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The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In
this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a
phenotypic version of the classic Eigen’s model that incorporates beneficial, neutral, deleterious, and lethal
mutations. By parameterizing the model with available experimental data on the DMFE of Vesicular
stomatitis virus (VSV) and Tobacco etch virus (TEV), we found that increasing mutation does not totally
push the entire viral quasispecies towards deleterious or lethal regions of the phenotypic sequence space. The
probability of finding regions in the parameter space of the general model that results in a quasispecies only
composed by lethal phenotypes is extremely small at equilibrium and in transient times. The implications of
our findings can be extended to other scenarios, such as lethal mutagenesis or genomically unstable cancer,
where increased mutagenesis has been suggested as a potential therapy.

E
igen’s model of molecular quasispecies1–3, initially conceived to explore prebiotic evolution, has played a key
role in understanding the population dynamics and evolution of RNA viruses4–7. Due to the complexity of
these pathogens, some theoretical assumptions and predictions fail to catch important properties of viral

dynamics and adaptation8. For instance, assumptions made considering simple fitness landscapes generally
predict the presence of transitions towards error threshold or extinction regimes as mutation rates increase9–11.
However, biological evolution proceeds on more complex, rugged fitness landscapes3,12,13 and, outstandingly, not
all mutations exert the same effect on viral fitness14,15.

Efforts have been made to expand the basic quasispecies theory by relaxing its original assumptions and
incorporating more virus-realistic features: fitness landscapes with multiple peaks16, neutrality and robust-
ness17,18, spatial effects10,19–21, complementation during coinfection22,23, and different modes of replication and
epistasis21,24, among others. Despite all these modeling approaches, there is still a major factor that remains poorly
explored by the standard quasispecies model: realistic distributions of mutational fitness effects (DMFE). DMFE
may exert a strong impact in the evolutionary dynamics of a large quasispecies population. Therefore, our aim in
this study is to provide a broader framework by incorporating experimentally available DMFE within quasis-
pecies evolutionary dynamics.

The fitness effects of mutations are central to evolution25–27. Several experiments quantifying the fraction of
spontaneous mutations as either selectively beneficial, neutral, deleterious or lethal have been performed in, e.g.,
Arabidopsis thaliana28, Drosophila melanogaster29,30, bacteria31, and viruses14,15,32,33. The efforts made by virolo-
gists in describing DMFE have not been mirrored by theoretical research in quasispecies populations. As yet, few
models have explicitly considered the DMFE in asexual replicators34,35, and none of them have parameterized the
standard quasispecies model with experimentally available data on DMFE. Furthermore, the impact of the DMFE
on the error threshold and how they may promote or constrain the generation of deleterious or lethal phenotypes
in a large quasispecies population (e.g., in persistently infected hosts) remains unknown.

The error threshold is a theoretical average mutation rate that sets a maximum limit for maintenance of genetic
information encoded by a replicating system36. Usually, the error threshold takes place when the pool of mutants
displaces the wild-type sequence due to increased mutation. It is important to mention that the error threshold
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implicitly depends on the fitness landscape37; e.g., for the single-peak
fitness landscape, the error threshold occurs when the homogeneous
cloud of mutants with lower fitness outcompetes the wild-type
sequence1,2,10,11. In order to introduce a more realistic fitness land-
scape into the quasispecies model, as well as to consider realistic
DMFE that determine how mutation moves the quasispecies within
this landscape, we analyze a phenotypic quasispecies mathematical
model incorporating variable mutational fitness effects (see
Figure 1).

Here, we will first investigate the impact of increasing mutation
rate on the phenotypic distributions and on the viability of the qua-
sispecies integrating available experimental data on the DMFE for
two RNA viruses: the animal pathogen Vesicular stomatitis virus14

and the plant pathogen Tobacco etch virus15. Second, we will invest-
igate the dynamics for the general model with and without pheno-
typic reversion, since we are especially interested on a detailed
analysis of the dependence of the results with respect to the model
parameters. Finally, we perform an extensive search in the parameter
space to evaluate the likeliness of finding parameter combinations
that impair the success of viral phenotypes, driving the quasispecies
towards lethal and deleterious vertices of the phenotypic sequence
space.

Results
We refer the reader to the Model and Methods section and to Section
1 in the Supplementary Information for a detailed description of the
mathematical model and, in particular, for the notation and meaning
of variables and parameters that we use in what follows.

Dynamics with realistic DMFE. First, we present results on the
model Eqs. (1) incorporating DMFE data for VSV and TEV and
considering that phenotypic reversions (via backward or
compensatory mutations) are not possible. Previous theoretical
work has assumed that the likelihood of backward mutations was
extremely small due to the length of RNA viral genomes10,19,22, while
other models have incorporated backward mutations in the
dynamics of quasispecies16,38. The case with no backward

mutations (no phenotypic reversion) can be studied in our model
by setting d 5 0 (being d the probability of phenotypic reversion in
the quasispecies, see Model and Methods section). Under our model
assumptions, together with d 5 0 and considering no production of
beneficial mutations i.e., lB ? 0 (see Model section), Eqs. (1) have
two equilibrium points (given as Q3 and Q4 in Section S4 of
Supplementary Information). When no phenotypic reversion is
allowed (i.e., d 5 0), the relevant fixed point for VSV data is given
by Q3 (see SI Section S4). This fixed point, which is an attractor under
the parameter values for VSV, can be represented for the sake of
clarity as: (x�k~~0, x�1100, x�1110, x�1101, x�1111), where k[Hn

