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Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches
could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and
large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of
a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same
diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from
ComprehensiveMedicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction
accuracies that were all approximately 51.48%.Meanwhile, themodel yielded an accuracy rate of 50.00% for the 1st order prediction
by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically
repurposed drug indications that were not included in the datasets are successfully identified by our method.These results suggest
that ourmethodmay become a useful tool to associate novel molecules with new indications or alternative indications with existing
drugs.

1. Background

Thebiopharmaceutical industry has a problem: its output has
not kept pace with the enormous increases in pharmaceutical
R&D spending [1]. After nearly two decades of focusing
on developing highly selective ligands, the clinical attrition
figures challenge the hypothesis “one gene, one drug, one
disease” [2]. In addition, there has been a significant invest-
ment by pharmaceutical companies on the optimization of
drug discovery pipeline using advanced techniques such as
structure-based drug design, combinatorial chemistry, HTS,
and genomics. However, the impact of these techniques does
not change the predicament [3]. Computational approaches
may play significant roles in reducing the developmental costs
and shortening the paths to approval, for example, to facilitate
drug repositioning.

Drug repositioning is “the process of finding new uses
outside the scope of the original medical indications for

existing drugs or compounds” [4]. In modern computational
biology, there are two general approaches to drug reposition-
ing: discovering new indications for an existing drug (drug-
centric) and identifying effective drugs for a disease (disease-
centric) [5]. The former hypothesizes that “similar drugs”
have the same therapeutic effects and are equally effective for
a disease, whereas the latter assumes that “similar diseases”
need the same therapies and can thus be treated with the
same drugs. Different computational approaches related to
the drug repositioning problem have been proposed, ranging
from clustering drugs either based on their pharmacophore
descriptors [6] or based on connectivitymap-based networks
[7] to predicting drug-target interactions [8–10] and drug-
disease associations [11–15].

On the other hand, drug repositioning by computational
approaches can be classified into small-scaled applications
which analyze specific classes of drugs or drugs for specific
diseases [6, 13, 14] and large-scale applications which analyze
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a relatively large number of drugs and diseases [7, 11, 12,
15, 16]. The datasets vary among different research subjects.
Generally, the drugs can be derived from Drugbank [11, 12]
or KEGG [17] or FDA approved and practiced drug [15]; the
drug indications may originate from the Online Mendelian
Inheritance in Man (OMIM) database [11], Drugbank ther-
apeutic categories [12], or DRUGEX system [15]. For the
methods allowing large-scale indication predictions, tran-
scriptional responses towards drugs were typically utilized to
calculate drug-drug similarity, then the connectivitymapwas
constructed for clustering, and the categories of query drugs
were determined by the nearest distance to the clustered
communities [7]. Similarly, the integration of the chemical,
bimolecular, and clinical information was made to design a
general framework based on bipartite network projections,
and the drug ranking was calculated by kernelized score
functions [12]. From the view of disease pairs, a network-
based and guilt-by-associationmethodwas applied to predict
novel drug indication [15]. In addition to network methods,
a logistic regression classifier was built from the classification
features originating from drug-drug similarity and disease-
disease similarity [11].

In this study, we presented an approach for large-scale
identification of drug indications based on a large drug-
indication library and the information of chemical interac-
tions in STITCH [18] and chemical similarities in structure.
For a given drug, a K-Nearest Neighbor (KNN) ranking
strategy was used to predict the indications according to its
interactive drugs or similar drugs, based on the assumption
that interactive chemicals or similar chemicals in structure
are more likely to share similar biological functions [16, 19,
20]. An important merit of the method is that, given a query
drug, it can provide a series of candidate indications, ranging
from themost likely one to the least likely one. Obviously, the
quality and the size of the datasets play a significant role in the
predictive ability of a model. We constructed the benchmark
dataset from a commercial database, Comprehensive Medic-
inal Chemistry (CMC) database of Accelrys company [21]
that is derived from the Drug Compendium in Pergamon’s
Comprehensive Medicinal Chemistry, which contains 1,573
drug compounds and 56 indications.The size of dataset in our
method is larger than those investigated in most of previous
approaches [7, 11, 12]. The performance of the method on
this dataset suggests that it can identify the potential disease
indications of a query drug.

2. Methods

2.1. Materials

2.1.1. Dataset. Altogether, 1,944 drug compounds and their
indications were retrieved from CMC database. By collect-
ing indications of these drugs, 231 indications recorded in
CMC database were obtained. Accordingly, 231 categories
were used to label these 1,944 drugs. To yield statistically
meaningful result, the categories containing less than 8 drug
compounds were disregarded, 1,733 drugs were obtained,
and then indications were refined to avoid any inclusion

relation between two indications by manual adjustment of
the medical terminology mainly based on ATC classifica-
tion system (http://www.whocc.no/atc ddd index/), thereby
obtaining 56 categories of indications. For formulation, let
DS
1
denote a dataset consisting of these drugs, and the

codes of these drugs and their indications were available
in Supplementary Material I (see Supplementary Material
available online at http://dx.doi.org/10.1155/2014/584546).

In addition, since some drugs whose structures are very
similar may be derived from the same drug, these drugs can
be easily correctly predicted by any propermethod. To strictly
examine the proposed method, these similar drugs should be
excluded. For this purpose, a graph was constructed, where
nodes represented drugs and two nodes were adjacent if and
only if the similarity score of the corresponding drugs based
on fingerprint ECFP 4 was at least 0.7 (the reason to select
ECFP 4 is explained in Section 3.1). A maximal independent
set of 1,573 nodes was extracted from this graph and the
corresponding 1,573 drugs in this independent set comprised
the dataset DS

2
. These 1,573 drugs were also classified into

56 categories and the similarity score of any two drugs was
less than 0.7. Shown in column 3 of Supplementary Material
II is the number of drug compounds in each category for
dataset DS

2
. For convenience, we used tags 𝐷

1
, 𝐷
2
, . . . , 𝐷

56

to represent 56 kinds of indication, where 𝐷
1
represented

“Antihypertensive,” 𝐷
2
“Uterine stimulant,” and so forth (see

columns 1 and 2 of Supplementary Material II for details).
Accordingly, the dataset DS

2
can be formulated as follows:

DS
1
= 𝑆
1
∪ 𝑆
2
∪ ⋅ ⋅ ⋅ ∪ 𝑆

56
, (1)

where 𝑆
𝑖
is a subset of DS

2
containing drugs labeled by

indication𝐷
𝑖
. The detailed codes of drug compounds in each

𝑆
𝑖
are available in Supplementary Material III.
It is observed from the last rowof SupplementaryMaterial

II that the sum of the number of drug compounds in each
category is 2,005, which is much larger than 1,573 that is
the total number of individual drug compounds investigated
in this study, indicating that some drug compounds possess
more than one indication; that is, they are present in more
than one category. Of the 1,573 drug samples, 1,209 drugs
have only one kind of indication, 313 drugs have two kinds
of indications, while the rest possess more than two kinds
of indications. Figure 1 shows the relationship between the
number of drugs and the number of their corresponding indi-
cations. Like the cases of dealingwithmultilabel classification
problems such as predicting multiple attributes of protein or
compounds [16, 22, 23], the proposed method would provide
the prediction results by ranking the candidate indications
from the most likely one to the least one.

