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1  | INTRODUC TION

Nonmodern statistical methods are often unusable for modeling 
complex and nonlinear computations, especially if there are not 
clear relationships between output and measured characteristics of 
model. The intelligent predictive methods such as artificial neural 
networks are computation methods that lack problems in nonmodern 

methods. These types of systems have properties such as learning 
capability, generalizability, information dispersion, parallel process-
ing and robustness, use in pattern separation, grading, function ap-
proximation, and correlation equation, and they are generally used 
where there is a need to learn a linear or nonlinear mapping. Artificial 
neural network plays an important role in predicting process param-
eters as a powerful tool (Johnsson, 2018; Van Dam, 2014). On the 
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other hand, artificial neural network is widely used in many fields. 
Furthermore, its use is significantly important for researchers in 
solving complex and nonlinear equations in dryers and energy-con-
suming systems in recent years due to the fact that it uses the em-
pirical data (Azadbakht, Torshizi, Noshad, & Rokhbin, 2018; Özdemir, 
Aktaş, Şevik, & Khanlari, 2017). According to studied predictive and 
diagnostic techniques, most artificial neural networks (ANNs) have 
three layers including the input, hidden, and output layers. The 
output result depends on the applied weight in data of connection 
of output and hidden layers. During the training and learning of a 
network, weights indicate the worth of an ANN to produce a very 
close result to real output (Balogun, Salami, Aibinu, Mustafah, & 
Sadiku Isiaka, 2014). Artificial neural networks (ANNs) are powerful 
modeling techniques that, in short, work with arrays of neurons in 
memory and biological learning. ANNs offer many advantages over 
conventional modeling techniques because they can provide mod-
els based on no hypothesis about the nature of phenomenological 
mechanisms and understanding the mathematical fields for the main 
problem of process, and the ability to learn linear and nonlinear re-
lationships between variables directly from a set of samples (Fathi, 
Mohebbi, & Razavi, 2011). In recent decades, most researchers in 
agricultural engineering have used conventional learning algo-
rithms such as artificial neural networks (Pan et al., 2016). Unlike 
mathematical models, neural network models are able to identify 
relationships between parameters without the need to extract their 
relationships, and thus they are considered as very powerful tools in 
modeling. In this method, relationships of parameters are introduced 
at the stage of network training, and it then acts similar to the human 
brain. In the case of a proper training, the neural network will be able 
to predict the process and solve problems of extracting relationships 
of parameters. Therefore, neural network models are often used 
in cases in which relationships of parameters are unknown or very 
complex (Ghasemi, Aghayari, & Maddah, 2017). Various researchers 
have predicted and modeled processes using the artificial neural 
network: Nikbakht, Motevali, and Minaei (2014) used the neural 
networks to predict the exergy and energy of pomegranate drying 
in a thin layer dryer by microwave (Nikbakht et al., 2014). Aghbashlo, 

Mobli, Rafiee, and Madadlou (2012) carried out experiments by an 
artificial neural network to predict the performance of Spry dryer in 
oil and fish (Aghbashlo et al., 2012). Najafi, Faizollahzadeh Ardabili, 
Mosavi, Shamshirband, and Rabczuk (2018) investigated an in-
telligent artificial neural network-response surface methodology 
method for exergy and energy analysis that reported based on the 
mentioned results it can be concluded that employing ANN model 
in predicting or controlling circuit, will provide more possibility of 
useful work compared with that obtained by mathematical model-
ing (Najafi et al., 2018). Ardabili, Najafi, Ghaebi, Shamshirband, and 
Mostafaeipour (2017) had done a novel enhanced exergy method 
in analyzing HVAC system using soft computing approaches: A case 
study on mushroom growing hall that obtained MLP method had a 
poor performance in this study by linearity of 0.9511 and RMSE of 
0.5584 with deviation of 12.5254 kJ/s (Ardabili et al., 2017).

The present paper aimed to investigate and predict the experimen-
tal data of the Ohmic heating method using neural networks, so that 
we could select a suitable network with high accuracy and speed and 
compare whether predicted values in the response surface method 
were better or predicted values by an artificial neural network.

2  | MATERIAL S AND METHODS

2.1 | Sample preparation

The sour oranges were purchased from a garden located in the city of 
Gorgan, Golestan Province. The prepared oranges were washed and di-
vided into two halves in the middle and immediately after purchase, all 
the samples juice was taken manually in the same conditions, and the 
samples were prepared to conduct the test during the Ohmic process 
with voltage gradients and the percentages of different weight loss to 
investigate the amount of energy efficiency, exergy efficiency, exergy 
loss, and improvement potential during the process. This experiment 
was done in 2019 at Gorgan University of Agricultural Sciences and 
Natural Resources; environmental conditions for testing were con-
ducted at a temperature of 19°C and a relative humidity of 65%.