\{1100,
1110, 1101, 1111\}, and

x�1100~sD 1{mð Þ2
�
Y,

x�1110~ 1zsBð ÞlDm 1{mð Þ=Y,

x�1101~lLmsD 1{mð Þ=Y,

x�1111~lLm 1{sDzsBð ÞlDm=Y,

with Y 5 sD(1 2 m)2 1 [(1 1 sB)lDm 1 sDlLm] (1 2 m) 1 (1 2 sD 1

sB)lDlLm2. Here sD and sB are the selection coefficients tied to
deleterious and beneficial mutations, m is mutation rate, and lD

and lL are the frequencies of production of deleterious and lethal
phenotypes during the process of replication and mutation (see
Model and Methods section for further details on the parameters
of the model). The previous equilibrium point involves the
persistence of four different sequences: x�1100, x�1110, and the lethals
x�1101 and x�1111. That is, when d 5 0 and lB . 0 (i.e., no phenotypic
reversion for VSV), 12 of the 16 different sequences of the
quasispecies will asymptotically achieve extinction, and four types
of sequences will only compose the quasispecies: a neutral mutant
with the beneficial phenotype (x�1100) and the sequence with neutral,
beneficial, and deleterious mutations (x�1110). The other two
sequences have the lethal phenotype (i.e., x�1101 and x�1111). These
results perfectly match with the time series shown in Figure S1.
Moreover, projections of the dynamics in the simplex suggest that

Figure 1 | Population structure of the phenotypic quasispecies. Sequences can carry beneficial (B), neutral (N), deleterious (D), and lethal (L) mutations

(bit 0 means non-mutated, and bit 1 means mutated). (a) Phenotypic sequence space where ball size indicates strings’ replicative fitness. The inner green

cube contains the lethal mutants. The fitness of some strings is shown on a fitness landscape with dashed arrows. The landscape has three different peaks

available through mutation: wild-type (W), beneficial (B), and deleterious (D) peaks, while the ground (light blue) indicates the lethal (L) phenotype with

zero replication. Strings x1010 and x1110 will occupy peaks W, B, or D, depending on the values of the selection coefficients sB and sD. (b) Example of

replication with mutation for string x1110, with replication rate A1110 5 1 1 sB 2 sD. Gray arrows denote mutation transitions. (c) Sequences of the

quasispecies (1st column), their phenotypes (2nd column), and their fitnesses determined by the replication rates, Ai (3rd column).
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such a fixed point is globally stable (Figure S2), which has been
confirmed analytically in SI Section S4.

The effect of increasing mutation involves the extinction of the
non-mutated genomes at equilibrium (Figure 2). Such extinction is
mainly due to outcompetition by the beneficial phenotype x1100,
which is present in the quasispecies in a wide range of mutation rates,
independently of the values of the selection coefficients sB and sD

[Figure 2(a) and (c)]. Two of the sequences found at equilibrium are
lethal mutants, but the quasispecies for VSV is mainly dominated by
the neutral mutants carrying a beneficial mutation and by sequence
x1110 in a wide range of mutation rates. The case with sB 5 0.25 and
sD 5 0.9 actually makes the sequence x1100 much more dominant in a
large range of mutational values [Figure 2(c)]. For more details on the
dynamics using VSV DMFE data see SI Section S4.

A qualitatively different dynamics is found for the DMFE data for
TEV without phenotypic reversions. Here lB 5 0 gives rise to a
different fixed point given by Q1 (see SI Section S4). For this case,
the equilibrium also consists of four sequences: x�0100, x�0110, and the
lethals x�0101 and x�0111. Similarly to VSV, the dominant sequences at
increasing mutation are the sequences with only neutral and with
both neutral and deleterious mutations. Lethal sequences become
abundant only when mutation rate is extremely high [Figure 2(b)].
Some examples of the time dynamics and phase portraits for TEV
DMFE data can be found in Figs. S3 and S4.

Interestingly, our results reveal that the fittest phenotype does not
go extinct as we might expect. The usual error threshold sets in when
m 5 1 2 [wunfit/wfit], where wunfit and wfit are, respectively, the lowest
and the highest fitnesses of the sequences39. For example, according
to this prediction, we would expect the extinction of the sequence
1100 for VSV when m . mc 5 1 2 [(1 2 0.25)/1] 5 0.25. However,
the panels (a) and (c) of Figure 2 show persistence of 1100 at this
mutation rate and higher. Hence, the simple expectation previously
defined fails. The reason for this phenomenon may be due to the fact
that the unfit subpopulation (1110) is constantly loosing members to

the lethal class (1111), and then wunfit should be weighted in the
previous calculation to include these lethal members, which might
prevent the error catastrophe.

When phenotypic reversions are allowed, i.e., d ? 0, the non-
mutated strings (i.e., wild-type string x0000) also decrease their popu-
lation density dramatically as mutation is slightly increased. This
finding is common for both VSV and TEV DMFE data. However,
such a population is maintained by keeping its equilibrium in small
populations for VSV DMFE data, i.e., x�0000 10{7, for the whole
range of mutation rates (see Figure 3 and panels (d–f) in Figure
S1). This effect also takes place for different values of the selection
coefficients but is less dramatic for TEV data, where x�0000 10{3

(Figure 3 and panels (d–f) in Figure S3). A plausible explanation
for this effect is that as TEV does not produce beneficial mutants,
competition is weaker and thus the wild-type phenotype can persist
even for high mutation rates. For VSV, however, the equilibrium
populations of the strings with the beneficial phenotype (i.e.,
sequences x1000,1100) undergo a dramatic increase for very low muta-
tion rates in all the scenarios analyzed in Figure 3. Typically, such
sequences decrease their population numbers at increasing mutation
rates (see also Figure S5). Hence, for both VSV and TEV examples,
when phenotypic reversions are allowed, no error thresholds exist at
which the wild-type sequence (and its neutral mutants) disappear
from the population. For the particular case considering phenotypic
reversion, explicit analytical approximations can be derived assum-
ing that the probability of phenotypic reversion is small (i.e., d <> 0).
We refer the reader to Supplementary Information Sections S5 and
S6 for detailed calculations.