In addition, to evaluate the generalization of the proposed
method, we employed an independent validation test dataset,
denoted by DSte, consisting of 32 drug compounds that
were gathered from the recently published literature [1,
24, 25]. The drugs in the test dataset meet the following
two criteria: (1) involving drug repositioning that has been
experimentally confirmed; (2) being not included in DS

1
.

These 32 drug compounds and their original indication and
reported indication are listed in Table 1.
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Table 1: Detailed information of samples in DSte.

Name ID Original indication Reported indication
Statins CID000446156 Myocardial infarction Prostate cancer, leukemia

Metformin CID000004091 Diabetes mellitus Breast cancer, adenocarcinoma, prostate, colorectal
cancer

Rapamycin CID005284616 Immunosuppressant Colorectal cancer, lymphoma, leukemia

Methotrexate CID000126941 Acute leukemia Osteosarcoma, breast cancer,
Hodgkin lymphoma

Zoledronic acid CID000068740 Antibone resorption Multiple myeloma, prostate cancer, breast cancer
Wortmannin CID000312145 Antifungal Leukemia
Thiocolchicoside CID000072067 Muscle relaxant Leukemia, multiple myeloma
Noscapine CID000275196 Antitussive, antimalarial, analgesic Multiple cancer types
Galantamine CID000009651 Polio, paralysis, anaesthesia Alzheimer’s disease

Ropinirole CID000005095 Hypertension Parkinson’s disease, idiopathic
restless leg syndrome

Tofisopam CID000005502 Anxiety-related conditions Irritable bowel syndrome
Finasteride CID000057363 Benign prostatic hyperplasia Hair loss
Mifepristone CID000055245 Pregnancy termination Psychotic major depression
Minoxidil CID000004201 Hypertension Hair loss
Paclitaxel CID000036314 Cancer Restenosis
Phentolamine CID000005775 Hypertension Impaired night vision
Sildenafil CID000005212 Angina Male erectile dysfunction
Tadalafil CID000110635 Cardiovascular disease, inflammation Male erectile dysfunction
Topiramate CID005284627 Epilepsy Obesity
Zidovudine CID000035370 Cancer HIV/AIDS
Allopurinol CID000002094 Tumor lysis syndrome Gout
Amphotericin CID005280965 Fungal infections Leishmaniasis
Colchicine CID000006167 Gout Recurrent pericarditis
Retinoic acid CID000444795 Acne Acute prophylaxis
Bimatoprost CID005311027 Glaucoma Promoting eyelash growth
Ceftriaxone CID005479530 Bacterial infections Amyotrophic lateral sclerosis
Colesevelam CID000160051 Hyperlipidemia Type 2 diabetes mellitus
Disulfiram CID000003117 Alcoholism Melanoma
Naproxen CID000156391 Inflammation, pain Anti-Alzheimer’s disease
Minocycline CID054675783 Acne Ovarian cancer, glioma
Dapoxetine CID000071353 Analgesia, depression Premature ejaculation
Bromocriptine CID000031101 Parkinson’s disease Diabetes mellitus

2.1.2. Chemical Interactions. Some recent studies indicate
that interactive compounds are more likely to share common
functions than noninteractive ones [16, 26]. The functions
of a drug compound can in part determine which diseases
it can treat. In view of this, it may be feasible to utilize the
information of interactive compounds to predict diseases
that a query drug can treat. The information of interac-
tive compounds was downloaded from STITCH (chemi-
cal chemical.links.detailed.v3.1.tsv.gz, http://stitch.embl.de/)
[18], a well-known database containing the interaction infor-
mation of chemicals and proteins. In detail, chemicals are
associated with other chemicals and proteins by evidence
derived from experiments, databases, and the literature

(http://stitch.embl.de/) in STITCH. In the obtained file, each
interaction contains two compounds and five scores that
indicate the likelihood of the interaction in five different
ways. In detail, the score titled “Similarity” was the Tanimoto
2D chemical similarity score [27, 28] calculated by the
open-source Chemistry Development Kit [29]; the score
titled “Experimental” was obtained by chemical’s activities
fromMeSH pharmacological actions and NCI60 screens; the
score titled “Database” was obtained according to chemical
reactions contained in pathway databases; the score titled
“Textmining” was obtained based on a cooccurrence scheme
and a natural language processing (NLP) approach [30,
31]; while the score titled “Combined score” integrates all
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Figure 1: A plot of the number of drugs in DS

2
versus the number

of indications.

the aforementioned items. For detailed description, readers
can refer to Kuhn et al.’s paper [18]. Accordingly, “Com-
bined score” was used to quantify the interactivity of two
compounds: two compounds with the “Combined score”
greater than zero are deemed as interactive compounds.
Furthermore, each interaction is labeled by this score, also
termed as confidence score in this study, to indicate the
likelihood of its occurrence; that is, an interactionwith higher
confidence score means that the corresponding compounds
can interact with each other with higher probability. For
two drug compounds 𝑑

1
and 𝑑

2
, the confidence score of

the interaction between them is denoted by 𝑤
𝑖
(𝑑
1
, 𝑑
2
). In

particular, if the interaction between two compounds is not
reported in STITCH, its confidence score was set to zero.