F I G U R E  1   Schematic of the equipment 
used for the heating process of ohmic
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2.2 | The experiment method

A reservoir made of plastics thermoset was considered for this pro-
cess, and the samples were poured into the reservoir between two 
electrodes and the initial temperature was recorded after stabiliza-
tion and after recording the temperature, the voltage was applied 
to the set, and the samples were heated. Three heating gradients of 
8.33, 10.83, and 13.33 V/cm were selected for the heating process. 
Approximately 10% (from 90 to 81 g), 20% (from 90 to 72 g), and 
30% (from 90 to 63 g) of the total weight of the sour orange juice 
samples are poured into the steam cell and evaporated in the heat-
ing process. All the samples were 90 g. Figure 1 presents a schematic 
diagram of the heating process and the system components.

The experiments were conducted in a static Ohmic heating 
system. The system used consisted of a compact and transparent 
plastic cell (length 6 cm, width 6 cm, height 6 cm wall thickness of 
0.3 cm), an electrode made of stainless steel (thickness of 0.1 cm) 
that the distance between the two electrodes is 6 cm, a variable 
transformer that is responsible for generating different voltages 
(3 kW, 0–300 V, 50 Hz, MST – 3, Toyo, Japan), a power analyzer 
(Lutron DW-6090) responsible for monitoring the pattern of en-
ergy behavior of the system, a thermocouple, and a computer to 
store data with their profile. A scale (±0.01 g) was used to mea-
sure the cell weight and its contents during the process that was 
placed under the cell. All the experiments were conducted in the 
Biosystem Mechanics Department of Agricultural Sciences and 
Natural Resources of Gorgan University.

2.3 | Energy analysis

Energy used in the drying and heating process is important for pro-
duction processes in the industrial and household sectors. However, 
the price of energy is extremely expensive; therefore, there is a 
strong incentive to invent processes that will use energy efficiently. 
Currently, widely used drying and heating processes are com-
plicated and inefficient; moreover, it is generally damaging to the 
environment. What is needed is a simplified, lower-cost approach 
to this process one that will be replicable in a range of situations 
(Azadbakht, Vahedi Torshizi, Noshad, & Rokhbin, 2018).

Figure 2 shows the energy and mass conservation to control the 
volume of Ohmic heating (Ohmic cell). The general equation of mass 
conservation can be expressed in Equation (1):

The general equilibrium energy can be expressed by using 
Equation (2) that the input energy is equal to the output energy 
(Darvishi, Hosainpour, Nargesi, & Fadavi, 2015).

The product heat (latent heat of the product) was calculated 
using Equation (3), and water heat (latent heat of water) was calcu-
lated using Equation (4) (Abdelmotaleb, El-Kholy, Abou-El-Hana, & 
Younis, 2009; Sharqawy, Lienhard, & Zubair, 2010).

The heat capacity was calculated using the Siebel's model 
(Heldman & Moraru, 2014):

The energy given to the system was recorded using the input 
current and the voltage given to the samples and calculated accord-
ing to Equation (6) (Darvishi, Khostaghaza, & Najafi, 2013).

The system energy efficiency of Ohmic heating was calculated 
using Equation (8) (Darvishi et al., 2015).
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F I G U R E  2   Volume control of the Ohmic heating system
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2.4 | Exergy analysis

With the onset of the energy crisis, energy and exergy (the maximum 
useful work that comes from a certain amount of available energy or 
from the flow of materials) analyses are among the leading thermo-
dynamic research works. In the exergy analysis, the main purpose 
is to determine the location and amount of irreversible production 

during the various processes of the thermodynamic cycle and the 
factors affecting the production of this irreversibility. In this way, in 
addition to evaluating the performance of various components of 
the thermodynamic cycle, methods to increase cycle efficiency are 
also identified (Azadbakht, Vahedi Torshizi, et al., 2018).

In the analytical range, the entrance (input) exergy, the output ex-
ergy and exergy loss of the ohmic heating system were investigated. 

F I G U R E  3   Neural Network Input and Output Schematic. A: Flowchart of the MLP B: Flowchart of the RBF (Bahiraei, Heshmatian, & 
Moayedi, 2019)
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Note: The Equations (15–19) include the predicted values (Pi) and the actual values (Oi) and the 
mean value of the data (O).