We notice that for VSV there is an available beneficial mutation,
and since reversions are rare, both mutational and selective pressures
favor it, and all sequences at equilibrium have 1 in the first position.
Similarly, the neutral bit is favored by mutation and neutral selection;
thus every sequence has it as well. For TEV the situation is similar,
but since there are no beneficial mutations, the first bit is always 0. In
either case, this is essentially a 2-locus problem.

In the previous analyses we have considered experimental DMFE
to characterize the dynamics of Eq. (1). Since the proportion of
mutations that are effectively neutral, beneficial, and deleterious
may vary for other species, we provide analytical and numerical
results of the model as a function of all parameters, including arbit-
rary values of the DMFE, given by lk. These analyses can be found in
Supplementary Information Sections S4, S5, S6, and S7 (see also next
sections).

Exploration of the parameter space. The previous results without
phenotypic reversion reveal the existence of error thresholds shifting
the quasispecies towards beneficial, neutral, deleterious, and lethal
regions of the phenotypic sequence space in an asymmetric manner.
The error threshold has been discussed as a phenomenon causing the
loss of viral genetic information due to increased mutation19.
Actually, the error threshold is an evolutionary transition in
sequence space that can delay or even prevent extinction by
moving the population towards genotypes that are robust to
extinction40, as our results indicate, i.e., we characterized
persistence of beneficial and neutral phenotypes at equilibrium for
a wide range of mutation rates (see Figures 2 and 3).

In this context, our theoretical approach allows us to address the
following question: what is the likelihood of finding scenarios in
which genomes fail to replicate and thus the viral population is only
composed of deleterious and/or lethal phenotypes? To explore this
question, let us define three different scenarios given by a quasispe-
cies with different equilibrium population values, N*, as follows:

. Scenario (A): N* lethal mutants,
X

i[L
xi~N�, i.e., sum of the

populations of lethal sequences.
. Scenario (B): N* lethal plus deleterious mutants,

X
i[L|D

xi~
N�, i.e., sum of scenarios (A) and (C).
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Figure 2 | Impact of increasing mutation rate in the population equilibria
without phenotypic reversion. Here we use d 5 0 (i.e., no phenotypic

reversion) and DMFE data for Vesicular stomatitis virus (VSV)14 and

Tobacco etch virus (TEV)15. In (a) and (c), we display the equilibrium

populations for VSV: x1100 (black); x1110 (red); x1101 (green); and x1111

(blue). In (b) we show equilibrium populations for TEV: x0100 (violet);

x0110 (cyan); x0101 (maroon); and x0111 (dark green). For both VSV and

TEV, all other variables have zero population numbers at equilibrium. We

used: (a) sB 5 1 . sD 5 0.25; (b) sB 5 sD 5 0.5; and (c) sB 5 0.25 , sD 5 0.9.
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. Scenario (C): N* deleterious mutants,
X

i[D
xi~N�, i.e., sum of

the sequences with the deleterious phenotypes, and, if sD . sB,
adding also the sequences with both deleterious and beneficial
mutations with fitness A 5 1 1 sB 2 sD).

All our previous analyses using VSV and TEV data suggest that the
possibility to push the entire quasispecies towards lethality by
increasing mutation (scenario (A) with N*5 1) may be very unlikely
due to variable DMFE. To test the generality of this result, we per-
form an extensive search in the parameter space of Eqs. (1), which
allows us to identify those parameter combinations fulfilling scen-
arios (A), (B), and (C) for different values of N*. To do so, we use a
MonteCarlo (MC) algorithm to randomly sample the parameter
space of Eqs. (1) (see Model and Methods section). The results
obtained without phenotypic reversion are shown in Table I and in
Figure 4. We found that the mean percentage of parameter combina-
tions, Æp*æ ? 100, that push the quasispecies towards lethal vertices of
the phenotypic space is extremely small (see parameter spaces (lL, m)
and (m, lB) for scenario (A) in Figure 4). For instance, such a per-
centage is about 1.88% using N* $ 0.9. As expected, the parameter
values responsible of increasing populations of lethal sequences are
mainly those combinations involving extremely high mutation rates,
although such mutation can diminish at increasing values of lL.
However, as we display in the histogram of Figure 4, the likelihood
to push the whole quasispecies towards lethality is very small.
Specifically, the histogram displays the mean percentage of para-
meter combinations for each value of N* and scenario, averaged over
100 independent replicas, where each replica corresponds to M 5 106

iterations of the MC algorithm.
Our results also reveal that when beneficial mutations are less

common, mutation rate does not need to be so high to produce some
fraction of the population composed by lethal sequences, although
it is also very unlikely to have a quasispecies fully composed by
lethal sequences (it simply will not replicate). We also found that
the selection coefficients have a little effect in scenario (A), since no
clear pattern is shown for the different values of N* in the parameter
space projection given by (sD, sB) that is displayed in Figure 4.