2.1.3. Chemical Representation and Similarities. The similar-
ity of two compounds in structure is a classic measurement
of the relationship of two compounds. Many representation
systems have been established to represent compounds. One
of the most well-known systems is SMILES (Simplified
Molecular Input Line Entry System) [32], a line notation for
representing molecules and reactions using ASCII strings.
In this study, we also used this system to represent each
drug compound. Furthermore, several fingerprints have been
established to calculate the similarity of two chemicals based
on their SMILES strings up to now [33–35]. Since different
fingerprints may induce different similarity scores of two
given chemicals, thereby providing different results [36] for
some problems of classification and prediction, we tried
fingerprints FP2 [33], MACCS [34], ECFP (ECFP 2, ECFP 4,
ECFP 6) [35], and FCFP (FCFP 2, FCFP 4, FCFP 6) [35]
in this study to calculate the similarity score of chemicals
and attempted to select the best one for the prediction of
drug indications. For two drug compounds 𝑑

1
and 𝑑

2
, the

similarity scores based on different fingerprints, calculated
by Open Babel [33] or RDKit [37], were all denoted by
𝑤
𝑠
(𝑑
1
, 𝑑
2
), where superscript 𝑠 indicated which type of

fingerprint was used to calculate similarity scores.

2.2. PredictionMethod. It has been confirmed that interactive
compounds are more likely to share similar functions than

non-interactive ones [16, 23]. On the other hand, it is
known that compounds with similar structures often share
common functions [20]. Because drug indications can be
viewed as drug functions, it is appropriate to use known drug
indications to predict drugs with unknown indications.

Supposing that there are 𝑛 drugs in the training set 𝑆󸀠,
say 𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
, we need to predict the indications of a

query drug 𝑑
𝑞
based on chemical interactions and chemical

similarities as follows.

2.2.1. Prediction Based on Chemical Interactions. As de-
scribed above, interactive compounds often share similar
functions [16, 23], thereby having similar indications with
higher probability. For a query drug compound 𝑑

𝑞
and

indication𝐷
𝑗
, the score that 𝑑

𝑞
possesses𝐷

𝑗
was determined

by the 𝑘 drug compounds with tag 𝐷
𝑗
in the training set

𝑆
󸀠, say 𝑑

𝑖
1

, 𝑑
𝑖
2

, . . . , 𝑑
𝑖
𝑘

, such that the confidence scores of
the interactions between themand𝑑

𝑞
are the first 𝑘maximum

scores, and was calculated by

𝑅
𝑖
(𝑑
𝑞
󳨐⇒ 𝐷

𝑗
) =

𝑘

∑

𝑙=1

𝑤
𝑖
(𝑑
𝑞
, 𝑑
𝑖
𝑙

) , 𝑗 = 1, 2, . . . , 56, (2)

where 𝑘 is a predefined positive integer. It is necessary to point
out that (2) is identical to themethod inChen et al.’s study [16]
(refer to (6) in Chen et al.’s study [16]) when 𝑘 = 1, while it is
same as the method in [38] (refer to (3) in Chen et al.’s study
[38]) when 𝑘 is set to 𝑛, where 𝑛 is the size of the training set.

Obviously, the larger the score 𝑅𝑖(𝑑
𝑞
⇒ 𝐷
𝑗
) is, the more

likely that the query drug 𝑑
𝑞
can treat disease 𝐷

𝑗
. When

𝑅
𝑖
(𝑑
𝑞
⇒ 𝐷
𝑗
) = 0 for some 𝑗, it means that the likelihood that

the query drug having the indication𝐷
𝑗
is zero. Because it is

a multilabel classification problem where a drug may possess
more than one indication, our method provided a series of
candidate indications for any query drug, ranging from the
most likely one to the least likely one. For example, if the
results of (2) were

𝑅
𝑖
(𝑑
𝑞
󳨐⇒ 𝐷

2
) ≥ 𝑅
𝑖
(𝑑
𝑞
󳨐⇒ 𝐷

6
)

≥ 𝑅
𝑖
(𝑑
𝑞
󳨐⇒ 𝐷

46
) ⋅ ⋅ ⋅ ≥ 𝑅

𝑖
(𝑑
𝑞
󳨐⇒ 𝐷

23
) > 0,

(3)

it can be inferred that the most likely indication of the query
drug is 𝐷

2
, followed by 𝐷

6
, 𝐷
46
, and so forth. Furthermore,

𝐷
2
is called the 1st order prediction, 𝐷

6
the 2nd order

prediction, and so forth.
Note that the outcomes of (2) might be trivial as follows:

𝑅
𝑖
(𝑑
𝑞
󳨐⇒ 𝐷

𝑗
) = 0 ∀𝑗 = 1, 2, . . . , 56. (4)

Under such circumstance, there were no interactive com-
pounds of 𝑑

𝑞
in the training set and no meaningful result

can be obtained by this method. We then use the following
method based on chemical similarities in structures for
further prediction.
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2.2.2. Prediction Based on Chemical Similarities. Likewise,
because compounds with similar structures often share com-
mon functions [20], chemical similarities were applied to
predict drug indications if chemical interactions give no
meaningful result. For a query drug 𝑑

𝑞
and indication 𝐷

𝑗
,

𝑘 drug compounds with tag 𝐷
𝑗
in the training set 𝑆󸀠, still

say 𝑑
𝑖
1

, 𝑑
𝑖
2

, . . . , 𝑑
𝑖
𝑘

, were selected such that the similarity
scores between these drug compounds and 𝑑

𝑞
are the first 𝑘

maximum scores. Now, we calculated the score that 𝑑
𝑞
can

treat indication𝐷
𝑗
as follows:

𝑅
𝑠
(𝑑
𝑞
󳨐⇒ 𝐷

𝑗
) =

𝑘

∑

𝑙=1

𝑤
𝑠
(𝑑
𝑞
, 𝑑
𝑖
𝑙

) , 𝑗 = 1, 2, . . . , 56, (5)

where 𝑤
𝑠
(𝑑
𝑞
, 𝑑
𝑖
𝑙

) was the chemical similarity of 𝑑
𝑞
and

𝑑
𝑖
𝑙

which may be based on FP2, MACCS, ECFP (ECFP 2,
ECFP 4, ECFP 6), or FCFP (FCFP 2, FCFP 4, FCFP 6). The
rest procedures were same as those of the method based on
chemical interactions. Also, given a query drug, the method
will provide a series of candidate indications.

2.2.3. Prediction by Integrating Chemical Interactions and Sim-
ilarities. By integrating chemical interactions and chemical
similarities, the indications of a given drug compound 𝑑

𝑞

were predicted as follows:

(i) the method based on chemical interactions (cf. (2))
was first applied to predict the indications;

(ii) if the outcomes of (2) are trivial as indicated by (4),
the method based on chemical similarities (cf. (5))
was then used to make further prediction.

