2-SiPc, with a 0.2–0.3 eV separation between 
HOMO and LUMO levels (Fig. 1). This energy gap facilitates charge separation and can lead to greater currents.

When optimizing the PTB7:(3BS)2-SiPc BHJ OPV devices we found that PCE improves only slightly when 
deposition spin rate is increased from 1000 to 2000 RPM (devices 3–5), demonstrating that the PTB7:(3BS)2-SiPc 
active layer can be successfully deposited at different spin-rates. Interestingly, film thickness remains relatively 
constant, decreasing slightly from 129 to 115 nm, when varying spin rate from 1000 to 2000 RPM, which does 

Table 1.  Experimental conditions and resulting performance of PTB7:(3BS)2-SiPc BHJ OPV devices. a )All 
BHJ OPVs were assessed under 1000 W  m−2 light intensity, and scanned between − 2.0 and 2.0 V. The open 
circuit voltage (Voc), short circuit current (Jsc), fill factor (FF) and the power conversion efficiency (PCE) were 
obtained from an average of 4–8 devices with an individual area 0.32  cm2 per device. Devices that have not 
been annealed are marked as “N/A”. b) Baseline device composed of PTB7:PC61BM at a 1:1.5 ratio. c) Solution 
was not filtered before deposition. d) PTB7 with  Mw of 96 kg  mol−1 was used for all devices except device 19 and 
20 where a  Mw of 16 kg  mol−1 was used.

# D:A Ratio Solvent
Spin speed: Annealing 
(RPM: °C/min)

Voca)

(V)
Jsca)

(mA  cm−2) FFa)
PCEa)

(%)