Concerning to scenario (B), where we put together lethal and
deleterious genomes, the percentages of parameter combinations
pushing the whole quasispecies to this scenario is larger than for
scenario (A). For instance, the probability of finding parameter com-
binations with a quasispecies composed by N* $ 0.9 lethal plus
deleterious sequences is about 6.8%, which is still a low value.
Here, as we identified in the previous analyses, selection coefficients
do not play an important role in this scenario. Finally, the percentage
of parameter combinations pushing the quasispecies to deleterious
nodes in the phenotypic sequence space is also extremely low. We
may notice also that having a population dominated by deleterious
mutants does not imply that viral sequences will not be able to
replicate, since some of the deleterious sequences will be able to
replicate whenever sD is small. For instance, a sequence with the
deleterious phenotype will be able to replicate at a rate A 5 0.8 when
sD 5 0.2.

The exploration of the parameter space considering phenotypic
reversion reveals that the percentage of parameter combinations
driving to lethality decreases even more (see Supplementary
Information Section S7 for further details). All together, the previous
results suggest that the quasispecies is very unlikely to be driven
toward full lethality by manipulating the parameters of the model,
including mutation rates (see Figures 2–4, Supplementary
Information Section S7, and Figures S5–S7). We performed an
ANOVA test with the data displayed in Table I, taking ‘‘scenario’’
and ‘‘phenotypic reversion’’ as fixed factors, and ‘‘N*’’ as a variable
and covariable. Factor ‘‘scenario’’ had a significant effect (P ,

0.0001) with the following rank: (B) . (A) . (C). In other words,
Æp*æ was larger in scenario (B) than in (C), with (A) occupying an
intermediate position. ‘‘Phenotypic reversion’’ had a significant
effect (P 5 0.0165), with lower values of Æp*æ when phenotypic
reversion was allowed and higher when it was not allowed, meaning
that phenotypic reversion actually makes lethality much more dif-
ficult. The covariable ‘‘N*’’ also had a significant effect (P , 0.0001),
with the largest values of Æp*æ when N* is lower, indicating that the
probability of having the majority of sequences in lethal vertices was
small in this case. Of all interactions between the factors and the
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Figure 3 | Population equilibria for sequences and phenotypes at increasing mutation considering phenotypic reversion. We here consider phenotypic

reversion (d 5 1023) and DMFE data for VSV and TEV (in linear-log scale) with: (a) sB 5 sD 5 0.5 and (b) sB 5 0.25 , sD 5 0.9. In the first row we display

sequences: x0000 (black line), and the pool of mutants in red lines (except for strings x0100 (dotted red line), x1000 (dashed red line); and x1100 (blue line)).

For clarity, phenotypes in the second row are grouped as follows: sequences x0000 plus x0100 (wild-type, W, in black); x1000 plus x1100 (beneficial, B, in

green); x0010 plus x0110 (deleterious, D, in blue); and lethal (L, in red) with the sum of all sequences with bit 1 in the last position; and x1010 plus x1110

(sequences with beneficial and deleterious mutations, in violet). Sequences x1010 and x1110 can be included in phenotypic classes W, B, or D, depending on

the values of the selection coefficients [i.e., sD 5 sB (W), sD , sB (B), and sD . sB (D)].
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covariable, the only significant one was ‘‘scenario’’ 3 ‘‘N*’’ (P ,

0.0001), meaning that differences between scenarios are bigger for
small N* than for large values of N*.

The previous estimations of the percentages of parameter combi-
nations pushing the quasispecies towards population values N* for
scenarios (A), (B), and (C) were computed at equilibrium. But, how
do these probabilities behave in transient time? To answer this ques-
tion, we performed similar analyses for N(t) instead of N*. That is, we
used the MC algorithm to quantify the fraction of parameter combi-
nations involving different population values for scenarios (A), (B),
and (C) at a given time, t (we used t 5 102, t 5 103, and t 5 104). This
strategy allows us to explore the likelihood of these scenarios taking
place also during transients. The results, displayed in Supplementary
Information Table S1, revealed that such percentages are indeed
smaller during transients, especially when d 5 0. For instance, the
probability of finding parameter combinations that push the quasis-
pecies towards scenario (A) considering N(t 5 100) $ 0.9, is Æp(t)æ <
0.0066, which is approximately 3-fold lower than the same probabil-
ity computed at equilibrium. As expected, such probabilities get close
to the probabilities computed at equilibrium for larger values of time.
Similar results were found for scenarios (B) and (C) (see
Supplementary Information Table S1).

The ANOVA of data from Table S1, found a net effect of time (P ,

0.0001): time has a different behavior for each scenario (P , 0.0001).
For scenario (A), Æp(t)æ for the first evaluated time (i.e., t 5 102) is
significantly lower than for the other two scenarios, which remain the
same. In scenario (B), this difference was even smaller, and in (C) this
difference was not found. These data indicate that for t 5 102 the
convergence to equilibrium in scenario (A) has not been reached and
thus the system is in the transient state, but for scenarios (B) and (C)
the system is almost at equilibrium. We notice that the values of Æp(t)æ
displayed in Table S1, are typically lower in transient time, meaning
that the probability of pushing the quasispecies toward lethal vertices
of the phenotypic sequence space is smaller during the transient time,
although such values closer to equilibrium also remain very small,
specially for large values of N(t).

Transient regimes as a function of d and other parameters. We are
particularly interested in the effect of the probability of phenotypic
reversion, d, on transient times (see Model and Methods section).
Our results indicate that the smaller d the longer is the time needed to
approach the fixed point at the given distance g. This time depends
on two things: the component of the initial data in the eigenvector of
the matrix A in the direction of x* and on the eigenvalue of DF(x*)

closest to zero. As discussed in Supplementary Information Section
S5, the smaller is d the closest is the eigenvalue to zero and, hence, the
required time is larger.

It is worth to remark that the fraction of M* for which the approxi-
mation to distance g to x* is not produced at the final integration time
tmax is extremely small: around 0.00002 for d 5 1023 and increases to
0.00022 for d 5 0.