2.3. Cross-Validation and Accuracy Measurement

2.3.1. Cross-Validation Method. In statistical prediction, sub-
sampling test, jackknife test, and independent test are often
used to examine the performance of the constructed clas-
sifiers [39]. Among these three methods, jackknife test is
deemed to be the least arbitrary and can always provide a
unique result for a given dataset and a given predictionmodel
because both the training samples and the test samples are
fixed [16]. Therefore, it has been widely used by investigators
to evaluate the performance of their classifiers [16, 38, 40–
49]. Accordingly, it was also used in this study to optimize
parameters in methods based on chemical interactions and
chemical similarities and compare the performance of differ-
ent methods.

Subsampling test [50], also named 𝑘-fold cross-valid-
ation, is another widely used cross-validationmethod. In this
method, the dataset is equally and randomly divided into 𝑘
parts. Samples in each part are used as testing samples in
turn and samples in the rest 𝑘 − 1 parts train the prediction
method. Thus, each sample is tested exactly once. Compared
to jackknife test, 𝑘-fold cross-validation costs less computing
time and provides similar predicted results. It has also been
used in many studies [19, 51–55]. Accordingly, it was used
here to examine the proposed method where 𝑘 was set to
5, that is, 5-fold cross-validation. In addition, we also used

independent test to evaluate the proposed method because
an independent validation test dataset DSte was constructed
as mentioned in Section 2.1.1.

2.3.2. Accuracy Measurement. As described in Section 2.2,
the query drug was assigned a series of candidate indications,
ranging from the most likely one to the least one. To evaluate
the correctness of the candidate indication, the ith order
prediction accuracy was calculated by

ACC
𝑖
=
PD
𝑖

𝑁
, 𝑖 = 1, 2, . . . , 56, (6)

where 𝑁 denoted the total number of samples, while PD
𝑖

denoted the number of samples whose 𝑖th order prediction
is correct. For example, when 𝑖 = 1, that is, the 1st
order prediction accuracy, the 1st order prediction of each
investigated sample was collected and PD

1
was the number of

these predictions which were correct, thereby obtaining the
1st order prediction accuracy according to (6). It is obvious
that ACC

𝑖
is the ratio of correct 𝑖th order predicted samples

to all samples. If a prediction method yields high ACC
𝑖

with small 𝑖 and low ACC
𝑖
with large 𝑖, it is deemed as an

effective prediction. Since it is difficult to infer the number
of indications for certain drug, investigators always pay more
attention to the 1st order prediction than others. On the
other hand, the 1st order prediction of certain drug indicated
its most likely indication. In view of this, the first order
prediction accuracy is the most important indicator of the
performance of the method.

On the other hand, in pattern recognition and informa-
tion retrieval, recall and precision are often used to evaluate
the performance of the method. For multilabel classification
problem, recall and precision of the first 𝑡 order predictions
can be calculated by the following formulae:

Recall
𝑡
=

1

𝑁

𝑁

∑

𝑗=1

𝑃
𝑡

𝑗

𝑁𝑗
,

Precision
𝑡
=

1

𝑁

𝑁

∑

𝑗=1

𝑃
𝑡

𝑗

𝑡
,

(7)

where 𝑁𝑗 represented the number of known indications of
the 𝑗th sample in the dataset and 𝑃𝑡

𝑗
represented the number

of correct predictions of the 𝑗th sample in the dataset among
its first 𝑡 order predictions. Obviously, ACC

1
= Precision

1
.

Since different drug compounds have different numbers of
known indications, we set the parameter 𝑡 in (7) to the
smallest integer that is no less than the average number of
known indications in the dataset, which can be computed by

Average =
∑
𝑁

𝑗=1
𝑁
𝑗

𝑁
; (8)

that is, 𝑡 = ⌈Average⌉. Obviously, larger Recall
𝑡
and Precision

𝑡

imply better prediction performance of the method.
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Table 2: Best performance of the method based on chemical
similarities for different types of fingerprint and values of 𝑘.

Type of
fingerprint

Highest 1st order prediction
accuracy (%) 𝑘

ECFP 2 48.70 3
ECFP 4 49.39 2
ECFP 6 49.11 5
FCFP 2 42.87 2,3
FCFP 4 48.07 3
FCFP 6 48.99 3
FP2 43.91 3
MACCS 43.39 2,3

3. Results and Discussion

3.1. Optimization of the Methods Based on Chemical Simi-
larities and Chemical Interactions. As mentioned in Section
2.1.3, eight types of fingerprints, including ECFP (ECFP 2,
ECFP 4, ECFP 6), FCFP (FCFP 2, FCFP 4, FCFP 6), FP2,
andMACCS,were used to calculate the similarity score of two
chemicals. To build a more effective prediction method, it is
necessary to compare the performance of the method based
on chemical similarities on DS

1
, where chemical similarities

were calculated based on different types of fingerprints and
𝑘 was set to 1, 2, . . . , 15, 1732. The performance of these
methods evaluated by jackknife test was available as Sup-
plementary Material IV. It can be observed that when the
similarity scores were based on same type of fingerprint, the
1st order prediction accuracies followed an increasing trend
before reaching the highest accuracy and then followed a
descending trend. Table 2 lists the highest 1st order prediction
accuracies for different types of fingerprint and the values
of 𝑘 with which these accuracies can be obtained. It is easy
to see that using ECFP 4 and setting 𝑘 = 2 provided the
highest 1st order prediction accuracy.Thus, we used this type
of fingerprint and set 𝑘 = 2 to build the method based on
chemical similarities. In addition, since the proposedmethod
integrated the method based on chemical similarities, the
similar drug compounds under fingerprint ECFP 4 should be
excluded in order to strictly examine our method. In view of
this, the similarity scores based on fingerprint ECFP 4 were
used to refine the dataset DS

1
by setting the threshold 0.7,

thereby obtaining the dataset DS
2
.

In the dataset DS
2
, there were 896 drug compounds

that have the information of chemical interactions. These
drugs comprised the dataset DS(i). The classification model
based on chemical interactions (cf. (2)) was conducted on
DS(i). To select an optimal parameter 𝑘, it was evaluated by
jackknife test and 𝑘was set to 1, 2, . . . , 15, 895.The prediction
accuracies thus obtained are available in Supplementary
Material V, from which we can observe that the 1st order
prediction accuracies followed an increasing trend with the
increasing of 𝑘 when 𝑘 < 5, while the accuracies descended
with the increase of 𝑘 when 𝑘 > 5 (see Table 3 for details).
Since the parameter 𝑘 means the number of interactions
that were used to calculate the score that the query drug

Table 3: The 1st order prediction accuracies with different 𝑘

obtained by the method based on chemical interactions on DS(𝑖)
evaluated by jackknife test.