TA B L E  1   Neural network equations
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Generally, the total exergy equation of the heating system is de-
scribed using Equation (8).

The exergy loss was calculated using Equation (9) (Azadbakht, 
Aghili, Ziaratban, & Vehedi Torshizi, 2017).

Exergy components were calculated at the input and output of 
the Ohmic heating system using Equation (10) (Azadbakht, Torshizi, 
Ziaratban, & Aghili, 2017).

The exergy efficiency of the Ohmic system can be calculated 
using Equation (11) (Darvishi et al., 2015).

Van Gool (1997) suggests that the maximum improvement in the 
exergy efficiency of a process or system becomes apparent once the 
exergy loss or exergy irreversible becomes its lowest level. It was 
suggested that the concept of “improvement potential” would be 
widely used in analyzing the processes or different section of the 
economy, and Hammond and Stapleton presented this improvement 
potential in the evaluation form (Hammond & Stapleton, 2001).

2.5 | ANN modeling

The training process is the important way to achieve a high accu-
racy from a developed model. The first step was to identify the de-
pendent and independent variables. In this study, voltage gradient, 
weight loss percentage, during ohmic, input flow, power consump-
tion, electrical conductivity and system performance coefficient 
(input variables) variables and energy efficiency, exergy efficiency, 
exergy loss and improve potential were considered as dependent 
variables (output variables). Therefore, by identifying the input and 

output variables, a MLP type of ANN was employed to develop the 
target model. As seen in Figure 3a, the architecture of these net-
works generally has three layers which include input, hidden, and 
output layers. Layers are connected by nodes; therefore each layer 
has its own node. The signal processing begins from first layer, also 
in Figure 3b showed RBF architecture. Receiving information from 
external nodes activates the related nodes on input layer and emits 
a signal to the next layer. Each connection between two nodes 
in two adjacent layers is related to each other by weighting coef-
ficients, that this weights adjust the signal strength based on the 
input data. In training of the back propagation method, the error is 
determined by comparing the output and the desired output and 
this error is returned to the hidden and input layers of the next 
training processes. The network training operation ends when the 
error comes down below some value specified by the user (Najafi 
et al., 2018). In this research, the artificial multilayer perceptron 
(MLP) and radial basic function (RBF) neural network were used to 
model by Neuro Solution 5 software. Hyperbolic tangent, linear, and 
sigmoid activation functions (Equation 13 and 14), which are the 
most common type of activation functions, were used in the hid-
den input and output layer. In this paper, the Levenberg-Marquardt 
algorithm was used to learn the network (Taheri-Garavand, Karimi, 
Karimi, Lotfi, & Khoobbakht, 2018). Additionally, 70% of the data 
were used for training, 15% of them were used for network evalua-
tion (Validating Data), and 15% of the data were used for testing the 
network (Testing data). Before training the model, the input-output 
parameters in data sets were arranged, and the inputs in the data set 
were normalized between 0 and 1 range by using the Equation (20). 
Because of the output layer activation function is linear (purelin) 
in all architectures; only the input parameters were normalized by 
Equation (20). The voltage gradient, weight loss percentage, dura-
tion ohmic, Input flow, Power consumption, electrical conductiv-
ity and system performance coefficient as network inputs energy 
efficiency, exergy efficiency, exergy loss, and improve potential 
were the considered network outputs (Figure 3). A total of 5 Run 
were considered to achieve the minimum error rate and maximum 
network stability as a mean of 5,000 Epoch for the network. The 
error was estimated using an algorithm with back propagation error. 
Statistical parameters, including Root Mean Square Error (RMSE), R2, 
and Mean Absolute Error (MAE) were calculated for inputs, and the 
relationships were calculated using the formulas shown in Table 1. 
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TA B L E  2   Optimization values for artificial neural network parameters for MLP and RBF networks

Number of 
hidden layers Learning rule

Type of activation 
function

The number of hidden 
layer neurons

Testing 
data (%)

Validating 
data (%)

Training 
data (%)

1 Levenberg Marquardt Hyperbolic 
tangent

4 15 15 70

1 Levenberg Marquardt Sigmoid 4 15 15 70

1 Levenberg Marquardt Liner 4 15 15 70
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In Equation (20), Inorm is the normalized data, I is the measured 
data, Imin is the least measured, and Imax is the most measured data.

