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Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. And
currently, there are no specific diagnostic biomarkers for ACC. In our study, we aimed to
screen biomarkers for disease diagnosis, progression and prognosis. We firstly used the
microarray data from public database Gene Expression Omnibus database to construct
a weighted gene co-expression network, and then to identify gene modules associated
with clinical features of ACC. Though this algorithm, a significant module with R2 = 0.64
(P = 9 × 10−5) was identified. Co-expression network and protein–protein interaction
network were performed for screen the candidate hub genes. Checked by The Cancer
Genome Atlas (TCGA) database, another independent dataset GSE19750, and GEPIA
database, using one-way ANOVA, Pearson’s correlation, survival analysis, diagnostic
capacity (ROC curve) and expression level revalidation, a total 12 real hub genes were
identified. Gene ontology and KEGG pathway analysis of genes in the significant module
revealed that the hub genes are significantly enriched in cell cycle regulation. Moreover,
gene set enrichment analysis suggests that the samples with highly expressed hub
genes are correlated with cell cycle. Taken together, our integrated analysis has identified
12 hub genes that are associated with the progression and prognosis of ACC; these hub
genes might lead to poor outcomes by regulating the cell cycle.

Keywords: adrenocortical carcinoma (ACC), weighted gene co-expression network analysis (WGCNA), cell cycle,
biomarker, progression and prognosis

INTRODUCTION

Adrenocortical carcinoma is a rare malignancy. Its incidence is approximately 0.5–2 new cases per
million people per year (Fassnacht et al., 2011), with an increased occurrence during childhood and
the fourth to fifth decades of life. Most ACCs occur sporadically, but some cases are associated with
various genetic diseases, e.g., Li-Fraumeni syndrome (LFS), Beckwith–Wiedemann, and multiple
endocrine neoplasia type I (MEN1). ACCs are often aggressive, cannot be completely resected and
have a poor prognosis (Fassnacht et al., 2011; Else et al., 2014). In a study of 330 ACCs from

Abbreviations: ACC, adrenocortical carcinoma; BP, biological process; DAVID, the database for annotation, visualization,
and integrated discovery; FC, fold change; FDR, false discovery rate; GO, gene ontology; GSEA, gene set enrichment analysis;
PPI, protein–protein interaction; TOM, topological overlap matrix; WGCNA, weighted gene co-expression network analysis.
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M. D. Anderson, the median survival was 3.2 years and median
overall survival for stage I, II, III, and IV were 24.1, 6.08, 3.47,
and 0.89 years, respectively (Ayala-Ramirez et al., 2013). The 275
surgically resected tumors had a median local-recurrence free
time of 1 year. In addition, a study of 3982 ACCs from 1985 to
2005 in United States exhibited that the survival did not improve
(Beuschlein et al., 2015). Based on these facts, it is urgent to
investigate the mechanisms that promote ACC progression and
to discover novel molecular biomarkers for the prognosis.

With the development of high-throughput microarray
technology, many studies have reported the genes involving
in tumor progression (Chen L. et al., 2017; Robertson et al.,
2017). Gene expression profiles have been used to identify genes
associated with progression of ACCs in some previous studies
(Pinto et al., 2015; Kulshrestha et al., 2016). However, these
studies were mostly concerned with differentially expressed
genes and did not consider the high degree of interconnection
between genes, where genes with similar expression patterns
may be functionally related. Merely screening the differentially
expressed genes in normal and tumor samples had limitations
and we should pay more attention to correlation between gene
expression and clinical features. The algorithm, WGCNA can
construct free-scale gene co-expression networks to explore the
relationships between different gene sets or between gene sets
and clinical features (Langfelder and Horvath, 2008). Currently,
WGCNA is used to study various cancers and has identified
biomarkers associated with critical features. However, it was not
used in ACC samples and our group was the first to use this
algorithm in ACC. Thus, we attempt to construct a co-expression
network of relationships between genes through a systematic
biology approach based on a weighted genome expression
network and to identify network-centric genes associated with
clinical features of ACC and then use various datasets and
databases (GEO, TCGA, GEPIA, and STRING) to validate the
value of the hub genes.