Figure S8(left) shows the results using M* 5 108 and g 5 1023 for
the values d 5 1023, 1024, 1025, 1026, 1027, and d 5 0, from left to
right. On the horizontal axis t is represented in log10 scale. The value
of tmax is set equal to 108.

What happens if g is reduced? Of course, the transient time, until
the distance to x* is less than g, will increase. To illustrate this fact we
reproduce in Figure S8(right) the same curves in the left plot for d 5

1023, 1025 and 0 for g 5 1023 (in red) and we show the corresponding
curves for g 5 1026 in blue. We see that in the first two cases the
curves shift a little to the right, while in the d 5 0 case they shift by a
large amount. The computations for g 5 1026 use again tmax 5 108

but M* is reduced to 106.
Now, while for d 5 1023 still only a small fraction, around 0.00005,

of cases do not approach x* at the distance g at the maximum time,
this fraction increases dramatically to 0.076 for d 5 0.

According to the theory developed in Supplementary Information
Sections S4 and S5, if d . 0 is small the final approach to x* is of the
form exp(2cd1/2) where c is the coefficient of d1/2 in Eq. (33) of the
Supplementary Information. On the other hand, for d 5 0 the
approach to x* is like a constant divided by t.

From the data which allow to produce Figure S8 (right), one can
compute, by Lagrange interpolation, the values of t for different
values of Q(t). We have selected values of Q(t) of the form 0.1 k, k
5 1, …, 9. Let t1 be the value of t when g 5 g1 5 1023 and t2 the one
for g 5 g2 5 1026. For d . 0 the decrease of g should satisfy,
approximately,

g2~g1 exp {cd1=2 t2{t1ð Þ
� �

:

The value of c depends on the average value of the random para-
meters and also on the value of Q(t).

Hence, the decrease of d1/2 by a factor of 10 should be compensated
by an increase of t2 2 t1 also by a factor of 10. This is shown in Figure
S9. The red and blue curves show log10(t2 2 t1) for different values of
Q(t). The differences are very close to 1, as expected. On the opposite
case, d 5 0, the green curve shows log10(t2/t1). It is almost exactly
equal to 3, in perfect agreement with the fact that log10(g2/g1) 5 23.

Table I | Statistics obtained from the MonteCarlo (MC) exploration of the parameter space of Eqs. (1). For d 5 0 (no phenotypic reversion)
and for d . 0 (phenotypic reversion), we computed the mean percentage (6SD) of parameter combinations, Æp*æ ? 100, pushing the
quasispecies towards scenarios (A), (B), and (C) for different population equilibria, N*. Each data value was averaged over 100
independent replicas, and, for each replica, we ran M 5 106 MC iterations. The same data represented in histograms for d 5 0 and d .

0 are displayed, respectively, in Figure 4 and Figure S6(b)

No phenotypic reversion (d 5 0) Phenotypic reversion (d . 0)

Scenario $N* Æp*æ ? 100 6SD Æp*æ ? 100 6SD

(A) $0.6 10.7471 0.0031 7.3394 0.0272
$0.7 7.1483 0.0026 4.0553 0.0212
$0.8 4.2387 0.0019 1.7490 0.0124
$0.9 1.8815 0.0012 0.3808 0.0064

(B) $0.6 23.7100 0.0039 20.27 0.0422
$0.7 17.5503 0.0036 14.161 0.0352
$0.8 12.1097 0.0031 8.544 0.0264
$0.9 6.8064 0.0024 3.478 0.0183

(C) $0.6 3.3089 0.0018 3.0518 0.0154
$0.7 1.4216 0.0012 1.148 0.0103
$0.8 0.4308 0.0006 0.2547 0.0048
$0.9 0.0572 0.0002 0.0145 0.0011
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Figure 4 | Exploration of the parameter space of Eqs. (1) without phenotypic reversion (i.e., d 5 0). We plot two-dimensional parameter space

projections using M 5 106 iterations of the MonteCarlo (MC) algorithm displaying parameter values pushing the quasispecies towards scenarios (A), (B),

and (C) for different population equilibria, N*: N* $ 0.6 (cyan), N* $ 0.7 (violet), N* $ 0.8 (yellow), and N* $ 0.9 (maroon). Note that N* $ x*

includes all values of y* . x* (e.g., N* $ 0.6 includes all other N* values analyzed). The histogram displays the mean percentage of parameter

combinations, Æp*æ ? 100, with Æp*æ 5 Æc(N*)/Mæ, fulfilling scenarios (A), (B), and (C) for the investigated values of N* (using the same colors for each

value of N* previously described). Each bar was computed over 100 independent replicas of the MC algorithm (each replica run for M 5 106 iterations),

standard deviation (SD) not shown (see Table I below).
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Summarizing, this analysis and numerical checks allow obtaining
good indications on the rate of approach to the fixed point.

Discussion
In this article we have extended Eigen’s quasispecies model using a
phenotypic description of the quasispecies that considers variable
distributions of mutational fitness effects (DMFE), which are known
to be crucial to RNA virus evolution25,26. Although the DMFE has
been experimentally quantified for several viruses14,15,32,33, previous
theoretical models34,35 have not deeply analyzed the effect of the
DMFE in persistently infected hosts. Moreover, none of them
included these experimental data in the standard quasispecies model.
Here we intend to cover this gap, paying special attention to the
interplay between the DMFE and mutation in possible deleterious
or lethal scenarios in large viral quasispecies populations. The inter-
est in characterizing the effects of artificially-increased mutation
(mutagenesis) in viral replicators comes from the fundamental pre-
diction of the classic quasispecies theory1,2: error-prone replicators
have a limited tolerance to mutations, beyond which an error cata-
strophes takes place and the genetic information is lost. Several mod-
els have shown that when mutation rate is increased, the population
moves towards lower fitness classes, and the average fitness of the
quasispecies or the average growth rate per generation
diminishes39,40,42,43. In such a case, for discrete systems, when the
average growth rate becomes smaller than one, the population enters
into an extinction regime that causes the disappearance of the
quasispecies.