Value of 𝑘 The 1st order prediction accuracy
1 47.77%
2 55.92%
3 57.59%
4 58.26%
5 58.48%
6 58.37%
7 58.15%
8 58.04%
9 58.04%
10 58.04%
11 57.81%
12 57.81%
13 57.70%
14 57.70%
15 57.70%
895 57.59%

possesses a certain indication, the score cannot reflect the
true likelihood that the query drug has an indication when
𝑘 is small, while with the increase of 𝑘, more and more
interactionswith low confidence scores are added, whichmay
be noises to the prediction, thereby influencing the predicted
results. The highest 1st order prediction accuracy of 58.48%
was obtained when 𝑘 was set to 5. Thus, we set 𝑘 = 5 for the
method based on chemical interactions.

3.2. Performance of the Proposed Method on DS
2
. For clarity,

the dataset DS
2
is separated into two subsets, DS(i) and DS(s),

where DS(i) consisted of 896 drug compounds that have the
information of chemical interactions, while DS(s) contained
the rest 677 drug compounds that have no such information.
Then the method based on chemical interactions with 𝑘 =

5 was applied to process DS(i), while the method based on
chemical similarities with fingerprint ECFP 4 and 𝑘 = 2 was
used to process DS(s). The predicted results thus obtained are
given as follows.

3.2.1. Performance of the Method Based on Chemical Interac-
tions on DS(𝑖). Using the 896 drugs in DS(i), the classification
model based on chemical interactions (cf. (2)) with 𝑘 = 5

was constructed and evaluated by 5-fold cross-validation.
To widely examine the method, it was executed five times
on DS(i). The predicted results thus obtained are available
in Supplementary Material VI. Table 4 lists the first 20
prediction accuracies for each time. It can be seen that the 1st
order prediction accuracies were between 55% and 58% and
themean value of these accuracies was 57.00%. For each time,
the prediction accuracies generally followed a descending
trend with the increase of the order number, indicating that
the candidate indications of the samples in DS(i) were sorted
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Table 4: The first 20 prediction accuracies obtained by the method based on chemical interactions on DS(𝑖) evaluated by 5-fold cross-
validation for 5 times.

Order First time (%) Second time (%) Third time (%) Fourth time (%) Fifth time (%) Mean (%) Standard deviation (%)
1 56.37 55.95 57.31 57.47 57.92 57.00 0.82
2 21.98 24.01 22.03 22.17 22.35 22.51 0.85
3 8.91 7.25 8.90 6.90 6.84 7.76 1.06
4 5.98 5.32 4.22 5.77 5.25 5.31 0.68
5 3.16 4.19 4.11 4.41 4.56 4.09 0.55
6 2.59 2.49 2.40 2.04 1.94 2.29 0.29
7 1.47 2.38 2.51 2.49 2.51 2.27 0.45
8 1.69 1.47 1.26 1.36 1.60 1.47 0.18
9 2.37 1.13 1.48 1.36 1.25 1.52 0.49
10 0.68 1.02 1.48 1.02 0.91 1.02 0.29
11 1.24 1.25 0.80 1.24 0.91 1.09 0.22
12 1.01 1.02 1.37 1.13 1.37 1.18 0.18
13 1.35 1.25 1.03 1.24 1.14 1.20 0.12
14 0.90 0.45 0.57 0.68 0.57 0.63 0.17
15 0.56 0.57 0.91 0.79 0.68 0.70 0.15
16 0.68 0.79 0.46 0.23 0.57 0.54 0.22
17 1.13 0.79 0.68 1.24 0.46 0.86 0.32
18 0.90 0.79 0.23 1.13 0.57 0.72 0.34
19 1.13 0.57 0.91 1.02 0.68 0.86 0.23
20 0.56 1.36 1.26 0.68 1.14 1.00 0.36

Table 5: The Recalls and Precisions of the first two predictions obtained by three methods on DS(𝑖), DS(𝑠), and DS
2
, respectively.

Order of time
DS(𝑖) DS(𝑠) DS

2

Recall
(𝑡 = 2) (%)

Precision
(𝑡 = 2) (%)

Recall
(𝑡 = 2) (%)

Precision
(𝑡 = 2) (%)

Recall
(𝑡 = 2) (%)

Precision
(𝑡 = 2) (%)

1st 61.55 39.18 48.95 28.79 56.06 34.65
2nd 62.37 39.98 47.81 28.26 55.99 34.84
3rd 62.42 39.67 47.24 27.76 55.69 34.39
4th 62.45 39.82 49.68 29.32 56.86 35.22
5th 62.68 40.14 49.39 29.09 56.80 35.25
Mean 62.29 39.76 48.62 28.65 56.28 34.87

quite well. In addition, the standard deviations of the five
prediction accuracies with the same order were almost lower
than 1%, indicating that this method was quite stable on
DS(i).The average number of indications that samples inDS(i)
can treat was 1.31; that is, Average = 1.31. Thus, the first two
predictions of each sample in DS(i) were considered. After
calculating (7) with 𝑡 = 2, we obtained 5 Recalls and 5
Precisions, listed in columns 2 and 3 of Table 5. The mean
values of Recalls and Precisions were 62.29% and 39.76%,
suggesting that the method based on chemical interactions
is quite effective to the prediction of drug indications.

3.2.2. Performance of the Method Based on Chemical Sim-
ilarities on DS(𝑠). For the 677 drugs in DS(s) that have no
information of chemical interactions, the method based on
chemical similarities (cf. (5)) with fingerprint ECFP 4 and
𝑘 = 2 was used to make prediction and evaluated by

5-fold cross-validation. Also, this method was executed 5
times.The predicted results thus obtained are also available in
SupplementaryMaterial VI (the first 20 prediction accuracies
for each time are listed in Table 6), from which we can
see that five 1st order prediction accuracies were between
43% and 46%. The mean value of these accuracies was
44.45%. Similarly, the prediction accuracies always followed
a descending trend with the increase of prediction order for
each time, indicating that the method based on chemical
similarities also arranged the candidate indications of the
samples in DS(s) quite well. It can also be observed from
Supplementary Material VI that the standard deviations of
the five prediction accuracies with the same order were all
lower than 1%, indicating that this method was quite stable
on DS(s). The average number of indications that drugs in
DS(s) can treat was 1.22. Thus, we still considered the first
two predictions for each sample in DS(s) which produced
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Table 6:Thefirst 20 prediction accuracies obtained by themethod based on chemical similarities onDS(𝑠) evaluated by 5-fold cross-validation
for 5 times.

