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The CCL2-CCR2 axis is one of the major chemokine signaling pathways that

has received special attention because of its function in the development and

progression of cardiovascular disease. Numerous investigations have been

performed over the past decades to explore the function of the CCL2-CCR2

signaling axis in cardiovascular disease. Laboratory data on the CCL2-CCR2

axis for cardiovascular disease have shown satisfactory outcomes, yet its

clinical translation remains challenging. In this article, we describe the

mechanisms of action of the CCL2-CCR2 axis in the development and

evolution of cardiovascular diseases including heart failure, atherosclerosis

and coronary atherosclerotic heart disease, hypertension and myocardial

disease. Laboratory and clinical data on the use of the CCL2-CCR2 pathway

as a targeted therapy for cardiovascular diseases are summarized. The potential

of the CCL2-CCR2 axis in the treatment of cardiovascular diseases is explored.
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Introduction

Cardiovascular disease is the world’ s leading cause of

morbidity and mortality (1, 2). A rising body of evidence

suggests that inflammation is a key contributor to

cardiovascular disease (3, 4). Randomized clinical trials based

on canakinumab (5) and colchicine (6) have evidenced the

effectiveness of particular anti-inflammatory treatments in the

field of cardiovascular disease prevention. In the course of

inflammatory immune response, leukocytes are recruited to

the site of injury. Chemokines and its receptors have been

described as essential mediators that regulate leukocyte

infiltration and migration to specific sites of inflammatory

response (7). There is powerful proof that chemokine CCL2

and its receptor CCR2 function in cardiovascular diseases such

as heart failure (8), atherosclerosis and coronary atherosclerotic

heart disease (9), hypertension (10) and cardiomyopathy (11)

(Table 1). In addition, high levels of circulating CCL2 are related

to increased long-term cardiovascular mortality in people

without significant cardiovascular disease (43).

Recently, a large epidemiological study highlighted the causal

association of the CCL2-CCR2 pathway with cardiovascular
Frontiers in Immunology 02
disease in humans (22). Given its critical role in the immune

inflammatory response, the CCL2-CCR2 axis is recognized as an

important physiological modulator and a viable therapeutic target.

Although a great deal of preclinical data (44–46) support the

important contribution of the CCL2-CCR2 axis in experimental

cardiovascular disease, the existing clinical studies (47, 48) have

not yielded satisfactory results. The development and clinical

application of drugs on the basis of the CCL2-CCR2 axis for the

treatment of cardiovascular diseases continue to be challenging.

In this review, the mechanisms of action of the CCL2-CCR2

axis in the development of cardiovascular disease are described. Also

we follow the progress of CCL2-CCR2 axis in relation to preclinical

and clinical studies of cardiovascular disease. These results elucidate

the essential function of the CCL2-CCR2 axis in cardiovascular

evolution and its prospective use as a target for therapy.
Basic information of CCL2-CCR2
axis

Chemokines are small, highly conserved families of secreted

proteins composed of cytokines (49), which are responsible for
TABLE 1 Summary of selected studies investigating the role of CCL2 & CCR2 in cardiovascular diseases.

Conditions Experimental Model/Study population Major findings related to CCL2/CCR2 axis References

Heart Failure

CHF Rats with ACF CCL2 contributed to the progression of cardiac decompensation and
the development of CHF

(8)

Hypertensive
heart disease

Rats with suprarenal aortic constriction CCL2-mediated macrophage aggregation acted on myocardial fibrosis
via a TGF-b-mediated process

(12)

Genetic HF Des-/- mice Downregulation of CCR2, Arg1 and pro-fibrotic gene expression
ameliorated poor cardiac remodeling, inflammation and failure

(13)

End-stage HF Hearts from patients with end-stage HF and in organ
donors

First demonstrated the expression and protein localization of CCL2/
CCR2 in human myocardium

(14)

CHF CHF patients Serum CCL2 levels were positively related to the seriousness of
symptoms as well as the degree of left heart insufficiency in patients
with CHF

(15)

Advanced HF Advanced HF patients CCL2 was significantly associated with poor prognosis in patients with
advanced heart failure

(16)

Atherosclerosis and coronary artery atherosclerotic heart disease

Atherosclerosis Rabbits with endothelial desiccation and atherogenic diet CCL2-induced migration of monocytes to the vessel wall was a key
activity contributing to the development of atherosclerosis

(17)

Atherosclerosis Diseased human arteries CCL2 had a potential function in mediating mononuclear cell
infiltration in the arterial wall

(18)

Atherosclerosis LDL-R-/-/CCL2-/- mice with high cholesterol diet CCL2 played a specific and essential role in the activation of
atherosclerosis

(19)

Atherosclerosis CCR2−/−, apoE−/− mice Selective deletion of CCR2 significantly reduced lesion formation of
apoE-/- mice

(20)

Atherosclerosis Human atherosclerotic plaque samples CCL2 of human atherosclerotic plaques was significantly related to
plaque vulnerability characteristics

(21)

Stroke Healthy adults Genetic susceptibility to increased circulating CCL2 levels was related
to a higher risk of stroke

(22)

(Continued)
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regulating cell movement in response to chemical stimuli

(chemotaxis) (50). Chemokines perform its function by

associating with G protein-coupled chemokine receptors

(GPCRs) (51) thereby affecting a variety of biological processes

and disease conditions, such as cancer (52), cardiovascular

diseases (9), liver diseases (53), and intestinal diseases (54).

Chemokines are classified as four major families, CXC, CC,
Frontiers in Immunology 03
XC and CX3C, by the arrangement of their amino-terminal (N-

terminal) cysteines (51). CC and CXC are the two major

subfamilies of chemokines. Among the CC chemokine

subfamilies, CCL2 was the first to be discovered and fully

investigated (55, 56).