Previous works on the induction of mutagenesis in poliovirus and
VSV revealed a 100-fold decrease in viral titers44,45. Further experi-
mental evidence confirming the effect of mutagens in decreasing
infectivity and replication was later described for HIV-1 in tissue
cultures46. Similar results were also found for Lymphocytic choriome-
ningitis virus, hantaviruses, and Hepatitis C virus, among others (see
review47). Despite these previous investigations, the feasibility of
entirely pushing a quasispecies towards lethality by manipulating
external parameters such as mutation rates still remains a matter
of debate, especially in persistently infected patients, i.e., in quasis-
pecies with large population numbers. Our model, aimed to answer
this question, predicted that an external forcing towards lethality
(e.g., increased mutagenesis) would be unlikely to be found in large
quasispecies populations. The generation of different mutational
types seems enough to ensure the persistence of viable viral genomes,
even if highly deleterious or lethal mutations are constantly
produced.

Our theoretical approach does not include other possible sources
that could enhance viral extinction or involve significant viral fitness
decrease. For instance, we consider soft selection, i.e., no degradation
of sequences, because we are mainly interested in the net effects of
mutation rate, DMFE, and phenotypic reversions in the viability
and lethality of the viral phenotypes. Also, we are not considering
discreteness (individual based model) or finite populations with sto-
chasticity41 (e.g., lethal defection48), or bottlenecks during transmis-
sion events that turn on Muller’s ratchet (shown to operate in phages
w649 and MS250 VSV51, TEV52, Foot-and-mouth disease virus53, and
human immunodeficiency virus type 154). As mentioned, the standard
quasispecies model (and thus our model as well) does not consider
sources of stochasticity, suggested to be important in realistic experi-
mental systems as well as during initial infections, when the number
of viral particles can be extremely low. However, as we previously
discussed, we considered a deterministic quasispecies model as a
proxy to characterize the effect of the DMFE during a persistent
infection, for which intrinsic or demographic noise of viral popula-
tions might be negligible. Further research should include these fac-
tors in quasispecies dynamics together with DMFE.

Our model predicts that increasing mutation rates may not be
enough to drive viral quasispecies towards highly deleterious or

lethal phenotypes in large populations, as may be those typical of
persistent infections. It would be interesting to perform experiments
like those described in Refs. 14 and 15, in which the properties of the
DMFE were evaluated, but at artificially increased mutation rate.
Such experiments would facilitate the comprehension of the role
played by the DMFE at increasing mutation in possible lethal scen-
arios for viral quasispecies in vivo, also allowing to test our predic-
tion. Moreover, these experiments would also give clues about the
interplay between mutation and the DMFE, an important issue, that,
to the extent of our knowledge, remains unknown.

We notice that our results may also be relevant in the context of
lethal mutagenesis. Lethal mutagenesis refers to a viral population’s
extinction through an excess of mutations, often promoted by muta-
genic nucleotide analogs administered during viral replication8,36,41.
Lethal mutagenesis is a demographic phenomenon that operates in
finite populations, not considered in our model. Nonetheless, our
model indicates that the chances to enter into a regime of declining
viral populations may be very unlikely, since the variability in the
DMFE will constantly keep available phenotypes able to successfully
replicate in the population.

As a final point, the theoretical framework and the results pre-
sented here, developed for viral quasispecies, may also have implica-
tions in carcinogenesis. In cancer, the maximum amount of genetic
instability that can be tolerated by tumor cells, suggested to also
behave as quasispecies, has been proposed55,56. Genomic instab-
ility57,58 is a hallmark of most malignant tumors, which could be
ablated by increased mutagenesis59–61. Our model suggests that the
success of such strategies should be weighted by the corresponding
distribution of mutational fitness effects, which can be defined by
taking into account the distinct roles played by genes affecting pro-
liferation, DNA repair or apoptosis, along with house-keeping62. The
potential success of suppression of tumor growth through mutation-
induced lethality as well as the resistance of some clones to drugs
should be considered as two faces of the unstable tumor dynamics,
which may require considering the repertoire of mutational fitness
effects.

Methods
Model. To analyze the impact of the DMFE on viral quasispecies we build a
phenotypic mathematical model using Eigen’s formulation1. The model describes the
time dynamics of i classes of binary sequences with population numbers xi able to
carry different mutational types that can replicate and mutate according to the
differential equations:

dxi

dt
~ 1{mð ÞAixizm

X
jh ii

l
j?i½ �

k b j?i½ �Ajxj{Wxi, ð1Þ

with i,j[Hn , being Hn the configuration or sequence space (i.e., boolean n-
dimensional hypercube), withHn~ 1, . . . ,2nf g, and n 5 4, resulting in a quasispecies
composed by n 5 16 different sequences. Each sequence has 4 bits, each of them
corresponding to each particular type of mutation: beneficial (B, 1st bit), neutral (N,
2nd bit), deleterious (D, 3rd bit), and lethal (L, 4th bit), as we display in Figure 1. Our
model becomes a generalization of the classic Eigen’s quasispecies model2, which
incorporates new parameters to introduce variance in fitness effects due to mutation
and, eventually, phenotypic reversion. We refer the reader to Ref. 38 for a stochastic
model similar to Eqs. (1).