MATERIALS AND METHODS

Data Collection
Expression profiles of mRNA and related clinical data of human
ACCs were downloaded from Gene Expression Omnibus (GEO)
database1. Dataset GSE10927 (Giordano et al., 2009) performed
on Affymetrix Human Genome U133 Plus 2.0 Array was used as
a training set to construct co-expression networks and identify
hub genes in this study. This dataset included human samples of
33 ACCs, 22 adrenocortical adenomas, and 10 normal adrenal
cortex samples, each from a different patient. The additional
independent dataset GSE19750 (Demeure et al., 2013) based on
the same platform as the training set was downloaded from GEO
and used as a test set to verify our results. This dataset included
44 ACC tissues and four normal adrenal glands. Moreover,
RNA-sequencing data of 79 ACC samples were also downloaded
from The Cancer Genome Atlas (TCGA) database2 to further

1http://www.ncbi.nlm.nih.gov/geo/
2https://genome-cancer.ucsc.edu/

verify our results. The gene expression data were based on the
RNA-sequencing technology IlluminaHiseq.

Data Preprocessing
Normalized data were first downloaded from GEO database.
Microarray quality was assessed by sample clustering according
to the distance between different samples in Pearson’s correlation
matrices (Gautier et al., 2004). A brief study design is shown in
Figure 1A.

Differentially Expressed Genes (DEGs)
Screening
The “limma” (linear models for microarray data) (Ritchie et al.,
2015) R package was used to screen the DEGs between normal
adrenal gland and ACC. The SAM (significance analysis of
microarrays) with FDR < 0.05 and | log2 FC| > 0.263 were
chosen as the cut-off criteria to select genes further considered
in the network construction (Feng et al., 2016; Ling et al., 2017;
Ma et al., 2017; Wang C.F. et al., 2017; Xiong et al., 2017;
Yan et al., 2017; Yang et al., 2017). The differentially expressed
genes between normal adrenal cortex and ACC in two dataset
GSE10927 and dataset GSE19750 were screened.

Co-expression Network Construction
First, DEG expression data profiles were evaluated to determine
whether the samples and genes were of sufficient quality. Then,
we used the “WGCNA” package in R to construct scale-free
co-expression network for the DEGs. To ensure that the results
of network construction were reliable, outlier samples (which
were distant from other samples in the clustering via average
linkage method) were removed. An appropriate soft threshold
power was selected in accordance with standard scale-free
networks, with which adjacencies between all differential genes
were calculated by a power function (Clarke et al., 2013; Botia
et al., 2017). Then, the adjacency was transformed into a TOM,
and the corresponding dissimilarity (1-TOM) was calculated.
Module identification was accomplished with the dynamic tree
cut method by hierarchically clustering genes using 1-TOM as the
distance measure with a deepSplit value of two and a minimum
size cutoff of 50 for the resulting dendrogram. To further analyze
the module, we calculated the dissimilarity of module eigengenes
(MEs), chose a cut line for module dendrogram and merged some
modules.

Identification of Clinical Significant
Modules
Two approaches were used to identify modules related to clinical
traits of ACC. First, gene significance (GS) was defined as the
log10 transformation of the P value (GS = lgP) in the linear
regression between gene expression and the clinical traits. In
addition, module significance (MS) was defined as the average
GS for all the genes in a module. In general, the module
with the absolute MS ranked first or second among all the
selected modules was considered as the one related to a clinical
trait. MEs were considered as the major component in the
principal component analysis for each gene module and the
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FIGURE 1 | Study design and clustering dendrogram of 32 tumor samples as well as the clinical traits. (A) Flow diagram of data preparation, processing, analysis,
and validation in this study. (B) The clustering was based on the expression data of differentially expressed genes between tumor samples and normal samples in
ACC. The color intensity was proportional to older age, gender, side, tumor diameter (cm), tumor weight (gm), weiss grade of tumor, mitotic rate of tumor, tumor
stage, years to last follow-up and status. Color: Female: white, Male: red; Status: live: white, dead: red.

expression patterns of all genes could be summarized into a
single characteristic expression profile within a given module.
In addition, we calculated the correlation between MEs and
clinical traits to identify the relevant module. The module with

the maximal absolute MS among all the selected modules was
usually considered to be related to a clinical trait. Finally, the
module highly correlated with certain clinical traits was selected
for further analysis.

Frontiers in Genetics | www.frontiersin.org 3 August 2018 | Volume 9 | Article 328

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00328 August 13, 2018 Time: 18:57 # 4

Yuan et al. Biomarkers for Adrenocortical Carcinoma

Identification of Candidate Hub Genes
Hub genes in the co-expression network were defined by
module connectivity, measured by absolute value of the Pearson’s
correlation and clinical trait relationship. We identified hub
genes in module that were highly correlated with certain clinical
traits. Furthermore, we uploaded all genes in the hub module
to the Search Tool for the Retrieval of Interacting Genes
(STRING) database3 (Szklarczyk et al., 2015, 2017), choosing a
confidence > 0.4 to construct a PPI. In the PPI network, genes
with a connectivity degree ≥ 4 (node/edge) were defined hub
nodes. Hub genes common to both the co-expression network
and PPI network were regarded as candidate hub genes for
further analysis.