CCL2, also known as monocyte chemoattractant protein-1

(MCP-1), was originally obtained in 1989 from the culture
TABLE 1 Continued

Conditions Experimental Model/Study population Major findings related to CCL2/CCR2 axis References

Atherosclerosis ApoE-/- mice with MI Monocyte-targeted RNAi with CCR2 as a target improved infarct
healing in atherosclerosis-prone mice

(23)

MI CCL2-/- mice/CCL2 antibody neutralization mice with
reperfused MI

CCL2 regulated inflammatory responses essential for MI repair (24)

MI RAW 264.7 cells
Mice with MI

Lipid micelles loaded with CCR2 inhibitors affected inflammatory cell
migration and cardiac function after MI

(25)

Ischemic
preconditioning

CCL2 TG mice with Coronary artery occlusion and
reperfusion

Cardiac overexpression of CCL2 simulated ischemic preconditioning
via the activation of SAPK/JNK1/2

(26)

MI MHC/MCP-1 mice with MI CCL2 overexpression in the heart prevented cardiac dysfunction and
remodeling after MI

(27)

Hypertension

Hypertension CCR2-deficient mice injected with Ang II CCR2 was required for macrophage infiltration and vascular
hypertrophy in ang II-induced hypertension

(10)

Hypertension CCR2-/-mice/BMT-CCR2-/- mice injected with Ang II CCR2 played a key role in hypertension-induced vascular
inflammation and remodeling

(28)

Hypertension RASMCs treated with Ang II Ang II directly stimulated the expression of the CCL2 gene in the
vascular system via the AT1 receptor

(29)

Arterial
hypertension

Caucasian patients with primary Arterial hypertension CCL2 was observed to be increased in hypertensive patients and
correlated with the extent of organ injury

(30)

Salt-sensitive
hypertension

TRPV1-/- mice receiving DOCA-salt with vehicle Enhanced CCL2-CCR2 signaling pathway exacerbated renal injury in
patients with salt-sensitive hypertension

(31)

Renovascular
hypertension

CCL2 KO mice with renal artery stenosis CCL2 is a key mediator of chronic kidney injury in renovascular
hypertension

(32)

Salt-sensitive
hypertension

Dahl SS rats with high salt diet CCL2 mediated early renal leukocyte infiltration of salt-sensitive
hypertension

(33)

Myocardial disease

EAM/Acute
myocarditis

Rats injected with Porcine cardiac myosin
Acute myocarditis patients

CCL2 played a significant role in the progression of EAM in rats and
in the pathogenesis of acute myocarditis in humans

(34)

EAM Rats injected with Porcine cardiac myosin CCL2 promoted the migration and proliferation of monocytes/
macrophages in EAM

(35)

EAM Mice injected with mixture of cardiac myosin polypeptide The expression of CCL2 in EAM was upregulated by IL-17 through
Act1/TRAF6/TAK1

(36)

Viral
myocarditis

Mice infected with CVB3 Blockade of CCL2 activity protected against CVB3-induced
myocarditis by impairing Th1 polarization

(37)

EAM CCR2-/- mice injected with Murine cardiac myosin The CCL2/CCR2 axis played an important role in the induction of
EAM

(38)

DCM DCM patients with low to moderate impairment of left
ventricular function/Patients with severe left ventricular
dysfunction

CCL2 contributed to cardiomyocyte injury in DCM by regulating
monocyte infiltration and activation

(39)

DCM Mice injected with DOX CCR2 inhibition reduced mobilization of Ly6Chigh monocytes in bone
marrow and improved cardiac inflammation and left ventricular
dysfunction

(40)

HCM HCM patients CCL2 was correlated with left ventricular systolic dysfunction in HCM
patients and may be involved in its pathogenesis

(41)

AC Dsg2MT mice
Dsg2cKO mice

CCL2/CCR2 was involved in the regulation of inflammatory and
repair processes during the progression of AC

(42)
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supernatant of human glioma cells and human blood

mononuclear leukocytes (57, 58). As a protein consisting of 76

amino acids at 13 kDa, CCL2 has two adjacent amino-terminal

cysteine residues (59). CCL2 is primarily secreted by immune

cells, in addition, smooth muscle cells, endothelial cells,

thylakoid cells, and fibroblasts are also capable of producing

CCL2 (58, 60, 61). The expression of CCL2 can be either

persistent or inducible. A variety of mediators can induce

CCL2 expression, such as IL-1, IL-4, IL-6, TNF-a, TGF-b,
IFN-g, etc (62, 63). CCL2 regulates the migration and

infiltration of a wide range of immune cells, including

monocytes, macrophages, memory T lymphocytes, and natural

killer (NK) cells (50, 59). It has been reported that CCL2 can

bind to a variety of receptors (Figure 1A). For example, by

binding to CCR2, CCL2 coordinates inflammatory monocyte

transport among bone marrow, circulating and atherosclerotic

plaques (9). CCL2 binding to CCR4 activates myosin light chain

(MLC) phosphorylation and regulates cell motility and tumor

metastasis (64). Furthermore, CCL2 can be bound to atypical

chemokine receptors (ACKRs), including ACKR1 and ACKR2,

which do not induce cell migration but can alter chemokine

gradients (65). Although CCL2 can bind to a variety of receptors,

CCR2 is still considered to be the primary receptor for CCL2.

The amino-terminal region of CCL2 is an important factor in

determining CCR2 affinity for binding and signal

selectivity (66).

Since its discovery in 1994 (67), CCR2 has been extensively

investigated as a prospective therapeutic target for many

diseases. CCR2 belongs to GPCRs, whose steric structure

contains the binding sites of G proteins (guanylate-binding

proteins) and seven transmembrane a-helices. Depending on

the carboxyl terminus, CCR2 is divided into CCR2A and CCR2B

(68), which perform different roles. Notably, as with CCL2,

CCR2 can also bind to other chemokines, including CCL7,
Frontiers in Immunology 04
CCL8, CCL11, CCL13, CCL16, and CCL26 (9) (Figure 1A).

These chemokines perform important roles in a variety of

diseases. For example, CCL8 was involved in the recruitment

of tumour-associated macrophages by hypoxic cervical cancer

cells through its binding to CCR2 (69). CCL11 promoted

ovarian cancer growth and metastasis by stimulating the

proliferation and migration of ovarian carcinoma cell lines

(70). CCL13 levels were significantly increased in patients with

asthma and allergic rhinitis (71). Interestingly, unlike other

chemokines, CCL7 played different or even opposite roles in

inflammation. On the one hand, CCL7 was involved in the

recruitment of pro-inflammatory mononuclear phagocytes into

the local colonic tissue of colitis and could promote acute lung

inflammation by recruiting neutrophils (72, 73). On the other

hand, cleaved CCL7 was found to act as a general chemokine

antagonist that inhibits inflammation (74). In addition,

chemokine receptors such as CCR5 and CXCR4 can also

interact with CCR2 (51). CCR2 is located in a range of tissues

such as heart, liver, spleen, lung, kidney, pancreas, ovary,

thymus, brain, blood and spinal cord (75) (Figure 1B) and is

broadly expressed in various cells.