Order First time (%) Second time (%) Third time (%) Fourth time (%) Fifth time (%) Mean (%) Standard deviation (%)
1 44.17 43.62 43.90 45.86 44.68 44.45 0.88
2 13.41 12.90 11.62 12.77 13.51 12.84 0.75
3 6.85 5.94 8.18 6.39 5.89 6.65 0.94
4 5.54 6.67 4.73 5.22 6.90 5.81 0.93
5 4.52 4.06 5.45 3.92 4.45 4.48 0.60
6 2.19 3.33 3.87 4.64 3.02 3.41 0.92
7 3.64 3.33 2.30 2.90 2.73 2.98 0.53
8 1.90 1.74 3.16 1.31 3.16 2.25 0.86
9 2.77 2.75 2.30 2.32 1.58 2.34 0.48
10 2.48 3.48 1.43 1.74 1.44 2.11 0.87
11 2.04 1.45 1.72 1.16 2.44 1.76 0.50
12 2.19 2.61 2.01 2.76 1.44 2.20 0.52
13 2.33 1.74 2.58 2.03 1.29 2.00 0.50
14 2.19 2.17 2.73 1.31 2.30 2.14 0.52
15 0.44 1.88 1.15 1.60 1.58 1.33 0.56
16 1.02 1.16 0.72 1.16 1.15 1.04 0.19
17 0.87 0.87 1.29 1.02 1.15 1.04 0.18
18 0.87 1.16 1.29 1.02 0.72 1.01 0.23
19 1.60 1.01 1.87 1.31 1.01 1.36 0.37
20 1.60 0.72 0.72 1.02 1.29 1.07 0.38

5 Recalls and 5 Precisions by (7) with 𝑡 = 2. These values
are listed in columns 4 and 5 of Table 5, from which we can
observe that the mean values of Recalls and Precisions were
48.62% and 28.65%, respectively. These results indicate that
the method based on chemical similarities is also effective in
the prediction of drug indications.

3.2.3. Performance of the Integrated Method on DS
2
. The

integratedmethod combined the predicted resultsmentioned
in Sections 3.2.1 and 3.2.2. The predicted results for each of
5 times were also available in Supplementary Material VI,
while Table 7 lists the first 20 prediction accuracies obtained
by the integrated method for each time. It can be seen that
the five 1st order prediction accuracies were between 50%
and 53% and the mean value of these accuracies was 51.48%.
Furthermore, the standard deviations of the five prediction
accuracies with the same order were all lower than 1%,
suggesting that the integrated method was quite stable on
DS
2
. The average number of indications of samples in DS

2

was 1.27 (2,005/1,573), meaning that the average correct rate
would be 1.27/56 = 2.27% if one predicts them by random
guess. It is much lower than the five 1st order prediction
accuracies obtained by the integrated method. In view of the
average number, we consider the first two predictions for
each sample in DS

2
. The outcomes of (7) with 𝑡 = 2 yield 5

Recalls and 5 Precisions, which are listed in columns 6 and 7
of Table 5.Themean value of Recall and Precisionwas 56.28%
and 34.87%, respectively.

In addition, to sufficiently indicate the effectiveness of the
integrated method, we collected the first two predictions for

each sample in DS
2
and calculated the prediction accuracy

for each category𝐷
𝑖
, which was computed by

SN𝑖 = TP𝑖

𝐶𝑖
, 𝑖 = 1, 2, . . . , 56, (9)

where 𝐶𝑖 denoted the number of drug compounds labeled
by 𝐷
𝑖
, that is, 𝐶𝑖 = |𝑆

𝑖
|, and TP𝑖 denoted the number

of drug compounds whose 1st order prediction or 2nd
order prediction was 𝐷

𝑖
. These accuracies were listed in

Supplementary Material VII. It can be seen that the mean
values of accuracies of 12 categories were higher than 60%,
where 2 of them (𝐷

11
, 𝐷
56
) were higher than 80%. It is

known that the category of large size can easily receive high
prediction accuracy, while the category of small size can
easily receive low prediction accuracy. However, this case
should be avoided for an effective prediction method. To
evaluate our method in this aspect, that is, investigating the
linear correlation between the prediction accuracy of each
category and the size of each category, we employed Pearson
product-moment correlation coefficient which is a widely
used measure of the linear correlation between two variables
and can be computed by

𝑟 =
∑
𝑛

𝑖=1
(𝑥
𝑖
− 𝑥) (𝑦

𝑖
− 𝑦)

√∑
𝑛

𝑖=1
(𝑥
𝑖
− 𝑥)
2

∑
𝑛

𝑖=1
(𝑦
𝑖
− 𝑦)
2

, (10)

where 𝑥 is the mean value of 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
and 𝑦 is the mean

value of 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
. Here, we set 𝑥

𝑖
to be the mean value of

five SNi, that is, values in the last column of Supplementary
Material VII, and set 𝑦

𝑖
to be the number of drug compounds
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Table 7: The first 20 prediction accuracies obtained by the integrated method on DS
2
evaluated by 5-fold cross-validation for 5 times.

Order First time (%) Second time (%) Third time (%) Fourth time (%) Fifth time (%) Mean (%) Standard deviation (%)
1 51.05 50.54 51.37 52.38 52.07 51.48 0.75
2 18.25 19.14 17.42 18.05 18.44 18.26 0.62
3 8.01 6.68 8.58 6.68 6.42 7.27 0.96
4 5.79 5.91 4.45 5.53 5.98 5.53 0.63
5 3.75 4.13 4.70 4.20 4.51 4.26 0.37
6 2.42 2.86 3.05 3.18 2.42 2.78 0.36
7 2.42 2.80 2.42 2.67 2.61 2.58 0.17
8 1.78 1.59 2.10 1.34 2.29 1.82 0.38
9 2.54 1.84 1.84 1.78 1.40 1.88 0.41
10 1.46 2.10 1.46 1.34 1.14 1.50 0.36
11 1.59 1.34 1.21 1.21 1.59 1.39 0.19
12 1.53 1.72 1.65 1.84 1.40 1.63 0.17
13 1.78 1.46 1.72 1.59 1.21 1.55 0.23
14 1.46 1.21 1.53 0.95 1.34 1.30 0.23
15 0.51 1.14 1.02 1.14 1.08 0.98 0.27
16 0.83 0.95 0.57 0.64 0.83 0.76 0.16
17 1.02 0.83 0.95 1.14 0.76 0.94 0.15
18 0.89 0.95 0.70 1.08 0.64 0.85 0.18
19 1.34 0.76 1.34 1.14 0.83 1.08 0.27
20 1.02 1.08 1.02 0.83 1.21 1.03 0.14

labeled by 𝐷
𝑖
divided by 2,005, that is, 𝑦

𝑖
= |𝑆
𝑖
|/2005, where

2,005 was the sum of the number of drug compounds in
each category. By (10), the obtained rate was 0.53, yielding
that the linear correlation of these two variables was not
significant. For example, the categories𝐷