Real Hub Genes Identification
In the GSE19750 test set, linear regression analyses and survival
analysis were performed to validate the role of hub genes in
the progression and prognosis of ACC. Moreover, we used
the Gene Expression Profiling Interactive Analysis (GEPIA)
database4 (Tang et al., 2017) to perform survival analysis and
stage plots of the candidate hub genes. The ANOVA test was
performed using GSE19750 and TCGA-ACC data. Meanwhile,
ROC curve analysis was performed and the AUC was calculated
to distinguish the tumor tissues from the normal tissues as well as
the malignant tumors from the benign tumors by using training
set GSE10927 and test set GSE19750. Genes with a significant
P value in survival analyses, linear regression analyses, stage
plots, common DEGs in GSE19750 and GSE10927, ANOVA test
and AUC ≥ 0.85 were defined as the “real” hub genes. Then
the real hub genes were performed the Pearson’s correlation
between their expression levels and MKi67 by using GSE10927,
GSE19750, and TCGA-ACC.

Functional and Pathway Enrichment
Analysis
The Database for Annotation, Visualization and Integrate
Discovery5 (Dennis et al., 2003; Sherman et al., 2007) is an online
program providing a comprehensive set of functional annotation
tools for investigators to understand biological meaning behind
large list of genes. Enriched biological themes of DEGs in hub
modules, particularly GO terms, were identified, and those on
KEGG pathway maps were visualized using DAVID. We chose
the top 10 terms including the candidate hub genes to be the key
BP and pathways. P < 0.05 was set as the cut-off criterion.

Gene Set Enrichment Analysis (GSEA)
In the TCGA-ACC data, 79 ACC samples were divided into two
groups according to the median expression level of hub genes. To
identify potential function of the hub gene, GSEA6 (Subramanian
et al., 2005) was conducted to detect whether a series of a priori
defined BPs were enriched in the gene rank derived from DEGs
between the two groups.

3http://www.string-db.org/
4http://gepia.cancer-pku.cn/
5http://david.abcc.ncifcrf.gov/
6http://software.broadinstitute.org/gsea/index.jsp

For use with GSEA software, the collection of annotated
gene sets of c2.cp.kegg.v6.0.symbols.gmt in Molecular Signatures
Database (MSigDB)7 was chosen as the reference gene set.
ES ≥ 0.6 and FDR < 0.05 were chosen as the cut-off criteria. We
chose the terms enriched in all hub genes as the potential function
of the hub genes.

RESULTS

DEG Screening
After data preprocessing and quality assessment, the expression
matrices were obtained from the 65 samples in training set
GSE10927. Under the threshold of FDR < 0.05 and | log2 FC|
> 0.263, a total of 1956 DEGs (666 up-regulated and 1290
down-regulated in ACC samples) were selected for subsequent
analysis (Supplementary Table S1). In the test set GSE19750, a
total of 3810 DEGs (1263 up-regulated and 2547 in ACC samples)
were identified (Supplementary Table S2).

Weighted Co-expression Network
Construction and Key Modules
Identification
GSM277130 was an outlier sample and was removed from
subsequent analysis in GSE10927 (Supplementary Figure S1).
A total of 33 samples with clinical data were included in the
co-expression analysis (Figure 1B). Using the “WGCNA” package
in R, DEGs with similar expression patterns were grouped into
modules via the average linkage hierarchical clustering. In this
study, the power of β = 3 (scale free R2 = 0.89) was selected as
the soft-thresholding to ensure a scale-free network (Figure 2).
A total of four modules were identified (Figure 3A). Two
methods were used to test the relevance between each module
and the ACC clinical information; here, we focused on the tumor
grade. First, modules with a greater MS were considered to
have more connection with tumor grade. However, most of the
correlations were low to moderate (R2 < 0.5), and we found that
the MS of the turquoise module (P = 9 × 10−5, R2 = 0.64) was
higher than that of any other module (Figure 3B). Afterward,
the ME of the turquoise module showed a higher correlation
with tumor grade than did other modules (Figure 3C). Based on
the two methods, the turquoise module with tumor grade was
identified as the clinical significant module, which was extracted
for further analysis.