By binding to CCL2, CCR2 undergoes dimerization and

internalization, inducing the expression of monocyte

chemotactic protein-1 inducible protein-1 (MCPIP1).

Subsequently, transcription and expression of IL-1, CCL2 and

TNF genes are initiated by MCP1P1 (76). Upon triggering of

CCR2 by CCL2, a variety of intracellular G protein-mediated

signaling gateways will be initiated, for instance JAK/STAT,

PI3K/MAPKs and PI3K/Akt/ERK/NF-kB (77) (Figure 2).

Activation of these signaling pathways results in the

mobilization of multiple transcription factors and genes

involved in cytokine product ion, ce l l growth and

differentiation, cell survival, migration and apoptosis,

angiogenesis and inflammation (62, 78, 79). CCL2-CCR2 axis
A B

FIGURE 1

CCL2-CCR2 network and expression in human tissues. (A) Chemokines and their receptor networks associated with the CCL2-CCR2 axis (9).
The chemokine family is a huge system of ligands and GPCRS. In this network, CCL2 can bind to a variety of receptors, including the classical
chemokine receptors (shaded in pink) CCR1, CCR2, CCR4 and the atypical chemokine receptors (shaded in gray) ACKR1, ACKR2. CCR2 can also
bind to a variety of ligands (in red), including CCL2, CCL7, CCL8, CCL11, CCL13, CCL16, CCL26. (B) CCL2 and CCR2 RNA expression in human
tissues, X-axis represents the consensus data based on normalized expression (nTPM) values (data from https://www.proteinatlas.org).
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is associated with the advancement of several disorders, like

atherosclerosis (9), acute liver failure (80), rheumatoid arthritis

(81), pulmonary hypertension (82), diabetes and complications

(83), and cancer (78). As a result, CCL2-CCR2 axis is recognized

as a potential targeted site for the management of such diseases

(1, 2). The CCL2-CCR2 axis has received a lot of attention along

with CCL2-CCR2 antagonists (Table 2).
Frontiers in Immunology 05
CCL2-CCR2 axis and
cardiovascular disease

CCL2-CCR2 axis and heart failure

As a complex clinical syndrome, heart failure (HF) is

characterized by signs and symptoms caused by any structural
FIGURE 2

Schematic diagram of the CCL2-CCR2 axis and its signaling pathway. CCR2 is a G PCR. Upon binding of CCR2 to CCL2, a range of signaling
downstream is activated, for instance, the JAK/STAT pathway, MAPK pathway and PI3K/Akt pathway. A variety of transcription factors and genes
are then activated to participate in cytokine production, cell growth and differentiation, cell survival, migration and apoptosis.This figure was
created with BioRender.com.
TABLE 2 Antagonists of CCL2 and CCR2.

Drug Target Conditions Stage NCT number/
References

Nox-E36 CCL2 Type 2 Diabetes Mellitus (T2DM)
Renal Impairment
Chronic Inflammatory Diseases
Systemic Lupus Erythematosus

I/II NCT01547897
NCT01372124
NCT00976729

AZD-2423 CCR2 Chronic Obstructive Pulmonary Disease (COPD)
Nerve Pain

II NCT01215279
NCT01200524

BMS-687681 CCR2, CCR5 Pancreatic ductal adenocarcinoma Pre (84)

BMS-741672 CCR2 T2DM
Neuropathic Pain

II NCT00699790
NCT00683423

BMS-813160 CCR2, CCR5 Diabetic Kidney Disease
Colorectal Cancer, Pancreatic Cancer
Lung Cancer, Hepatocellular Carcinoma

I/II NCT01752985
NCT03184870
NCT04123379

CCX140-B CCR2 Glomerulosclerosis
Diabetic Nephropathy, T2DM

II NCT03536754
NCT01447147

CCX872-B CCR2 Pancreatic Cancer I/II NCT03778879
NCT02345408

(Continued)
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or functional disorder of ventricular filling or ejection (101). HF

can occur as a result of valvular heart disease, hypertension,

ischemic heart disease, and myocardial infarction (MI) (101). A

great deal of evidence suggests that the onset and progression of

HF is intimately associated with inflammation, no matter the

underlying etiology (102, 103). The induction and activation of

chemokines is one of the features of the inflammatory response

in the failing heart (104). The chemokine CCL2 protein is

localized to cardiomyocytes, vascular endothelial and smooth

muscle cells, interstitial fibroblasts and infiltrating leukocytes in

aortic-cavernous fistula (ACF) rats and is involved in the

progression of myocardial dysfunction and HF in ACF rats,

with a positive correlation between its expression and the

severity of congestive heart failure (CHF) (8). In addition, it is

possible that CCL2 myocardial damage, fibroblastic remodeling,

and malfunction by stimulating the recruitments of

proinflammatory leukocytes in the failing heart (104). In a left

ventricular pressure overload model, CCL2-mediated
Frontiers in Immunology 06
macrophage aggregation acted on myocardial fibrosis via a

TGF-b-mediated process. Neutralization of CCL2 inhibited

macrophage aggregation, TGF-b induction, and fibroblast

proliferation, while attenuating diastolic dysfunction and

reducing myocardial fibrosis (12). The desmin-deficient mice

(des-/-) is a progressive HF model characterized by galectin-3

overexpression, a spontaneous inflammatory response that

maintains fibrosis, and cardiomyocyte death. This model is

accompanied by macrophage infiltration and upregulation of

the deleterious macrophage-associated genes CCR2 and Arg1.

During the development of des-/- cardiomyopathy, Galectin-3

deficiency downregulated CCR2, Arg1 and pro-fibrotic gene

expression as well as amelioration of poor cardiac remodeling,

inflammation and failure (13).