2.6 | Analyze the response surface method

The response surface method (RSM) is a series of statistical and 
mathematical approaches used to analyze experimental results (Han, 
Li, Wu, & Shao, 2015). This method is also very useful in designing, 
improving, and formulating new products. The grade 2 model is 
suitable for industrial processes and has much strength. Also, using 

the ANOVA analysis, the models presented for the responses were 
evaluated and regression coefficients were estimated for linear, 
interactions and grade 2 sentences and the fitting quality of the 
models equation was expressed using the convergence coefficient 
(R2) (Myers, Montgomery, & Anderson-Cook, 2009; Khuri, 2006). In 
order to investigate the properties and optimization of system per-
formance factor, heating process duration, input current, power con-
sumption and the electrical conductivity of sour orange juice during 
the heating process, the surface response method, a central com-
posite design (CCD) with 5 central points and with Design Expert 11 
software was used (Table 2).

In order to investigate the properties and optimization of en-
ergy and exergy of sour orange juice during the heating process, 
the surface response method, a central composite design (CCD) 
with 5 central points and with Design Expert 11 software was 
used. In this study, the independent variables were voltage gra-
dients and percentage of weight loss (Table 1), dependent vari-
ables were energy efficiency, exergy efficiency, exergy loss, and 
improvement potential as responses to investigate the process of 

TA B L E  3   Error values in predicting experimental data using optimal artificial neural network

MSE NMSE MAE Min-AE Max-AE R2

Energy efficiency

Linear MLP 0.9494 0.0069 0.7881 0.0178 2.23 0.9969

RBF 4.50785 0.02956 1.0149 0.00603 5.62957 0.99124

Sigmoid MLP 1.1626 0.0092 0.863 0.0434 2.2258 0.9959

RBF 9.67505 0.05418 1.41004 0.0005 8.65822 0.98255

Tangent hyperbolic MLP 1.50066 0.01142 1.02068 0.03776 2.39236 0.99465

RBF 10.68 0.089 1.0365 0.000569 11.398 0.9812

Exergy efficiency

Linear MLP 0.8948 0.0093 0.6454 0.0485 2.3638 0.9981

RBF 4.34238 0.04863 0.87211 0.00164 7.38578 0.97937

Sigmoid MLP 1.4898 0.0153 1.0126 0.0351 2.5973 0.9928

RBF 0.22013 0.00266 0.27113 0.00199 1.57278 0.99935

Tangent hyperbolic MLP 1.08538 0.01821 0.88927 0.08002 2.40489 0.99334

RBF 0.165 0.0021 0.126 0.0021 1.25 0.9994

IP

Linear MLP 0.0088 0.0086 0.0715 0.0014 0.235 0.996

RBF 0.03384 0.02625 0.10156 0.00003 0.55283 0.99388

Sigmoid MLP 0.0362 0.0335 0.1482 0.0081 0.3759 0.9846

RBF 0.08072 0.05145 0.13232 0.00041 0.90488 0.98418

Tangent hyperbolic MLP 0.08858 0.07648 0.23443 0.0043 0.76062 0.96419

RBF 0.0958 0.0659 0.165 0.00005 1.005 0.9713

Exergy loss

Linear MLP 0.0255 0.0151 0.1176 0.0027 0.4701 0.9925

RBF 0.01379 0.007 0.0562 0.00144 0.41489 0.9965

Sigmoid MLP 0.0397 0.0341 0.1641 0.0072 0.3584 0.9831

RBF 0.01805 0.00907 0.0672 0.00019 0.44747 0.99546

Tangent hyperbolic MLP 0.04323 0.02978 0.16156 0.00165 0.54642 0.9863

RBF 0.0195 0.0123 0.0789 0.00021 0.489 0.992

TA B L E  4   Independent variables of test surface

Variable

Level

−1 +1

Voltage gradient (V/cm) 8.33 (50 v) 13.33 
(80 v)

Percentage weight loss (%) 10 30
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the desired changes to the levels of independent variables. Finally, 
the goal is to examine the values predicted by the response surface 
methodology.