Identification of Candidate Hub Genes
for Tumor Grade
Highly connected hub genes in a module play important
roles in the BPs. As to the PPI network, under the cutoff of
confidence > 0.4 and connectivity degree of ≥ 4 (node/edge),
123 genes were identified as hub genes (Figure 4A) and the
whole PPI network were showed in Supplementary Figure S2.
Defined by module connectivity and measured by absolute value
of the Pearson’s correlation and clinical trait relationship, 78

7http://software.broadinstitute.org/gsea/msigdb/index.jsp
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FIGURE 2 | Determination of soft-thresholding power in the weighted gene co-expression network analysis (WGCNA). (A) Analysis of the scale-free fit index for
various soft-thresholding powers (β). (B) Analysis of the mean connectivity for various soft-thresholding powers. (C) Histogram of connectivity distribution when
β = 3. (D) Checking the scale free topology when β = 3.

genes with high connectivity in the turquoise module were
taken as candidate hub genes in the co-expression network
(Figure 4B). A total of 60 genes were identified both in PPI
network and co-expression network identified as candidate hub
genes (Figure 4C).

Real Hub Gene Identification
Linear regression analyses and one-way ANOVA analysis were
conducted to validate candidate hub genes in the test set
GSE19750 and TCGA-ACC (Supplementary Table S3), and
totally 46 and 41 genes were identified, respectively. As tumor
progression always affects tumor prognosis, we validated the
real hub genes by investigating their roles in ACC prognosis
using GSE19750 and TCGA-ACC (Supplementary Table S4)
and 30 genes showed significant P value in both test sets.
To further test the diagnostic capacity of the candidate hub
genes, ROC curve was performed and the AUC were calculated
(Supplementary Table S5), and 34 genes were identified with

AUC ≥ 0.85. In addition, we also investigated the expression
levels of candidate hub genes in two datasets (GSE19750 and
GSE10927), and 31 were differentially expressed in both datasets
(GSE19750 and GSE10927). Common genes with significant
P value in those five analyses were screened as the real hub
genes, and 12 genes were eventually identified (ANLN, ASPM,
CDCA5, CENPF, FOXM1, KIAA0101, MELK, NDC80, PRC1,
RACGAP1, SPAG5, and TPX2) (Figure 4D). The grade or stage
plot, Pearson’s correlation, ANOVA test results and survival
analyses of the real hub genes were showed in Figures 5–7 and
Supplementary Figures S3–S5. MKi67 is a biomarker for tumor
proliferation, the Pearson’s correlation of MKi67 and real hub
genes were performed (Figure 8).

Functional and Pathway Enrichment
Analysis
To obtain further insight into the function of DEGs in hub
module, the DEGs were uploaded to the DAVID database. GO
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FIGURE 3 | Identification of modules associated with clinical information. (A) Dendrogram of all differentially expressed genes clustered based on a dissimilarity
measure (1-TOM). (B) Heatmap of the correlation between module eigengenes (MEs) and different clinical information of ACC (age, gender, side, tumor diameter
(cm), tumor weight (gm), weiss grade of tumor, mitotic rate of tumor, tumor stage, years to last follow-up and status). (C) Distribution of average gene significances
and errors in the modules associated with the weiss grade of ACC.

analysis results showed that hub genes were enriched in the
top 10 BPs, including cell cycle phase, cell cycle, M phase,
nuclear division, mitosis, organelle fission, M phase of mitotic
cell cycle, cell cycle process, mitotic cell cycle and cell division.
Moreover, hub genes were quite significantly enriched in cell
cycle (Figure 9).

Gene Set Enrichment Analysis
To identify the potential function of those hub genes in
ACC, GSEA was conducted to search BPs enriched in any
hub gene highly expressed samples. Seven gene sets were
enriched in the samples with all hub genes highly expressed,
including “base excision repair,” “cell cycle,” “DNA replication,”

“mismatch repair,” “nucleotide excision repair,” “spliceosome,”
and “homologous recombination” (Supplementary Figure S6).