In 2000, J.K. Damås et al. first demonstrated the expression

and protein localization of chemokines and their receptor genes

in the human myocardium (14). Activated platelets significantly

inhibit the release of CCL2 from human umbilical vein
TABLE 2 Continued

Drug Target Conditions Stage NCT number/
References

Cenicriviroc CCR2, CCR5 Primary Sclerosing Cholangitis
Prediabetic State, T2DM
HIV
Non-alcoholic Steatohepatitis (NASH)
COVID 19

I/II/III NCT02653625
NCT02330549
NCT01827540
NCT03517540
NCT04593940

CNTX-6970 CCR2 Chronic Pain, Nociceptive Pain
Knee Osteoarthritis

I/II NCT03787004
NCT05025787

GSK1344386B CCR2 Atherosclerosis Pre (85)

INCB-3284 CCR2 Rheumatoid Arthritis (RA), T2DM I/II (86, 87)

INCB-3344 CCR2 Atherosclerosis, Diabetic nephropathy
Chronic inflammatory diseases

Pre (88–90)

INCB-8696 CCR2 Multiple sclerosis (MS), Lupus I (86)

INCB-8761 CCR2 Metastatic Pancreatic Ductal Adenocarcinoma
Osteoarthritis
Chronic Hepatitis C

II NCT02732938
NCT00689273
NCT01226797

JNJ-17166864 CCR2 Allergic Rhinitis II NCT00604123

JNJ-27141491 CCR2 MS Pre (91)

JNJ-41443532 CCR2 T2DM II NCT01230749

MK-0812 CCR2 MS
Arthritis, Rheumatoid

II NCT00239655
NCT00542022

PF-04634817 CCR2, CCR5 Renal Insufficiency
Diabetic Nephropathy
Macular Edema, Diabetic

I/II NCT01791855
NCT01712061
NCT01994291

PQ50 CCR2 Critical Limb Ischemia II NCT01232673

RAP-103 CCR2, CCR5, CCR8 Diabetic neuropathic pain Pre (92, 93)

RO5234444 CCR2 T2DM Pre (94)

RS102895 CCR2, Human ADRA1A, Human ADRA1D, Rat HTR1A Diabetic nephropathy,
Ischemia/reperfusion injury, Hypertension

Pre (95–97)

RS504393 CCR2, Human ADRA1A, Human ADRA1D, Rat HTR1A Hypertension, Cardiac Hypertrophy
Pain

Pre (31, 98, 99)

SSR150106 CCR2 RA II NCT00545454

TLK-19705 CCR2, CCR5 Atherosclerosis Pre (100)
Diabetic nephropathy is one of the most important comorbidities in diabetic patients.
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endothelial cells in a CD154 dependent manner (15). Serum

CCL2 levels were measured in 50 CHF patients and showed that

serum CCL2 levels were substantially elevated in patients in

CHF compared with health controls and were positively related

to the seriousness of symptoms as well as the degree of left heart

insufficiency (15). CCL2 is significantly correlated with poor

prognosis in patients with advanced HF (16).
CCL2-CCR2 axis with atherosclerosis
and coronary artery atherosclerotic heart
disease

Atherosclerosis underlies the underlying pathophysiology of

several cardiovascular diseases. The pathogenesis of

atherosclerosis is complicated, and a great deal of data

indicates that inflammation has an essential role in the

occurrence and progression of atherosclerotic disease (105).

CCL2-induced migration of monocytes to the vessel wall is a

key activity contributing to the development of atherosclerosis.

In this process, NF-kB was involved in regulating the expression

of CCL2 (17). As early as 1991, it was found that CCL2

expression was more readily detected in different regions of

atherosclerotic plaques compared to normal vessels (18). TNF-a,

IFN-g and mixed lymphocyte culture supernatants were all

demonstrated to stimulate the production of CCL2 (18). In

contrast, lack of CCL2 decreased the atherosclerosis of low-

density lipoprotein receptor-deficient mice (19). CCR2 was

identified as a genetic determinant of atherosclerosis in mice

(20). Selective deletion of CCR2 significantly decreased

atherosclerotic lesion formation and reduced macrophage

accumulation in plaques in ApoE knockout (Apoe-/-) mice

(20). Lipid-laden foam cells are a hallmark of atherosclerosis

(106). Under the action of the CCL2-CCR2 axis, circulating

monocytes are recruited to atherosclerotic plaques and

differentiate into macrophages, which proliferate, become foam

cells, and orchestrate the inflammatory response (107). All these

evidences suggest that CCL2-CCR2 is closely associated with

atherosclerotic heart disease (Figure 3A).

Recently, a team studied atherosclerotic plaques in 1199

patients treated with endarterectomy for carotid stenosis. It was

found that CCL2 of human atherosclerotic plaques was

significantly related to plaque vulnerability characteristics, as

evidenced by the fact that CCL2 levels were correlated with

plaque matr ix turnover , pro- inflammatory plaque

characteristics, plaque vulnerability pathological histological

features, clinical plaque instability, and perioperative vascular

events 30 days after plaque removal. This large-scale human

study expands earlier epidemiological, genetic, as well as

experimental research (21). However, consistent with our

recognition that cross-sectional studies do not allow for causal

inference, this study cannot explain the cause-and-effect role of

CCL2 in human atherosclerosis. Significantly, another two-
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sample Mendelian randomization study explored this causal

relationship, showing that higher circulating CCL2 levels were

related to a greater degree of risk for ischemic stroke, especially

large artery stroke, as well as coronary artery disease and

MI (22).

Ischaemic heart disease is the major reason for death worldwide

(1). Although the rational use of drugs and advances in reperfusion

therapy have significantly reduced acute mortality after MI in

patients, they have put patients who survive at greater risk of

developing chronic heart failure (CHF) (108). The adult

mammalian heart is virtually incapable of regeneration and

inflammation-driven scar formation contributes to the repair of

the infarcted heart (109). Excessive or insufficient acute

inflammation after MI plays a key role in the process of

ventricular remodeling (110, 111). Studies have shown that

chemokines regulate the serial mobilization of immune cell subsets

in the infarcted heart, with CC chemokines (e.g., CCL2) mediating

monocyte recruitment (109, 112) (Figure 3B). Knockdown of CCR2

reduces the recruitment of Ly-6Chigh monocytes to the infarct site,

alleviates infarct inflammation, and inhibits post-infarction

myocardial left ventricular remodeling, thereby promoting

myocardial infarct healing (23). In addition to the widely

recognized role of monocyte chemotaxis, CCL2 is also involved in

regulating the phenotype and activity of monocytes. CCL2-/- mice

have significantly reduced levels of goat antibone bridge protein

(OPN)-1 expression in infarct-zone macrophages, decreased

activation of macrophages and infiltration of myofibroblasts.