3  | RESULTS AND DISCUSSION

Table 3 presents the results of networks with different activation 
functions and different RBF and MLP networks. According to ob-
tained results for the energy efficiency, the best value of R2 and the 
lowest value of MSE were 0.96999 and 0.9494 in a network with the 
linear activation function and the MLP network, respectively. The 
best value of R2 for exergy efficiency and the lowest value of MSE in 
a RBF network with the hyperbolic tangent activation function were 
0.9994 and 0.165, respectively. For the improvement potential, the 
best value of R2 and the lowest value of MSE were 0.996 and 0.0088 
in the MLP network and the linear activation function, respectively. 
Furthermore, for the exergy loss, the best value of R2 and the lowest 

value of MSE were 0.99650 and 0.01379, respectively, in the RBF 
network with a linear activation function. Given the high values of 
R2 for all networks as well as low levels of MSE for networks and 
activation functions, all networks have the proper ability to predict 
and train, but the best value of R2 and the lowest value of MSE in 
the above-reported networks. Table 4 presents the rest of details 
of all networks. For the energy efficiency, exergy, and improvement 
potential, the best value of R2 and the lowest value of MSE were seen 
in the MLP network; and this network had better values than the 
RBF network. For the exergy loss, the RBF network could get bet-
ter values. Among three activation functions, the best values of R2 
and MSE were obtained for the linear activation function for energy 
efficiency, improvement potential, and exergy loss; and the best val-
ues were shown for the energy efficiency of the hyperbolic tangent 
activation function.

According to obtained results from the data sensitivity coeffi-
cient (Figure 4), the higher sensitivity to weight loss belonged to the 
energy efficiency of RBF network, and also the higher sensitivity to 

F I G U R E  4   Sensitivity coefficient energy efficiency, exergy efficiency, improve potential, and exergy loss for sour orange juice during the 
ohmic heationg process

Energy 
efficiency (%)

Exergy 
efficiency (%)

Exergy loss 
(KW)

Improvement 
potential (KW)

R2 0.9932 0.95 0.99 0.97

R2 adjusted 0.9909 0.91 0.98 0.96

R2 predicted 0.9845 0.63 0.94 0.94

Adeq precision 69.90 17.10 46.61 40.73

TA B L E  5   Results of the R-level 
response method
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voltage in the MLP network. The obtained coefficients in this net-
work were similar to obtained coefficients in the response surface 
method. However, the sensitivity of two networks was higher for 
the weight loss percentage. It can be argued that the weight loss 
percentage had a higher sensitivity to energy efficiency of the ohmic 
process than the process voltage. For exergy efficiency, the higher 
sensitivity was obtained for voltage gradient than weight loss per-
centage of the RBF network. In general, the voltage gradient had a 
higher sensitivity to the weight loss percentage, and it was similar to 
obtained coefficients for weight loss percentage and voltage gradi-
ent in the response surface method. For the improvement potential 
and the exergy loss, the obtained sensitivity coefficients by both 
networks for weight loss were higher than the voltage gradient. The 

TA B L E  6   Best models formed for data

Source Sum of squares df Mean square F-value p-value

Energy efficiency (%)

Mean versus Total 67,598.65 1 67,598.65

Linear versus Mean 1,411.51 2 705.75 334.42 <.0001

2FI versus Linear 11.32 1 11.32 10.42 .0104 Suggested

Quadratic versus 2FI 4.88 2 2.44 3.49 .0890

Cubic versus Quadratic 1.28 2 0.6407 0.88 .4686 Aliased

Residual 3.62 5 0.7237

Total 69,031.26 13 5,310.10

Exergy efficiency (%)

Mean versus Total 24,294.40 1 24,294.40

Linear versus Mean 788.10 2 394.05 28.25 <.0001

2FI versus Linear 9.81 1 9.81 0.6811 .4306

Quadratic versus 2FI 84.32 2 42.16 6.51 .0253 Suggested

Cubic versus Quadratic 43.58 2 21.79 61.69 .0003 Aliased

Residual 1.77 5 0.3532

Total 25,221.98 13 1940.15

Improvement potential 
(KW)

Mean versus Total 180.75 1 180.75

Linear versus Mean 11.59 2 5.80 167.42 <.0001 Suggested

2FI versus Linear 0.0016 1 0.001 0.0407 .8445

Quadratic versus 2FI 0.087 2 0.04 1.18 .3613

Cubic versus Quadratic 0.17 2 0.08 5.52 .0543 Aliased

Residual 0.0804 5 0.0161

Total 192.69 13 14.82

Exergy loss (KW)

Mean versus Total 196.14 1 196.14

Linear versus Mean 12.41 2 6.21 76.98 <.0001

2FI versus Linear 0.5883 1 0.5883 24.31 .0008

Quadratic versus 2FI 0.1185 2 0.0592 4.18 .0640 Suggested

Cubic versus Quadratic 0.0902 2 0.0451 24.81 .0025 Aliased

Residual 0.0091 5 0.0018

Total 209.36 13 16.10

TA B L E  7   Some RBF and MLP neural network topologies to 
predict the values of training and cross-validation for energy 
efficiency, Exergy efficiency, exergy, and the potential for 
improvement of sour orange juice during the ohmic heating process

Activation 
function Network

Train Cross-validation

Run Epoch Run Epoch

Linear MLP 1 541 3 32

RBF 2 594 3 52

Sigmoid MLP 2 236 5 16

RBF 3 4,569 1 68

Tangent 
hyperbolic

MLP 1 3,200 3 100

RBF 3 895 4 256
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results were similar to the response surface method. In this method, 
the weight loss had a greater effect (Table 5).