DISCUSSION

Adrenocortical carcinoma is one of the most aggressive solid
tumors in humans, with an overall poor prognosis (Fassnacht
et al., 2011; Else et al., 2014). Successful surgical resection for early
stage disease is the only curative treatment for ACC. However, the
risk of recurrence is high. Therefore, it is particularly important
to stratify patients with ACC into low- or high-risk groups
to monitor disease recurrence and assign them to appropriate

Frontiers in Genetics | www.frontiersin.org 6 August 2018 | Volume 9 | Article 328

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00328 August 13, 2018 Time: 18:57 # 7

Yuan et al. Biomarkers for Adrenocortical Carcinoma

FIGURE 4 | Hub genes detection. (A) Protein–protein interaction network of the hub nodes. (B) Scatter plot of MEs in turquoise module. (C) Common hub genes in
the co-expression network and PPI network. (C) Common genes with significant p value in survival analysis, ROC curve analysis, one-way ANOVA, Pearson’s
correlation analysis and DEGs analysis.

therapeutic interventions. Recently, a large multicentric study
by the European Network for the Study of Adrenal Tumors
has demonstrated that the Ki67 labeling index (Li) is the most
powerful parameter predicting disease recurrence and survival in
ACC patents after complete tumor resection (Beuschlein et al.,
2015). Recent studies have attached values to biomarkers for
outcomes of ACC; however, carcinogenesis does not occur due
to a few altered genes. Thus, it is necessary to identify novel
molecular biomarkers that can predict disease stage and clinical
outcome of ACC patients; these biomarkers could play critical
roles in pathogenesis and enable personalized treatment.

Weighted genes co-expression network analysis was used to
construct gene co-expression networks on the basis of similarities
of expression profiles among samples and then illustrate a global
interpretation of genes. Many articles have been published using
WGCNA to screen clinical-feature related biomarkers in several
types of tumors (Chen P. et al., 2017; Wang F. et al., 2017;

Yuan et al., 2017). This study is the first to use the WGCNA
algorithm for the purpose of identifying potential biomarkers
for ACC. Based on the clinical features (age, gender, tumor side,
tumor diameter, tumor weight, Weiss grade of tumor, mitotic
rate of tumor, tumor stage, years to last follow, and living
status), we eventually screened the gene co-expression modules
related to the tumor grade of ACC. The turquoise module was
identified, and 78 hub genes were derived from the module in co-
expression network; meanwhile, 123 hub genes were identified
in PPI analysis. Relating the results of PPI network, 60 hub
nodes were screened in both the co-expression module and
PPI network. Further regression analysis, survival analysis, one-
way ANOVA and ROC curve analysis were performed, and
12 real hub genes were finally selected that were associated
with poor outcomes and tumor stage of ACC. Interestingly, we
found that all real hub genes differed greatly between tumor,
begin or normal tissue in the test set and GEPIA database.
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FIGURE 5 | Stage and grade plot of the real hub genes. (A) Grade plot of the real hub genes using test set GSE19750. (B) Stage plot of the real hub genes using
test set TCGA-ACC. (C) Pearson’s correlation analysis of the real hub genes using test set GSE19750 and TCGA-ACC. (D) One-way ANOVA analysis of the real hub
genes using test set GSE19750 and TCGA-ACC.

Additionally, among the 12 real hub genes, only few biomarkers
were identified in previous studies. Jain et al. (2011) discovered
that KIAA0101, which is a marker of cellular proliferation and
promotes growth and invasion, was a good diagnostic marker for
distinguishing benign from malignant adrenocortical neoplasm.
Although other hub genes were not reported to participate in
ACC progression, they were reported to be involved in various
tumors. TPX2, overexpressed in cancers, is being established
as marker for the diagnosis and prognosis of malignancies,

and the functions of TPX2 are attributed to its Ran-regulated
microtubule-associated protein properties and to its control of
the Aurora A kinase (Neumayer et al., 2014). SPAG5 is reported
as a poor prognostic biomarker in cervix cancer, breast cancer
and bladder cancer (Yuan et al., 2014; Abdel-Fatah et al., 2016;
Liu et al., 2018). RACGAP1 as a proliferation marker was
indicated to involve in carcinogenesis of many cancers (Ke
et al., 2013; Milde-Langosch et al., 2013; Imaoka et al., 2015;
Bornschein et al., 2016; Sahin et al., 2016). In recent study,
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FIGURE 6 | Survival analysis of the association between the expression levels of real hub genes and overall survival time in ACC (based on TCGA data in GEPIA).
(A) ANLN, (B) ASPM, (C) CCNA5, (D) CENPF, (E) FOXM1, (F) KIAA0101, (G) MELK, (H) NDC80, (I) PRC1, (J) RACGAP1, (K) SPAG5, (L) TPX2. Red line indicates
the samples with gene highly expressed, and blue line shows the samples with gene lowly expressed. HR, hazard ratio.