56
and𝐷

11
obtained

the highest two prediction accuracies (cf. Supplementary
Material VII); however, their sizes were only 7 and 14 (cf.
Supplementary Material II) which were very small. All of
these results indicate that the integrated method performed
quite well for the prediction of drug indications.

3.3. Comparison of Different Methods. At a first glance at the
Supplementary Material VI, the method based on chemical
interactions with 𝑘 = 5 seems to outperform the method
based on chemical similarities with fingerprint ECFP 4 and
𝑘 = 2. However, these predicted results were derived from
two different datasets. To make a comparison using the
same dataset, we executed the method based on chemical
similarities with fingerprint ECFP 4 and 𝑘 = 2 on DS(i), in
which each sample can be predicted by the method based
on chemical interactions. It was also evaluated by jackknife
test. Listed in columns 2 and 3 of Supplementary Material
VIII are the prediction accuracies obtained by the methods
for the prediction of indications that samples in DS(i) can
treat. The 1st order prediction accuracy by the method based
on chemical interactions was 58.48%, while it was 42.52% by
the method based on chemical similarities. To compare the
performance of the methods more thoroughly, we calculated
Recall and Precision for the first 𝑡 order predictions and plot
two curves with Recalls as their𝑋-axis and Precisions as their
𝑌-axis. Figure 2 shows the two curves, from which we can
see that the Recall and Precision obtained by the method

based on chemical interactions are always higher than those
obtained by themethod based on chemical similarities. All of
these indicate that themethod based on chemical interactions
is superior to the method based on chemical similarities for
the prediction of drug indications. Thus, we arranged the
method based on chemical interactions as the first choice
while the method based on chemical similarities as a backup.
The arrangement in this study conforms to the results inChen
et al.’s study [16].Themain reason is that the confidence score
of an interaction between two compounds, which was used in
themethod based on chemical interactions, contains different
kinds of information of compounds, such as their activities,
structures, reactions, and so forth [18], while the method
based on chemical similarities only used the information of
compound structures.

The integrated method proposed in this study sequen-
tially used the confidence scores of interactions between
chemicals and similarity scores of chemicals. Another simple
integrated scheme, termed as themethod based on integrated
scores, is to combine these scores in advance and then make
prediction. Given a query drug 𝑑

𝑞
, the score that 𝑑

𝑞
can treat

indication𝐷
𝑗
was computed by

𝑅
integrated

(𝑑
𝑞
󳨐⇒ 𝐷

𝑗
) =

𝑅
𝑖
(𝑑
𝑞
⇒ 𝐷
𝑗
) + 𝑅
𝑠
(𝑑
𝑞
⇒ 𝐷
𝑗
)

2
,

𝑗 = 1, 2, . . . , 56,

(11)

where 𝑠 is ECFP 4 and the parameters 𝑘 in 𝑅
𝑖
(𝑑
𝑞
⇒ 𝐷

𝑗
)

and 𝑅𝑠(𝑑
𝑞
⇒ 𝐷
𝑗
) were 5 and 2, respectively. The following

procedure was same as those of the method based on
chemical interactions and chemical similarities.
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Figure 2: Two curves with Recalls as their 𝑋-axis and Precisions as
their 𝑌-axis. Recalls and precisions were obtained by method based
on chemical interactions with 𝑘 = 5 and method based on chemical
similarities with fingerprint ECFP 4 and 𝑘 = 2.

The original motive of employing this method is to
make comparisonwith the proposedmethod. However, since
𝑅
𝑖
(𝑑
𝑞
⇒ 𝐷
𝑗
) = 0 (𝑗 = 1, 2, . . . , 56) for each sample in DS(s),

that is, the predicted results obtained by the method based
on chemical similarities and the method based on integrated
scores on DS(s) were same, the method based on integrated
scores was conducted on DS(i) evaluated by jackknife test.
The obtained prediction accuracies were listed in column 4
of Supplementary Material VIII, from which we can see that
the 1st order prediction accuracy was 58.82%. It was almost
same as that of the method based on chemical interactions
with 𝑘 = 5, while it was much higher than that of the method
based on chemical similarities with fingerprint ECEP 4 and
𝑘 = 2. It can be easily inferred that this integrated scheme
and the method based on chemical interactions were almost
at the same level. Since the confidence score of two chemicals,
used in the method based on chemical interactions, contains
the information of their similarity information [18], that is,
the score calculated by (5) and added to (11) was redundant,
it is reasonable that the performance of these two methods
was almost the same. It can be further inferred that the
performance of the method based on integrated scores and
that of the proposed method were also at the same level,
because the predicted results obtained by the method based
on chemical similarities and the method based on integrated
scores on DS(s) were the same.

3.4. Performance of the Integrated Method on 𝐷𝑆
𝑡𝑒
. The

integrated method combined the method based on chemical
interactions with 𝑘 = 5 and the method based on chemical
similarities with fingerprint ECEP 4 and 𝑘 = 2. To test
the generalization of this method, it was conducted on
DSte to predict indications of drug compounds in it. To
calculate the prediction accuracy, the original indications and
reported indications of each sample in DSte were combined
together as the known indications, thereby yielding the 1st
prediction accuracy of 50.00%, which is almost identical
to the 1st prediction accuracy obtained by the method on
DS
2
. Furthermore, the 2nd prediction accuracy was 21.88%.

All of these suggest that the proposed method has a good
generalization.