These mechanisms, while attenuating left ventricular remodeling

after MI, are accompanied by a prolonged inflammatory phase, a

impaired phagocytosis of damaged cardiomyocytes and late

replacements of injured cardiomyocytes by sarcomeres, among

other undesirable consequences (24). Interestingly, although the

results of many MI animal experiments showed that disruption of

the CCL2/CCR2 axis reduced myocardial infarct size (25, 113), not

all studies had the same conclusion. The percentage of infarct area in

transgenic mice with cardiomyocyte-specific overexpression of

CCL2 was lower than in normal controls after ischemia/

reperfusion. Cardiomyocyte overexpression of CCL2 resulted in

chronic infiltration and activation of leukocytes, which led to

increased secretion of TNF-a and activation of SAPK/JNK1/2,

ultimately achieving cardioprotective effects through activation of

MAPKs (26). In addition, myocardial CCL2 overexpression

prevented left ventricular dysfunction and remodeling after MI by

inducing infiltration of macrophages, secretion of myocardial IL-6,

accumulation of myocardial fibroblasts, and neovascularization (27).
CCL2-CCR2 axis and hypertension

Hypertensive disorders are responsible for a variety of

serious complications including hypertensive heart disease,

stroke and renal failure. The inflammatory response in the

arterial wall contributes to the occurrence and maintaining of
frontiersin.org

https://doi.org/10.3389/fimmu.2022.975367
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.975367
hypertension (114). CCL2 is considered to be an essential

mediator of the inflammatory response in the arterial vascular

system.The CCL2/CCR2 axis has been shown to play a critical

role in vascular inflammation, vascular remodeling, and vascular

hypertrophy via monocyte infiltration and macrophage

recruitment in a mouse model of hypertension (10, 28).

Angiotensin II (Ang II) directly stimulated the expression of

the CCL2 gene in the vascular system via the Ang II type-1 (AT1)

receptor (29). CCL2 expression was significantly elevated in the

aortic tissue of animals suffering from hypertension after Ang II

injection (115). CCR2 played a crucial role in macrophage

infiltration, vascular hypertrophy, inflammation and

remodeling in animal models of Ang II-induced hypertension.

Hypertension-induced infiltration of arterial wall macrophages

was almost abolished and vascular hypertrophy was significantly

decreased in CCR2-deficient mice (10). Ang II-induced

inflammation and remodeling of blood vessels was

significantly attenuated in CCR2-/- mice and bone marrow-

transferred mice with a leukocyte-selective CCR2 deficiency

(BMT-CCR2-/-) (28). In clinical practice, serum CCL2 was

measured in 740 hypertensive patients, and soluble CCL2 was

observed to be increased in hypertensive patients and correlated

with the extent of organ injury (30). In addition, the expression

of CCR2 was elevated on the surface of monocytes in

hypertensive patients and decreased after treatment by Ang II

receptor blockers (28).

CCL2-CCR2 plays an instrumental part in the progression of

experimental hypertensive kidney damage. Enhanced CCL2-

CCR2 signaling pathway exacerbated renal injury in patients

with salt-sensitive hypertension (31). Lack of CCL2 ameliorated

renal cortical atrophy and reduced the number of infiltrating
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monocytes as well as CCR2, CD206, CCL5, CCL7 and CCL8

expression, thereby preventing chronic kidney injury in mice

with renal vascular hypertension (32). Blockade of CCR2 using

the CCR2 antagonist RS102895 prevented renal leukocyte

infiltration early after a high salt diet and attenuated salt-

sensitive hypertension and renal injury, thus CCL2-CCR2 is

considered a prospective pathway to alter renal leukocyte

infiltration and lead to salt-sensitive hypertension (33).
CCL2-CCR2 axis and myocardial disease

Features by inflammatory cell infiltration of the heart and

subsequent deterioration of its function, myocarditis is an

important factor in chronic dilated cardiomyopathy (DCM),

acute HF and sudden death (116). The expression of CCL2 was

raised in the heart and serum of rats with experimental

autoimmune myocarditis (EAM) from the acute to the

recovery phase, which was highly correlated with the

expression levels of TNF-a, IL-1b and IL-6 (34, 35).

Regulation the inflammatory infiltration of EAM by adjusting

CCL2 expression through Act1/TRAF6/TAK1 is one of the

pathological mechanisms of myocarditis (36). In vivo blockade

of CCL2 activity reduced the severity of CVB3-induced

myocarditis, and the main mechanism may be related to

effective inhibition of chemotaxis and reduction of systemic

and local Th1 immune responses (37). EAM mice lacking

CCR2 have decreased myocarditis severity (38). siRNA

silencing of CCR2 (SiCCR2) decreased the number of Ly6Chigh

monocytes and migration of bone marrow granulocyte

macrophage precursor cells to the blood in the hearts of mice
FIGURE 3

Role of the CCL2-CCR2 axis in cardiovascular disease. The CCL2-CCR2 axis fosters monocyte mobilization from the bone marrow and recruits
circulating monocytes to the site of the lesion. In plaques, monocytes are differentiated to macrophages, which proliferate, become foam cells,
and coordinate the inflammatory response (A). In infarcted myocardial tissue, monocytes are recruited and differentiated into macrophages that
influence MI disease progression (B). In hypertension, monocytes infiltrate into the vascular adventitia, perivascular fat, heart, kidney, and brain,
and are involved in elevated blood pressure and end-organ damage (C). In cardiomyopathies (dilated cardiomyopathy as an example),
monocytes infiltrate and differentiate into macrophages in the damaged myocardium and participate in the development and progression of
cardiomyopathies (D). This figure was created with BioRender.com.
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with acute autoimmune myocarditis, prevented macrophage

magnetic resonance imaging enhancement, and improved

ejection fraction (11). In clinical studies, elevated CCL2 levels

at first occurrence in patients with acute myocarditis were

dramatically related to severity of disease and prognosis. This

was demonstrated by significantly higher serum CCL2 levels in

patients with acute myocarditis on admission than in healthy

volunteers and significantly higher serum CCL2 levels in

patients who died of acute myocarditis than in surviving

patients (34). Cardiac tissue biopsy samples from patients with

myocarditis were enriched for CCR2+ cells and had elevated

CCL2 and CCR2 mRNA expression compared to control

specimens obtained from individuals dying from trauma with

no history of cardiac disease (11).