The results of the Sequential Model Sum of Squares show that 
how complex phrase participates in the final model. Table 6 shows 
the results of the models for the energy efficiency, the exergy effi-
ciency, the improvement potential, and the exergy loss. The linear 
and factors interaction model was selected as the best model for 
the energy efficiency, and the second-order model versus the two 
factors was chosen as the best model for the exergy efficiency. The 
best models for the improvement potential and for the exergy loss 
were proposed the average and linear model and the second-order 
model versus the two factors, respectively.

Table 7 shows the results of runs and Epoch for the network 
creation. This table generally considers the energy efficiency, ex-
ergy efficiency, exergy, and exergy loss, and improvement poten-
tial because network output layers are composed of these factors. 
According to obtained results, the MLP network with a linear acti-
vation function had the best value and the fastest time for network 
training until the creation because it had the lowest amount of run-
ning and repetition; and the network was created after 541 Epoch 

per run that was better than other created networks. According to 
the above table, which presents the best values of topology, the best 
values of R2 and MSE are seen in the same network that is certainly 
the best network. In addition, also in Figure 5 is showed the disper-
sion value of errors for RSM. Given that the values obtained are very 
close to the line drawn, it can be stated that the dispersion values of 
the error obtained are appropriate for the energy efficiency, the ex-
ergy efficiency, the improvement potential, and the exergy loss. This 
indicates that the difference between actual values and predicted 
values by the model is appropriate, so that it has been able to obtain 
values close to the line creating an appropriate normal distribution. 
The results show the compatibility of the model and actual data with 
the predicted data.

Table 8 presents the results of the prediction by the neural net-
work and the response surface method as actual values. The standard 
deviation was obtained from results of the neural network and the 
response surface method as presented in Table 9. Given that the lower 
standard deviation indicates the proximity of predicted number to the 
real number, it can be concluded that the neural network with RBF has 
the least standard deviation compared with the created network by 

F I G U R E  5   Measured Scattering values 
for response obtained by the response 
surface method
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TA B L E  8   The predicted value by the inductive neural network and the response surface method

Response Observed
Predicted 
RSM 4-sig-MLP 4-lin-MLP 4-tan-MLP 4-sig-RBF 4-lin-RBF 4-tan-RBF