3.5. Illustration of the Predictive Results. Since 5-fold cross-
validation is unstable, that is, different partitions may pro-
duce different predictions for a given sample, the analysis
of the results evaluated by 5-fold cross-validation is not
very reliable. On the other hand, jackknife test can avoid
this case. In view of this, the integrated method was again
conducted on DS

2
, evaluated by jackknife test. The obtained

prediction accuracies for the methods based on chemical
interactions and chemical similarities and integrated method
were available as Supplementary Material IX. The 1st order
prediction accuracies of the method based on chemical inter-
actions on DS(i), the method based on chemical similarities
on DS(s), and the integrated method on DS

2
were 58.48%,

47.27%, and 53.66%, respectively, which were a little higher
than the corresponding methods on the datasets evaluated
by 5-fold cross-validation. In addition, the Recalls of the
first two predictions for three methods were 64.08%, 51.38%,
and 58.61%, respectively, while the Precisions were 40.68%,
30.21%, and 36.17% for three methods, respectively. In the
following paragraphs of this section, further discussions were
described based on predictions of each sample in DS

2
and

DSte.
Interestingly, some examples in DS

2
showed that the

new clinical indications were predicted in the first 2 order
predictive diseases based on chemical similarities. From the
jackknife test of the dataset DS

2
which contains 1,573 drug

compounds, we analyzed several examples that new indi-
cations were accurately predicted which were not included
in the original datasets. We presented the results as follows:
thalidomide (CID000005426), whose original indication is
antiemetic in pregnancy [56] and new indication is multiple
myeloma (acted as TNF-𝛼 inhibitor) [57], is predicted to
treat diseases such as antineoplastic (1st order prediction,
new clinical indication) and antibacterial (2nd order pre-
diction); leflunomide (CID000003899), whose original indi-
cation is rheumatoid arthritis (targeted at DHODH) [58]
and new indication is prostate cancer (targeted at PDGEF,
EGFR, FGFR and NF-𝜅B) [59], is predicted to treat disease
such as antineoplastic (1st order prediction, new clinical
indication) and antiinflammatory (2nd order prediction);
chlorpromazine (CID000002726), whose original indication
is antiemetic (antihistamine) [60] and new indication is
nonsedating tranquillizer (dopamine receptor blockade) [61],
is predicted to treat disease such as Anxiolytic (1st order
prediction, new clinical indication) and antipsychotic (2nd
order prediction).

The indications of samples in DSte were also predicted
by our method. As described in Section 3.4, the 1st order
prediction accuracy was 16/32 = 50.00% and the 2nd order
prediction accuracy was 7/32 = 21.88%. Meanwhile, 20 out
of 32 drugs were correctly predicted for the first two orders,
where 15 out of 32 drugs were predicted correctly in aspect
of original indications and 8 out of 32 drugs were predicted
correctly in aspect of repositioned indication, although 3
out of the 8 drugs were predicted correctly responding to
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Table 8: 8 instances to illuminate accurate prediction of new indications in validation test dataset.
Name ID 1st order prediction 2nd order prediction Original indication New indication

Rapamycin CID005284616 Antineoplastica Antiinflammatoryc Immunosuppressant (acted
as mTOR inhibitor) [67]

Colorectal cancer,
lymphoma, leukemia
[68, 69]

Zoledronic CID000068740 Antineoplastica Antiinflammatoryc Antibone resorption (acted
as osteoclast inhibitor) [70]

Multiple myeloma,
Prostate cancer, breast
cancer [71, 72]

Wortmannin CID000312145 Antidiabeticb Antineoplastica Antifungal [25] Leukemia [73]

Galantamine CID000009651 Anti-Alzheimer’s
diseasea Antihypertensivec

Polio (acted as
acetylcholinesterase
inhibitor) [1]

Alzheimer’s disease
[1]

Ropinirole CID000005095 Antipsychoticc Antiparkinsoniana Antihypertension (acted as
dopamine-2 agonist) [1] Parkinson’s disease [1]

Zidovudine CID000035370 Antiviralb Antineoplastica Anticancer [1] Anti-HIV [1]
Allopurinol CID000002094 Uricosurica Antineoplasticb Tumor lysis syndrome [74] Gout [75]

Colesevelam CID000160051 Antihypolipidemicb Antidiabetica Antihyperlipidemia [64] Type 2 diabetes
mellitus [65, 66]

a: correctly predicted in new indications;
b: correctly predicted in original indications;
c: incorrectly predicted in original indications.

the original indication. The description of 8 instances with
accurate prediction of new indication in validation test set
was shown in Table 8.

Further, some of our predictions are supported by in
vitro assay results from different sources, which may provide
mechanism-based interpretation of these potential novel
indications. For example, for Quinacrine (CID000000237),
the 2nd ranked indication is antiinflammatory. Several
researches [62, 63] indicated that Quinacrine is an inhibitor
of cytosolic phospholipase A2, which selectively hydrolyzes
arachidonyl phospholipids in the sn-2 position releasing
arachidonic acid. Togetherwith the lysophospholipid activity,
quinacrine is implicated in the initiation of the inflam-
matory response. The predicted indication of Colesevelam
(CID00000160051) is antidiabetic (2nd indication). As we
know, Colesevelam acts as bile acid sequestrants in the gas-
trointestinal tract upregulate bile acid synthesis (via choles-
terol 7-alpha-hydroxylase) by means of utilizing cholesterol
and reduced low-density lipoprotein cholesterol levels [64].
Although the exact mechanism of action for the glucose-
lowering effect of Colesevelam is still unclear, it may exert
the glycemic effect by altering the interaction of the bile
acid pathways [65, 66]. From the above two cases, we may
find that the prediction of our model may provide useful
information for identifying new possible indications of some
existing drugs.

These results demonstrated that our method can suc-
cessfully identify some potential new indications for a drug,
which supported the hypothesis that “similar drugs” aremore
likely to have the same therapeutic effects. In our method,
interacted drugs were also considered “similar drugs.”

4. Conclusions

In the study, we built an effective classifier to predict drug
indications based on chemical interactions extracted from

STITCH database and chemical structure similarity.The pre-
dictor based on chemical interactions outperformed the pre-
dictor based on chemical similarities.Therefore, we arranged
chemical interaction before chemical similarity to build the
predictor for each drug; that is, if the disease indications of a
drug cannot be predicted by chemical interaction, then they
are predicted by chemical similarity. As a result, the Recall
rate and Precision of the first two predictions are 56.28%
and 34.87%, respectively. As to the independent test set, the
model yielded the accuracy of 50.00% for the 1st prediction
and 21.88% for the 2nd prediction. And interestingly, some
drug repositioning instances are correctly implicated by our
method. A limitation of the method is that only 56 categories
of drug indications are analyzed, which may be improved
with the expansion of the drug indication data.
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