DCM is the most common non-ischemic cardiomyopathy

leading to HF. CCL2 expression is upregulated in late stages of

DCM and negatively correlates with left heart function, a

mechanism that may lead to cardiomyocyte injury through

infiltration and activation of monocytes (39). Targeting CCR2

to downregulate its protein expression inhibited the

mobilization of Ly6Chigh monocytes in the bone marrow,

thereby improving cardiac systolic functions as well as

reducing ventricular remodeling in mice with DCM caused by

low doses of adriamycin (DOX) (40). Levels of CCL2 were also

dramatically increased in the serum and myocardium of patients

with hypertrophic cardiomyopathy (HCM) and were related to

left ventricular systolic dysfunction (41).

Arrhythmogenic cardiomyopathy (AC) is a hereditary

disease described by arrhythmias, fibrosis and cardiac

dilatation. AC is a primary disease of the myocardium that

can cause cardiac sudden death as well as HF (117). The

pathogenesis of AC is currently not well defined. It was

revealed that particular immune cell groups along with

chemokine expression profiles regulate inflammatory and

reparative processes during the whole course of AC

progression. Among them, CCL2 and CCR2 mRNA are

upregulated during disease onset, acute and chronic phases,

and the early phase of AC is accompanied by a reaggregation

of CCR2+ inflammatory monocytes to the heart (42).
Drug studies based on the CCL2-
CCR2 axis for the treatment of
cardiovascular diseases

Preclinical studies

Drugs targeting CCL2
11K2 is an inhibitory monoclonal antibody with high affinity

for human CCL2 and a convenient cross-reactivity with mouse

CCL2 and CCL12. In the presence of 11K2, ApoE-/- mice show a

reduction in plaque area, a decrement in macrophage and
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CD45+ cell numbers, and an improvement in collagen content,

resulting in a consistent plaque phenotype (118).

Bindarit (BIN), a small molecule with anti-inflammatory

activity in a variety of inflammatory diseases, selectively

inhibited the production of CCL2, CCL7, and CCL8 which

played an important role in the homeostatic localization and

transport of immune cells (119). The inhibition of chemokines

by BIN was probably achieved by interfering with the classical

NF-kB pathway (120). Furthermore, in a mouse model of

lipopolysaccharide-induced cytokine production, BIN

decreased the activity levels of both CCL2 and TNF-a (121).

BIN has been shown to be efficacious in inflammatory diseases

such as diabetes-associated periodontitis (122), neuritis (123),

osteoarthritis (124), autoimmune encephalomyelitis (125) and

acute proliferative lupus nephritis (126). Selective inhibition of

CCL2 by BIN reduced the chemotactic process of inflammation

that persisted at the site of lesions and infections (119, 120). BIN

reduced in-stent stenosis in pigs by suppressing the generation of

CCL2 (44). The mechanism of action of BIN in controlling de

novo intima formation and restenosis may be associated with

inhibition of CCL2 and CCL7 generation and induction of

smooth muscle cell differentiation in human coronary arteries

(127). However, the non-specific distribution in vivo limits the

application of BIN in atherosclerosis. A yeast-derived

microcapsule-mediated nano-drug delivery approach delivers

BIN to the interior of atherosclerotic mouse plaques,

significantly enhancing the inhibitory effect of CCL2 and

further reducing the recruitment of monocytes to

atherosclerotic plaques (128).

In addition, gene therapy strategies have opened a new

window for CCL2-CCR2 treatment of cardiovascular disease.

The CCL2 mutant 7ND with a 7 amino acid deletion at the N-

terminal end functions as a dominant-negative inhibitor of

CCL2. Monocyte activation and infiltration following arterial

injury and experimental restenosis following balloon injury and

stent placement is inhibited by 7ND gene transfer. In addition,

7ND gene transfer improved platelet stability and limited the

deve l opmen t o f e a r l y a the ro s c l e ro t i c l e s i on s in

hypercholesterolemic mice as well as the progression of pre-

existing atherosclerotic lesions (129, 130). In a similar vein,

Liehn E (45) et al. showed that the non-excited CCL2 mutant

PA508 inhibits monocyte chemotaxis or transendothelial

migration to CCL2 by competing with CCL2 to interfere with

its presentation. Although PA508 had no effect on leukocyte

sorting, levels of CCL2, nor organ function or morphology in

wild-type mice, it resulted in reduced recruitment of

inflammatory leukocytes, demonstrating specific inhibition of

the CCL2-CCR2 axis. In addition, PA508 showed good effects in

two of the most common mouse models of cardiovascular

disease. In a hyperlipidemic ApoE-/- mouse model, PA508

significantly reduced intimal plaque area and infiltration of

individual nucleated cells in mouse carotid arteries and

increased the content of vascular endothelial cells. In a
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myocardial ischemia/reperfusion mouse model, PA508

substantially decreased myocardial infarct area, monocyte

infiltration, collagen and myofibroblast levels in the infarcted

region, and protected cardiac function in mice.

Drugs targeting CCR2
RS102895 (IC50 = 360nM) and RS504393 (IC50 = 89nM) are

potent CCR2b inhibitors. In addition to CCR2, it also inhibits

human ADRA1A (IC50 = 130nM/72nM), ADRA1D (IC50 =

320nM/460nM), and rat HTR1A (IC50 = 470nM/1070nM) in

cells (131). RS102895 inhibited ischemia/reperfusion-induced

cardiomyocyte apoptosis, and pretreatment with RS102895

restored reduced cell viability after ischemia/reperfusion (95).

In addition, RS102895 blocks the infiltration of renal leukocytes

in the early stages of salt-sensitive hypertension (33) and exerts

anti-inflammatory and renoprotective effects in hypertension

(96, 132). Notably, an interesting study (133) demonstrated the

important role of circadian rhythmic leukocyte recruitment in

atherosclerosis and established the CCL2-CCR2 axis as its

modulator. A chronopharmacological treatment strategy based

on RS102895 was effective in inhibiting the development of early

atherosclerotic lesions while not affecting the inflammatory

process of microcirculation. In response to RS504393, DOCA-

salt hypertensive rats showed reduced monocyte/macrophage

infiltration and chemokine/cytokine production, decreased NF-

kB activity, and improved renal dysfunction as well as

morphological impairment (31). Early blockade of CCR2 with

RS504393 after transverse aortic constriction (TAC) reduced

CCR2+ cardiac macrophage levels, inhibited VCAM expression,

and improved late left ventricular dysfunction and cardiac

fibrosis (98).