FIGURE 7 | Survival analysis of the association between the expression levels of real hub genes and disease free survival time in ACC (based on TCGA data in
GEPIA). (A) ANLN, (B) ASPM, (C) CCNA5, (D) CENPF, (E) FOXM1, (F) KIAA0101, (G) MELK, (H) NDC80, (I) PRC1, (J) RACGAP1, (K) SPAG5, (L) TPX2. Red line
indicates the samples with gene highly expressed, and blue line shows the samples with gene lowly expressed. HR, hazard ratio.
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FIGURE 8 | Pearson’s correlation analysis of the association between the Ki67 expression and the expression of real hub genes.

FIGURE 9 | Bioinformatics analysis of genes in turquoise module. (A) GO analysis and (B) KEGG pathway enrichment of hub genes.

researchers found that abnormal PRC1 expression correlates with
poor patient outcome in various malignancies, which may be
caused by PRC1-mediated CIN and aneuploidy (Li et al., 2018).
NDC80 was reported to associate with poor outcomes and tumor
proliferation in multiple cancers via cell cycle regulation (Qu
et al., 2014; Meng et al., 2015; Xing et al., 2016). In previous
studies, MELK functioned as a modulator of intracellular
signaling and affects various cellular and BPs, including
cell cycle, cell proliferation, apoptosis, spliceosome assembly,
gene expression, embryonic development, hematopoiesis, and
oncogenesis (Jiang and Zhang, 2013). FOXM1 transcription
factor is a regulator of myriad BPs, including cell proliferation,
cell cycle progression, cell differentiation, DNA damage repair,

tissue homeostasis, angiogenesis and apoptosis; meanwhile,
elevated FOXM1 expression was found in most cancers,
suggesting it has an integral role in tumorigenesis and recent
research findings also placed FOXM1 at the center of cancer
progression and drug sensitivity (Koo et al., 2012). Interestingly,
co-expression of FOXM1 and CENPF is a robust prognostic
indicator of poor survival and metastasis (Aytes et al., 2014).
CDCA5 was identified as a negative prognostic marker in
bladder cancer, breast cancer, gastric cancer and hepatocellular
carcinoma (Chang et al., 2015; Phan et al., 2018; Shen et al.,
2018; Zhang et al., 2018). ASPM played an important role in
pancreatic tumor and glioma progression, in vascular invasion,
early recurrence and poor prognosis of hepatocellular carcinoma
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and even represented a potential target for radiotherapy (Lin
et al., 2008; Bikeye et al., 2010; Kato et al., 2011; Wang et al.,
2013). According to the previous studies, we found all the hub
genes participated in the tumorigenesis.

Enrichment analyses for the turquoise module indicated that
BPs focused on cell cycle regulation, including cell cycle phase,
cell cycle, M phase, nuclear division, mitosis, organelle fission, M
phase of mitotic cell cycle, cell cycle process, mitotic cell cycle and
cell division. Meanwhile, KEGG enrichment analysis revealed
that genes in the turquoise module were significantly enriched
in cell cycle. To further study the mechanism by which these
genes regulate tumorigenesis, we performed GSEA analysis using
ACC RNA Seq data from TCGA. All hub genes were enriched
in base excision repair, cell cycle, DNA replication, homologous
recombination, mismatch repair, nucleotide excision repair and
spliceosome. The two enrichment analyses demonstrated that
hub genes were closely related to the function of cell cycle
regulation. Previous studies demonstrated that the presence of
p53 was necessary for DNA-damaged cells to arrest, repair the
damage, and reenter the cell cycle (Lukin et al., 2015). Cell cycle
is a continuous and accurate process; meanwhile, monitoring and
regulating the cell cycle are important (Xu, 2006). Deregulation
of cell cycle is closely related to carcinogenesis and tumor
progression (Kaistha et al., 2016). Regarding our candidate hub
genes that were enriched in the function of regulating cell cycle,
we hypothesize that they might influence ACC by affecting cell
cycle.

CONCLUSION

In conclusion, we used weighted gene co-expression analysis to
construct a gene co-expression network for ACC for the first
time, as well as identified and validated network hub genes
associated with tumor grade. Interestingly, candidate hub genes
showed significant prognostic value. Meanwhile, we predicted the
potential function of the stage- and prognosis-related hub genes,
which participated in cell cycle regulation. These hub genes had
potential roles in the translational medicine and might become
therapeutic targets. However, our study only selected potential

biomarkers of ACC that were associated with tumor progression
and prognosis, and further molecular biological experiments are
needed to confirm the function of candidate biomarkers in ACC.
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