Energy 
efficiency

72.36 72.1103 71.54779 71.41792 71.80781 72.3605 70.41656 72.37721

70.489 72.1103 71.35711 71.19299 71.92676 71.89976 70.35051 72.49616

64.56 64.3303 64.83116 64.85904 64.03192 64.51593 65.29973 64.60132

79.12 79.664 77.15137 79.00387 82.09885 79.10655 79.65952 82.66825

70.145 73.6663 71.69 71.19299 72.04618 71.44216 70.28126 72.61558

69.6 69.1411 69.00717 67.7227 68.71553 69.4531 69.6061 69.28493

91.68 90.6395 89.45423 92.68 91.45612 91.28867 92.85756 92.02552

60.21 59.6786 59.63436 59.79872 58.49423 60.40025 60.78136 59.06363

83.91 84.542 83.30342 83.48424 83.44715 83.27504 84.04281 84.01655

65.05 64.3303 64.83116 64.6274 63.23292 65.0986 65.10975 63.80232

50.31 50.2161 52.91763 51.51618 52.10174 58.16036 55.93957 52.67114

79.69 79.8903 80.69279 80.56565 82.56887 78.8672 79.74082 83.13827

80.31 79.8903 81.6538 81.35998 82.1105 80.33035 80.20512 82.6799

Exergy 
efficiency

43 43.6266 44.03704 43.25637 43.2318 43.00199 43.67023 43.8012

43.65 43.6266 43.81679 43.4015 43.12032 42.90811 43.58317 43.68972

47.4 47.9575 47.35613 47.51712 48.13013 47.42146 46.8221 48.69953

59.146 59.7478 59.40479 59.25656 56.65161 60.16229 59.65859 57.22101

43.45 41.8822 43.89 43.4015 43.00919 42.81532 43.51655 43.57859

31.569 30.763 30.40603 29.99622 32.09437 31.3115 36.68511 32.66377

38.45 41.2295 39.00566 39.09086 38.18184 38.52267 38.77311 38.75124

37.65 40.8457 35.05273 37.32887 35.24511 37.5849 37.27982 35.81451

58.42 54.4447 57.04668 58.6356 57.06416 58.37279 58.28597 57.63356

47.321 47.9575 47.35613 47.45162 48.04213 47.29561 47.32456 48.61153

46 43.6103 47.74237 46.53383 45.27384 45.83913 45.683 45.84324

32.36 31.9777 33.93066 29.99622 33.95386 31.96892 33.11944 34.52326

33.569 31.9777 34.868 29.99622 33.82581 33.5379 33.06595 34.39521

IP 3.8 3.72877 3.756508 3.784321 3.633192 3.798337 3.666752 4.202592

3.756 3.72877 3.770001 3.809866 3.607458 3.837811 3.709424 4.176858

4.568 4.63652 4.413093 4.672968 4.258543 4.570037 4.206775 4.827943

3.561 3.54214 3.922476 3.586717 2.930947 3.561773 3.574494 3.500347

3.712 3.54722 3.98 3.809866 3.581729 3.876496 3.760671 4.151129

3.65 3.73385 3.664985 3.694098 4.410618 3.654355 3.649102 4.980018

4.45 4.6416 4.636405 4.570662 4.744511 4.484254 4.388045 5.313911

4.8 4.97406 4.837882 4.842654 5.034232 4.790282 4.868057 5.603632

3.056 2.81594 3.076267 3.07958 3.130366 3.066333 3.005007 3.699766

4.789 4.63652 4.413093 4.688111 4.288546 4.788594 4.671496 4.857946

5.563 5.54935 5.320204 5.56982 5.453985 4.887987 6.049833 6.023385

2.95 2.82102 2.912029 2.948563 3.311391 3.18312 3.024273 3.880791

3.05 2.82102 2.803515 2.836571 3.324186 3.048867 3.003506 3.893586

(Continues)
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Response Observed
Predicted 
RSM 4-sig-MLP 4-lin-MLP 4-tan-MLP 4-sig-RBF 4-lin-RBF 4-tan-RBF

Exergy loss 3.894 3.83163 3.606282 3.800976 3.710741 3.895917 3.79466 4.280141

3.795 3.83163 3.613643 3.81672 3.711049 3.848074 3.800537 4.280449

4.698 4.70803 4.696401 4.786734 4.699647 4.704625 4.77164 5.269047

3.456 3.47036 3.814438 3.372919 3.558676 3.456453 3.444699 4.128076

3.814 3.64288 3.79 3.81672 3.711447 3.800447 3.809647 4.280847

3.71 3.60197 3.521453 3.643101 3.807768 3.71839 3.711848 4.377168

2.4 2.46197 2.492015 2.301818 2.151869 2.381031 2.356104 2.721269

4.8 4.97406 4.837882 4.842654 5.034232 4.790282 4.868057 5.603632

3.233 3.06706 3.138474 3.315022 3.125322 3.306656 3.24435 3.694722

4.756 4.70803 4.696401 4.835374 4.748279 4.748452 4.725395 5.317679

6.3 6.23397 6.51404 6.619889 6.5661 6.613811 6.521788 7.1355

2.85 2.84303 2.772129 2.713094 2.641756 2.843157 2.848555 3.211156

2.79 2.84303 2.756843 2.671262 2.565498 2.788634 2.801703 3.134898

TA B L E  8   (Continued)

TA B L E  9   Standard deviation values of values predicted by neural network and response surface method