Propagermanium (PG) is a CCR2 antagonist with high

safety and availability and is often evaluated for its therapeutic

potential as a CCR2 antagonist. Studies have shown that PG

reduces atherosclerosis in ApoE-/- mice by suppressing

macrophage infiltration (46). PG also inhibited the formation

of macrophage-mediated coronary atherosclerotic pathology in

pigs (134) and atherosclerotic lesions in rabbits with Watanabe

heritable hyperlipidemia development (135). Similar to PG,

TLK-19705 (IC50 = 700 nM)also blocks the CCL2/CCR2

signaling pathway. Continuous administration of TLK-19705

over 8 weeks dramatically decreased the area of atherosclerotic

lesions in ApoE-/- mice (100). Nevertheless, not all CCR2

inhibitors are therapeutically effective. INCB-3344 is a potent

CCR2 antagonist with IC50 values of 9.5 nM (mCCR2), 5.1 nM

(hCCR2) for antagonistic binding activity and 7.8 nM (mCCR2),

3.8 nM (hCCR2) for antagonistic chemotactic activity (136).

Blockade of CCR2 with INCB-3344 did not affect atherosclerotic

lesions although it caused a dramatic reduction of Ly-6Chi

monocyte subpopulations in the blood of ApoE-/- mice (88).

Similarly, GSK1344386B failed to affect total atherosclerotic

lesion size although it blocked accelerated monocyte

recruitment and macrophage infiltration in an atherosclerotic
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recognition of receptors other than CCR2. It was reported that

PG selectively inhibited not only CCL2-induced chemotaxis but

also CCL7-induced monocyte migration by targeting GPI-

anchored proteins that are closely related to CCR2 (137).

TLK-19705 inhibited CCL4-induced chemotaxis of human

peripheral blood mononuclear cells, a chemokine that signals

through CCR5 (138).

Other drug studies affecting the CCL2-CCR2
axis

Several drugs with broad therapeutic targets have been found

to act on the CCL2/CCR2 axis to treat cardiovascular disease.

There is growing evidence that the sodium-glucose co-

transporter protein 2 (SGLT2) inhibitor, empagliflozin,

contributes to the treatment of cardiovascular disease, while

reducing HF and cardiovascular mortality among inpatients

(139–142). Recent findings showed that engramine

significantly downregulated the expression of cardiac

macrophage markers Itgax and CCL2, increased the expression

of MRc1, decreased the infiltration rate of cardiac macrophages

in mice, and improved myocardial structural and cardiac

function abnormalities induced by chronic hypercortisolism in

mice (143). Many anesthetics have been reported to show

cardioprotective effects in clinical practice (144–146).

Diazepam is a local anesthetic that is rapidly distributed in the

liver, kidneys, lungs, brain, heart and small intestine (147) and

has shown cardioprotective potential in a series of studies (148,

149). Diazepam pretreatment effectively decreases the release of

proinflammatory cytokines ILs and TNF-a, the expression of

CCR2 chemokines, and inhibits oxidative nitrosative stress and

apoptosis in myocardial ischemia-reperfused rats, which exerts

cardioprotective effects. MicroRNAs (miRs) are small non-

coding RNAs that participate in post-transcriptional gene

modulation and are critical for cell differentiation, homeostasis

and animal development (150, 151). Different miRs have been

reported to regulate the formation and progression of

atherosclerotic plaques by regulating phagocytosis, and are

considered as potential targets of molecules for anti-

atherosclerotic therapy (152). Among them, miR-146a and

miR-181b effectively inhibited the CCL2, CCL5, CCL8 and

CXCL9 as well as monocyte adhesion to endothelial cells by

targeting E-selectin, which reduced the size of atherosclerotic

plaques and improved endothelial inflammation and

atherosclerosis (153).

In addition, some herbal compounds can also exert

therapeutic effects on cardiovascular diseases by affecting the

CCL2-CCR2 axis. Fufang Zhenzhu Tiao Zhi (FTZ) formula is a

traditional herbal remedy for the treatment of disorders of

glucose and lipid metabolism (154). FTZ can reduce serum IL-

12 and CCL2 levels and cardiac IL-12, IL-6 and CCR2 mRNA

levels in streptozotocin-induced diabetes and improve

streptozotocin induced diabetic cardiomyopathy (155). Gui
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Zhi Tang can reduce the levels of IL-6, CCL2, IL-1b, MMP2, and

MMP9 in Dahl salt-sensitive rats, reducing the area of

myocardial fibrosis and exerting antihypertensive effects (156).

Network-based pharmacology to explore the molecular targets

of the action of Wenxin Keli (WXKL) in the treatment of atrial

fibrillation, it was found that these targets were closely related to

inflammatory response, oxidative stress response, and immune

regulation, and CCL2 was one of the main targets of its action

(157). Bioinformatics analysis suggests that hemiphilin injection

may exert a potential protective effect against neocoronary

pneumonia , e spec ia l l y COVID19- induced card iac

insufficiency, by targeting seven Hub genes, including CCL2

and CXCL8, to inhibit oxidative stress, prevent atherosclerotic

plaque formation, and suppress inflammation and

apoptosis (158).
Clinical studies

Clinical trials targeting the CCL2-CCR2 axis
Although pharmacological studies targeting the chemokine

signaling pathway have been extensive, there are currently only

three marketed drugs based on the chemokine signaling pathway

(9, 159). The extensive actions of chemokines in damage and

repair make chemokine-based clinical translation challenging.

Despite the remarkable efficacy of BIN in cellular and animal

models for coronary atherosclerotic heart disease mentioned

above, few clinical studies have been conducted around BIN.

Results from a phase II trial showed that BIN was well tolerated

and may have a protective effect on the vessel wall after

angioplasty, but this study did not meet the primary endpoint

and was considered a negative study (48). The clinical efficacy of

BIN in the treatment of cardiovascular disease remains to be

further validated.