The first term of Eqs. (1) is the error-free replication of string i with replication rate
Ai and mutation rate m. The second term corresponds to the influx of mutant strings j
from orthant neighbors (denoted as ,j.i) of Hn producing string i by mutation.

Parameters l
j?i½ �

k §0, with
X

k
l

j?i½ �
k ~1, denote the fraction of mutations with a

fitness effect k g {B, N, D, L} from sequence j to sequence i during error-prone
replication. These parameters are used to incorporate the DMFE in our model (see
Section Experimental data below). Parameter b[jRi] is the probability of occurrence of
transitions 0 R 1 and 1 R 0 (i.e., phenotypic reversion) from sequence j to sequence i
during replication, with:

b j?i½ �~
1 if transition is 0?1,

0ƒd=1 if transition is 1?0:

�

We notice that our approach allows us to model the process of mutation considering
no backward mutations (i.e., no phenotypic reversion), setting d 5 0; as well as to
model phenotypic reversions due to backward or compensatory mutations (with d .
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0). The total population is held constant (i.e.,
Xn

i~1
xi~1) by a compensating

dilution flux with rate coefficient W. The outflow term, W, is obtained under the
constant population condition, i. e.,

Xn

i~1
xi~1, giving:

W~
Xn

i~1

1{mð ÞAixizm
X

jh ii

l
j?i½ �

k b j?i½ �Ajxj

2
4

3
5: ð2Þ

The state space of system (1) is a high-dimensional simplex (i.e., 2n 2 1 simplex)
represented by the nonnegative vectors

Rn
z~ x0000, . . . ,x1111ð Þ[Rn xi§0,ij [Hn,

X
i
xi~1,i~1, . . . ,n

n o
. As initial condi-

tions we will use (if not otherwise specified) x0000(0) 5 1, setting all other variables to
zero.

All 24 different strings of the quasispecies can be mapped into a phenotypic space
(fitness landscape) with four different fitness classes and three different peaks
[Figure 1(a)]:

. Peak (W) populated by sequences x0000,0100 (wild-type phenotype and the neutral
mutants), with replicative fitness A0000,0100 5 1.

. Peak (B) populated by sequences x1100,1000 (beneficial mutants plus the neutral
mutants), with replication rate A1000,1100 5 1 1 sB.

. Peak (D) populated by sequences x0010,0110 (deleterious mutant and the neutral
mutants), with replicative fitness A0010,0110 5 1 2 sD.

. The lowest replication value of the fitness landscape is given by the lethal phe-
notypes, (L), given by sequences xabc1 5 0, a, b, c g {0, 1}, with replication rate
equal to zero.

We refer the reader to Supplementary Information Section S1 which contains all i
equations obtained from (1). Sequences with both beneficial and deleterious muta-
tions (given by x0010,0110 and with replication rates A1010,1110 5 1 1 sB 2 sD) will
populate fitness peaks (W), (B), or (D) depending on the values of the selection
coefficients, sB and sD. Note all fitness classes include the neutral mutants. Equations
(1) depend on the parameters m, sB, sD, lB, lD, lL, lN, and d. We set 0 , sB # 1, to
ensure that beneficial mutations always increase replication rates. We also set
0vsD 1 (if not otherwise specified) to ensure that mutations are always deleterious,
also avoiding a 100% decrease in fitness that would result in a lethal mutant (lethal
mutants are explicitly introduced as variables in our dynamical system). Note that for
sB . sD, mutants x1010,1110 are fitter than the wild-type string and will be considered as
beneficial, while for sB , sD their fitnesses are lower than the wild-type fitness and
thus will be considered as deleterious. For combined mutations (i.e., strings carrying
two or more types of mutations) we assume additive fitness effects. Although epistatic
interactions have been described for RNA viral genomes63, as a first approach we will
here use additive fitness effects. Hence, the ranges for these parameters are: m g (0, 1),
sB g (0, 1], sD g [0, 1), lB $ 0, lD $ 0, lL $ 0, lN $ 0, lB 1 lD 1 lL 1 lN 5 1, d $ 0.

It is important to notice that Eigen’s model describes the dynamics of explicit genome
sequences2,3,6. We here simplify the system to sequences where mutations are not
nucleotide substitutions but changes involving possible phenotypic transitions. Hence,
our sequences are not viral genomes but an abstract representation of the genomes in
terms of phenotypic traits (see Ref. 64 for other phenotypic approaches to viral qua-
sispecies). In this sense, the relationship between our modeling approach and true viral
genomes becomes obvious from the identification of groups of viral genomes that
belong to the same fitness phenotypic classes (i.e, all have the same fitness regardless the
specific mutations they carry in their genomes). These phenotypic classes are the entities
represented in our model. Furthermore, keeping in mind our goal of exploring the role
of the DMFE in quasispecies dynamics and transitions, we necessarily made several
simplifying assumptions that allow for an analytical treatment. These assumptions and
their limitations are discussed in Supplementary Information Section S1.

Experimental data. In this article we use experimental DMFE data for VSV and TEV
as a case study for viral quasispecies. Sanjuán et al.14 generated a collection of single-
nucleotide substitution mutants of VSV and evaluated their fitnesses in vitro. They
found that the frequencies of the four different fitness classes were (using our

notation) l
j?i½ �

B ~0:042; l
j?i½ �

N ~0:2707; l
j?i½ �

D ~0:2917; and l
j?i½ �

L ~0:3956. Using a
similar experimental approach but in this case measuring fitness effects in vivo,

Carrasco et al.15 found that such frequencies for TEV were l
j?i½ �

B ~0; l
j?i½ �

N ~0:227;

l
j?i½ �

D ~0:364; and l
j?i½ �

L ~0:409. To simplify notation, in our model we will use lk

instead of l
j?i½ �

k . We refer the reader to references 14, 15 for further details.