1 1:1.5b) CB 1500: N/A 0.76 ± 0.01 12.57 ± 0.3 0.49 ± 0.02 4.73 ± 0.03

2 1:1.5b) CB + DIO (3%) + DPE 
(2%) 1500: N/A 0.70 ± 0.01 14.66 ± 0.09 0.65 ± 0.01 6.67 ± 0.09

3 1:1.5c) CB 2000: N/A 1.05 ± 0.01 7.66 ± 0.08 0.45 ± 0.01 3.64 ± 0.05

4 1:1.5c) CB 1500: N/A 1.06 ± 0.004 7.61 ± 0.04 0.45 ± 0.01 3.59 ± 0.01

5 1:1.5c) CB 1000: N/A 1.06 ± 0.004 7.51 ± 0.05 0.43 ± 0.01 3.49 ± 0.01

6 1:1.5 CB 1500: 100/15 1.07 ± 0.01 7.58 ± 0.04 0.46 ± 0.01 3.55 ± 0.03

7 1:1.5 CB 1500: 100/30 1.00 ± 0.1 7.31 ± 0.05 0.47 ± 0.02 3.41 ± 0.2

8 1:1.5 CB 1500: 150/15 1.06 ± 0.01 7.11 ± 0.05 0.46 ± 0.02 3.48 ± 0.2

9 1:1.5 CB 1500: 150/30 1.03 ± 0.01 6.88 ± 0.09 0.44 ± 0.01 3.11 ± 0.08

10 1:1 CB 1500: N/A 1.06 ± 0.01 7.24 ± 0.04 0.44 ± 0.01 3.38 ± 0.02

11 1:1.5 CB 1500: N/A 1.05 ± 0.01 7.68 ± 0.2 0.46 ± 0.01 3.76 ± 0.1

12 1:1.8 CB 1500: N/A 1.05 ± 0.01 7.68 ± 0.07 0.48 ± 0.01 3.82 ± 0.04

13 1:2 CB 1500: N/A 1.04 ± 0.01 7.59 ± 0.03 0.48 ± 0.01 3.79 ± 0.03

14 1:1 DCB 1500: N/A 1.02 ± 0.004 7.48 ± 0.09 0.40 ± 0.01 3.06 ± 0.01

15 1:1.8 CB:CF 3:1 1500: N/A 1.04 ± 0.01 7.84 ± 0.09 0.45 ± 0.01 3.68 ± 0.04

16 1:1.8 CB:DCM 3:1 1500: N/A 1.06 ± 0.01 7.81 ± 0.05 0.45 ± 0.01 3.73 ± 0.01

17 1:1.8 CF 3000: N/A 1.02 ± 0.01 4.67 ± 0.1 0.38 ± 0.01 1.79 ± 0.08

18 1:1.5 CB + DIO (3%) + DPE 
(2%) 1500: N/A No functioning device

19 1:1.8d) CB 1000: N/A 1.04 ± 0.004 5.84 ± 0.05 0.41 ± 0.01 2.47 ± 0.02

20 1:1.8d) CB 1500: N/A 1.04 ± 0.004 6.19 ± 0.07 0.43 ± 0.01 2.74 ± 0.05
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not follow the typical spin-coating equation, that predicts a thickness variation of nearly 50% between the two 
 films48. This behaviour suggests a strong dilatant characteristic of the PTB7:(3BS)2-SiPc solution, resisting the 
centrifugal force. While dilatant behaviour is common in polymer solutions, the extent of the effect observed here 
suggest strong interaction of PTB7 with the (3BS)2-SiPc moieties in solution, leading to rheological modifica-
tion. In general, annealing also showed a weak effect on device PCE (devices 6–9), slightly increasing FF while 
decreasing Jsc. Figure 2 shows AFM images before (Fig. 2a) and after annealing for 15 min at 100 °C (Fig. 2b). 
Comparison of the films at various length scales shows that some larger amorphous features are formed during 
the annealing step, which is reflected in the increased roughness of the films: rq = 1.31 nm before annealing and 
rq = 2.0 nm after. Nonetheless, in general overall surface morphology and height features are mostly retained. 
Longer annealing times were slightly detrimental to device performance, most likely due to disruption of the 
active layer through formation of large agglomerates, as suggested in Fig. 2b. The (3BS)2-SiPc to PTB7 ratio 
(devices 10–13) only had a noticeable effect on the PCE when the ratio was reduced below 1.5, which is observed 
when comparing devices 10 and 11, with ratios of 1.0 and 1.5, respectively. Alternatively, devices 11, 12 and 13, 
with ratios of 1.5, 1.8 and 2.0, respectively, have remarkably similar performances. While PTB7:PC61BM devices 
have been optimized at a 1:1.5  ratio49, the PTB7:(3BS)2-SiPc BHJ OPV devices had the best performance when 
using a 1:1.8 ratio (Table 1). In summary, we found that the (3BS)2-SiPc:PTB7 blend is fairly invariant to spin rate, 
acceptor:donor ratio and annealing conditions. This low variability is a desirable property for high throughput 
manufacture, where minor variations are inevitable.

Alternatively, modification of the active layer solvent system had a significant impact on device performance. 
Solvent additives, namely DIO and DPE, have been previously reported to play a critical role in the film mor-
phology of the active layer in PTB7:PC61BM devices, resulting in significant improvements in current density 
and  PCE50. Such high boiling point additives promote higher crystallinity and improved nanomorphology in 
PTB7:fullerene  blends50, typically resulting in increases of more than 40% in PCE. We have observed these 
improvements as well in our baseline PTB7:PC61BM baselines (1 and 2, Table 1). However, when incorporating 
these additives in the fabrication of PTB7:(3BS)2-SiPc BHJ OPV devices (device 18), we were unable to obtain 
functioning devices. This may be attributed to (3BS)2-SiPc, which has been reported to crystallize  rapidly46,51,52, 
and the use of high boiling point additives thereby exacerbating this behaviour, creating micrometric or even 
submillimetric domains (patterns are visible to the naked eye) as opposed to the nanometric phase separation 
required for functioning  OPVs53,54. In attempt to counter this crystallization we explored the use of low-boiling 

Figure 2.  AFM height images of the PTB7:(3BS)2-SiPc films on two different scales (10 and 2.5 µm (a) before 
annealing and (b) after annealing (15 min at 100 °C).
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point solvent additives, such as DCM and CF (devices 15 and 16) but these solvent changes led to negligible 
improvements in performance. Using CF as a single low-boiling point solvent (device 17) resulted in thicker films 
due to rapid evaporation, which approximately halved the PCE when compared to the best devices deposited 
with solutions in CB. We have also investigated if incorporating a low a low-Mw PTB7 (16 kg  mol−1) instead of 
the conventional PTB7  (Mw = 96 kg  mol−1) could improve the crystallinity of the P7B7 phase without additives. 
Functioning devices were obtained (19 and 20), but with lower efficiency compared to the optimized device 
achieved from low-Mw PTB7 (12).