MLN1202 is a monoclonal antibody designed to interact

with CCR2 and inhibits CCL2 binding in a highly specific

manner. A phase II trial of MLN1202 showed a substantial

decrease in circulating levels of highly sensitive C-reactive

protein in patients with atherosclerotic cardiovascular disease

after 4 weeks of treatment with MLN1202, which lasted for 8

weeks. However, the study was limited in size and insufficient to

stratify baseline covariates that might confound the results (47).

In addition, no phase III trials of this project have been reported.

Other relevant clinical studies affecting the
CCL2-CCR2 axis

Colchicine is a novel and complex anti-inflammatory agent

which has been documented in medical literature as early as

approximately 1550 B.C (160). In the past few years, several

clinical trials have evidenced the function of colchicine in

cardiovascular disease (161–163). In 2019, Tucker et al. (164)

reported firstly the effect of colchicine on transcoronary (TC)
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chemokine levels in acute coronary syndrome (ACS) patients. In

this open-label clinical trial, 13 patients with stable angina

pectoris (SAP) and 12 patients with ACS were treated with

colchicine, while 13 additional patients with ACS did not receive

treatment. According to the results, CCL2 and CX3CL1 levels

were elevated in patients with ACS compared with patients with

stable coronary artery disease, and TC levels of serum CCL2,

CCL5, and CX3CL1 were significantly reduced by colchicine

treatment in patients with ACS. In addition, colchicine inhibited

the expression of CCL2 gene in monocytes isolated from healthy

donors. The above results suggest that colchicine inhibits the

expression of chemokines such as CCL2 in patients with ACS,

thereby suppressing the migration of monocytes. However, only

38 patients were included in this study, and further large-scale

clinical trials are required to demonstrate the mechanism of

action of colchicine based on the CCL2 pathway in the treatment

of cardiovascular disease.
Discussion

Cardiovascular disease is closely related to inflammation,

and recently, significant progress has been made in studies

related to inflammation-based treatment of cardiovascular

disease. Unlike canakinumab (5) and colchicine (6), which

were effective in reducing the inflammatory response to

cardiovascular disease, in a Cardiovascular Inflammation

Reduction Trial involving 4786 patients at high risk for

cardiovascular events, low-dose methotrexate did not reduce

cardiovascular risk in patients (165). The results of these trials

emphasize the importance of selecting the appropriate anti-

inflammatory pathway and drug candidates in the treatment

of cardiovascular disease.

Studies on animals have largely suggested that the CCL2-

CCR2 axis is involved in disease processes.CCL2 and CCR2

knockout mice provide convincing evidence for a role of the

CCL2-CCR2 axis in monocyte chemotaxis and inflammation

(166, 167). A wealth of genetic, epidemiological and

experimental data supports the causality of the CCL2-CCR2

axis in cardiovascular disease. Although pharmacologic targets

for the CCL2-CCR2 axis in pre-clinical model of cardiovascular

disease have been highly effective, clinical outcomes based on the

CCL2-CCR2 axis for the treatment of cardiovascular disease have

been disappointing to date (Table 3). This may be associated with

the complexity of the CCL2 and CCR2 molecular structures, the

difficulty in choosing the best target between CCL2 and CCR2, the

confounding of the CCL2-CCR2 axis, the physiological circadian

variation, and the somatic side impacts of CCL2-CCR2-targeted

macromolecules (9). It is clear that these issues must be considered

to achieve further breakthroughs in clinical applications.

Therefore, more in-depth mechanistic studies and clinical

studies in larger cohorts are needed before we can successfully
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design CCL2-CCR2-targeted therapies to significantly alleviate

cardiovascular disease.

In conclusion, a wealth of animal and human research has

provided evidence that the CCL2-CCR2 axis is important in the

progression of cardiovascular disease, and the success of

pharmacological targeting studies of the CCL2-CCR2 axis holds

promise for a gradual transition to clinical trials. Although the

CCL2-CCR2 axis-based treatment of cardiovascular disease may

not immediately impact cardiovascular disease therapeutic practice,

it does open the door for clinical translation of chemokines and

their receptor modulators. More in-depth mechanistic studies and

larger cohorts of clinical research directed at the CCL2-CCR2 axis

will suggest new approaches for improving the prevention and

treatment of cardiovascular disease.
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TABLE 3 Drug studies targeting the CCL2-CCR2 axis for the treatment of cardiovascular disease.

Drug Type of
drug

Target Nature of action Conditions Stage NCT number/
References

11K2 Monoclonal
antibody

CCL2, CCL12 CCL2/CCL12 inhibitory antibody Atherosclerosis Pre (118)

Bindarit Small molecule NF-kB CCL2/CCL7/CCL8 inhibitor Atherosclerosis,
Coronary stent restenosis

Pre
II

(44, 127, 128)
NCT01269242

7ND Recombinant
CCL2 variant

CCL2 CCL2 Dominant-negative inhibitor Atherosclerosis,
Experimental restenosis,
Vascular remodeling after
injury

Pre (129, 130)

PA508 Recombinant
CCL2 variant

CCL2 CCL2 competitor Atherosclerosis,
Myocardial ischemia/
reperfusion injury

Pre (45)

RS102895 Small molecule CCR2,
Human ADRA1A, Human
ADRA1D,
Rat HTR1A

CCR2/Human ADRA1A/Human
ADRA1D/Rat HTR1A antagonist

Ischemia/reperfusion
injury, Hypertension

Pre (33, 95, 96, 132)

RS504393 Small molecule CCR2,
Human ADRA1A, Human
ADRA1D,
Rat HTR1A

CCR2/Human ADRA1A/Human
ADRA1D/Rat HTR1A antagonist

Hypertension,
Cardiac Hypertrophy

Pre (31, 98)

Propagermanium Organometallics GPI‐anchored proteins
associated to CCR2

CCR2 inhibitor Atherosclerosis Pre (46, 134, 135)

TLK-19705 Small molecule CCR2, CCR5 CCR2/CCR5 antagonist Atherosclerosis Pre (100)

INCB-3344 Small molecule CCR2 CCR2 antagonist Atherosclerosis Pre (88)

GSK1344386B Small molecule CCR2 CCR2 antagonist Atherosclerosis Pre (85)

MLN1202 Monoclonal
antibody

CCR2 CCR2 inhibitory antibody Atherosclerosis II NCT00715169
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