Numerical algorithms. We are especially interested in performing an extensive
exploration of the model parameters to address several issues. Our interests here are
mainly two:

a) Given arbitrary parameters of the model, we desire to compute the population
values of beneficial, deleterious, and lethal sequences at the equilibrium.
Furthermore, as typically the parameters are not well known or, simply, non
available, we want to establish the probability that the fraction of sequences of
each one of the previous types exceeds some fraction N* (being N* a given fixed
population equilibrium value). For this later case, we are mainly interested in
quantifying the likelihood of finding parametric scenarios impairing viral
sequences success, i.e., parameter combinations generating deleterious and/

or lethal phenotypes. To do so, we will use the population scenarios (A), (B),
and (C) (defined in the Results Section: Exploration of the parameter space). As
mentioned, in all these scenarios we want to have a measure of the fraction of
parameters for which these scenarios reach values of population size exceeding
a given threshold, N*. The domain P where we locate the parameters is a cube
[0, 1]4 corresponding to the values of m, sB, sD, d times a three-dimensional
simplex S3 in the parameters lB, lD, lL, lN with the constrain lB 1 lD 1 lL 1

lN 5 1. Different assumptions can be made on the probability density in
P~ 0,1½ �4|S3.

b) How fast go the initial conditions (typically the vector x(0) 5 (1, 0, …, 0)T) to
the attractor to which they tend? In other words, what can be said about
transients? This is irrelevant if we assume that the evolution time is as large
as desired. However, for finite time evolution, T, the distance from x(T) to the
attractor can be large.

Let us describe the algorithms to carry out the computations in both cases.
In principle, if we consider a uniform probability density inP to answer question a)

amounts to compute the volume of a semi algebraic set in the parameter space.
Indeed, let us denote a value of the parameters simply as P[P. The amount of viral
sequences of a given class corresponding to the equilibrium associated with P can be
denoted as g(P). It is clear, due to the dependence of the matrix A (see Supplementary
Inforamtion Section S4) and, hence, of the characteristic polynomial and the eigen-
vectors, that g is an algebraic function. Therefore the volume of the region of interest
in S is bounded by the hypersurface g(P) 5 N* and boundaries of S.

However, even in the case that g is explicitly available, this is of little use because of
the dimensionality. Moreover in the generic case g is not explicitly known. This
suggests to use a MonteCarlo (MC) method to compute the volume of interest. The
steps are as follows:

. Using a (pseudo-)random number generator with uniform distribution in [0, 1],
we generate four values to obtain a point in [0, 1]4. Then, we generate points with
uniform distribution in S3 using a standard method.

. When all the parameters are available we look for the dominant zero of the
polynomial pB in Eq. (24) of the Supplementary Information. Let us denote it
as s3 as in Supplementary Information Section S3. Then we proceed to the
computation of the components of the fixed point using the formulas (25) and
(26) of the Supplementary Information.

. The process is repeated M times (M large, a typical value being M 5 108). Then,
for the different values of N* used in the study we count the number of cases c(N*)
in which g(P) $ N*. The desired probability is p* 5 c(N*)/M. In many of our
analyses we will represent such a probability as a percentage (i.e., meaning the
percentage of parameter combinations driving the quasispecies towards a given
scenario for a given value of N*, if not otherwise specified). Alternatively, we can
also be interested in transient times (see Results section), and perform a similar
analysis considering a given population value for scenarios (A), (B), and (C) at a
given time, N(t). Then, the previous probability will be represented as p(t) 5

c(N(t))/M.

In a large part of the computations the parameter d is not taken with uniform
probability but uniform in log scale, say in the range [d1, d2]. Then the value of log(d)
is generated with a uniform distribution in [log(d1), log(d2)] and proceed as before.

It can be also interesting to fix d and proceed in a similar way for a set of values of d.
Then we can recover a probability function p(d) by interpolation. The desired global
probability with respect to a density f(d) is obtained by integration and normalization

ðd2

d1

f dð Þdd

� �{1 ðd2

d1

p dð Þf dð Þdd: ð3Þ

We pass now to the point b). Given parameters P we can compute the equilibrium x*.
On the other hand, we can start the integration of system (3) of the SI from the initial
point x(0) 5 (1, 0, …, 0)T until the current point x(t) reaches a given distance g from
x*. Typically we have used the value g 5 1023 and the distance has been computed
using the j j‘ norm. The integrations are carried out using the Runge-Kutta-Fehlberg
RKF78 method, with automatic step size control and local relative tolerance 10215.
After every step the distance to x* is checked. This allows obtaining the distribution of
transient times and the effect of the different parameters on it, with special emphasis
on the role of d as is illustrated below and in the Results section.

Computation of transient times. In order to see how parameter d, i.e., phenotypic
reversion, affects the transients, we carry out the following experiment. For a fixed
value of d we generate a random sample of M* sets of the remaining parameters, as
described in Numerical algorithms subsection above. Then, for each set of
parameters, the integration of Eq. (2) in the Supplementary Information is started
with x(0) 5 (1, 0, …, 0)T. The integration is stopped when the distance to the fixed
point is a small fixed value g. The distance is measured as g 5 maxi51,…,16jxi(t) 2

(x*)ij. For a given value t of the time we record the fraction Q(t) of M* such that the
distance g is reached for a value of t , t. Then we display Q(t) as a function of t (see
Figure S8). Of course, for practical reasons, the integration time is limited to a fixed
large tmax.
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