While the Jsc and FF of the PTB7:(3BS)2-SiPc BHJ OPV devices were modest, it is important to note the 
consistently high Voc between 1.00 and 1.07 V, which is a very desirable and often rare characteristic in OPVs. 
Note that current state-of-the-art OPVs typically display Voc values around 0.8V7–9. The high voltages can be 
attributed to the large difference between the energy levels of the donor’s highest occupied molecular orbital 
(HOMO) and the acceptor’s lowest unoccupied molecular orbital (LUMO), as illustrated in Fig. 1b.

Table 2 compares the series and shunt resistances of our optimized device 12 with literature-based devices 
containing either PTB7 or P3HT as the donor and  PC61BM or (3BS)2-SiPc as the acceptor. Strikingly, the shunt 
resistance of the PTB7:(3BS)2-SiPc BHJ OPV device is significantly lower than the others, which indicates a high 
rate of charge recombination in the active layer  film1,47 and may offer a potential explanation for the relatively 
low Jsc compared to PTB7:PC61BM devices (Table 1, 2). This may be ascribed to the small energy level offset 
only 0.2–0.3 eV between the donor and acceptor, which could be impairing the dissociation of excitons at the 
PTB7:(3BS)2-SiPc  interface1. Moreover, AFM images (Fig. 2) show that domain sizes are in the hundreds of nm 
range, which is often too large for optimal BHJ OPV operation, given the average distance travelled by excitons 
before recombination is around 5–15  nm1,54,55.

Figure  3a shows the I–V curves for the optimized PTB7:(3BS)2-SiPc device (12) compared to the 
PTB7:PC61BM baseline (1) and Fig. 3b displays the EQE curves for the same devices. While (3BS)2-SiPc provides 
some extra light absorption around 700 nm, the overall quantum efficiency is lower than that of the fullerene-
based device. This trade off is often seen in SiPc-based  devices24. Both devices had similar shelf-life, retaining 
approximately 92% of their initial PCE after being stored for 6 months in  N2. Moreover, the EQE spectrum of 
device 12 is slightly blue-shifted and sharper in comparison to the baseline (1), which is associated with smaller 
crystallinity of the polymeric  phase50,56. This suggests that (3BS)2-SiPc inhibits the crystallization of PTB7, and it 
is one of the causes for the lower current observed when compared to the fullerene baseline. The lower crystallin-
ity of the polymeric network can also impair charge conduction and contribute to the low shunt resistance meas-
ured for such devices. We surmise that a new type of additive, that simultaneously promotes the crystallization 

Table 2.  Thickness, series and shunt resistances of the optimized devices and relevant comparative devices. 
a) Devices have been previously reported and further characterized here.

Device Series (Ω) Shunt (Ω) Thickness (nm)

P3HT:PC61BM45a) 11 1676 200

P3HT:(3BS)2-SiPc24a) 15 816 100

PTB7:PC61BM (1) 9 1352 90

PTB7:(3BS)2-SiPc (12) 22 463 115

Figure 3.  OPV characteristics (a) I–V curves, where line thickness corresponds to the standard deviation of 4 
devices, and (b) EQE spectra of the optimized device (12) and the fullerene-containing baseline (1).
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of PTB7 while keeping the SiPc domain size small, could push the efficiency of this class of devices beyond that 
of the PTB7:PC61BM baseline, but the authors are not familiar with any additive that fits these requirements.

R2-SiPcs continue to show promise as NFAs in BHJ OPVs. However, their tendency to quickly crystallize and 
their shallow LUMO level have been detrimental to achieving high performance. Moving forward, the chemical 
versatility of  R2-SiPc molecules, will facilitate fine tuning of the material properties such as their frontier orbital 
energy levels and the solid-state packing properties, providing the potential for improving device performance 
while still remaining synthetically simple molecules to produce.

Conclusion
We paired PTB7, a high performing donor polymer, with a low cost and easy to synthesize acceptor (3BS)2-SiPc 
in OPVs and observed a significant improvement in Voc values. Device performance was robust to changes in 
the spin speed, acceptor:donor ratio and annealing; although this hinders a route towards device optimization, 
it is ultimately a desirable property for high throughput fabrication of OPVs. When replacing the fullerene 
acceptor with (3BS)2-SiPc, 80% of the overall device efficiency was retained, while a high average Voc of 1.05 V 
was otained. These findings further establish SiPc-based acceptors as promising NFA candidates for high voltage 
OPV devices. Control of the crystallization of the SiPc will be key to yield the desired nanomorphology in the 
active layer will be key in the development of high performing device.
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