Response
Predicted 
RSM 4-sig-MLP 4-lin-MLP 4-tan-MLP 4-sig-RBF 4-lin-RBF

4-tan-
RBF

Energy 
efficiency

0.176565 0.57432 0.666152 0.390459 0.000355 1.374217 0.012167

1.146432 0.613846 0.497793 1.016651 0.997557 0.097928 1.419277

0.162422 0.191737 0.21145 0.373409 0.031164 0.523067 0.029217

0.384666 1.392031 0.082114 2.106369 0.009514 0.381495 2.508995

2.489935 1.09248 0.741038 1.344338 0.917229 0.096347 1.746965

0.324491 0.419198 1.327452 0.625413 0.103875 0.004314 0.222787

0.735745 1.57386 0.707107 0.158308 0.276713 0.832659 0.244318

0.375757 0.407039 0.290816 1.213232 0.134531 0.404014 0.810605

0.446891 0.428919 0.301061 0.327283 0.448988 0.093908 0.075344

0.508905 0.154745 0.298822 1.284871 0.034369 0.042248 0.882244

0.066397 1.843873 0.8529 1.266951 5.551042 3.980706 1.669577

0.141633 0.70908 0.619175 2.035667 0.581809 0.035936 2.438293

0.296773 0.950213 0.742448 1.273146 0.014392 0.07416 1.675773

Exergy 
efficiency

0.443073 0.733296 0.181278 0.163907 0.001409 0.473926 0.566534

0.016546 0.117941 0.175716 0.374543 0.524597 0.047254 0.028084

0.394212 0.03102 0.082816 0.516283 0.015175 0.408638 0.91891

0.425537 0.18299 0.078177 1.763803 0.718626 0.362456 1.361176

1.108602 0.311127 0.034295 0.311697 0.448788 0.047055 0.09093

0.569928 0.822342 1.112122 0.371495 0.182082 3.617636 0.774122

1.965403 0.392914 0.453159 0.189618 0.051385 0.228476 0.213009

2.259701 1.836549 0.22707 1.700511 0.04603 0.261758 1.297885

2.810962 0.971084 0.15245 0.958724 0.033381 0.094776 0.556097

0.450073 0.024842 0.092361 0.509916 0.017955 0.002514 0.912542

1.689773 1.23204 0.377476 0.513473 0.113754 0.224152 0.110847

0.270327 1.110625 1.671443 1.127032 0.276538 0.537003 1.529658

1.125219 0.918533 2.526335 0.181591 0.021992 0.355708 0.584218

(Continues)
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MLP and the response surface method for energy efficiency, exergy 
efficiency, exergy loss, and improvement potential. For energy effi-
ciency and exergy loss, predicted values with the MLP neural network 
and the response surface method were almost similar, and it can be 
argued that they had the same predictive power, but the efficacy of 
exergy and the improvement potential of MLP neural network got bet-
ter values for the prediction. In general, it can be concluded that the 
linear and sigmoid activation functions for both networks were able to 
obtain best values for the hyperbolic tangent network.

4  | CONCLUSION

According to results of the generated neural network for energy ef-
ficiency, exergy efficiency, exergy loss and improvement potential, 
rate of predicted R2 was very acceptable; and the network-predicted 
data were close to real data. The MLP network was better than RBF 
because its R2 and MSE values were lower than the RBF network. The 
linear activation function was the best choice for activation. It should 
be noted that the hyperbolic tangent activation function had the best 

values of R2 and MSE for the exergy efficiency. In terms of network 
training, MLP network with linear activation function could have the 
fastest training because it was able to create a very good network 
with the least repetition and execution. According to predicted val-
ues by the artificial neural network and the response surface method, 
the accuracy of neural network was higher than the response surface 
method to predict values.
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NOMENCL ATURE
Cp heat capacity (J/kg K)
Eelectrical electricity energy (J)
E energy (J)
Eloss energy loss (J)
Esc specific energy consumption (J/kg water)

Response
Predicted 
RSM 4-sig-MLP 4-lin-MLP 4-tan-MLP 4-sig-RBF 4-lin-RBF

4-tan-
RBF

IP 0.050367 0.030754 0.011087 0.117951 0.001176 0.094221 0.284676

0.019255 0.0099 0.038089 0.105035 0.057849 0.032934 0.297591

0.048451 0.109536 0.074224 0.218819 0.00144 0.255424 0.183807

0.013336 0.255602 0.018185 0.445515 0.000547 0.009542 0.042888

0.116517 0.189505 0.069201 0.092115 0.116316 0.034415 0.310511

0.059291 0.010596 0.031182 0.537838 0.003079 0.000635 0.940465

0.239844 0.209407 0.131961 0.178149 0.117701 0.009349 0.580776

0.135482 0.131808 0.085321 0.208251 0.024221 0.043809 0.610877

0.123079 0.026786 0.030161 0.165627 0.006872 0.048123 0.568253

0.169748 0.014331 0.016674 0.052585 0.007307 0.036057 0.455211

0.10782 0.265806 0.071339 0.353875 0.000287 0.083088 0.048752

0.009652 0.171683 0.004823 0.077085 0.477306 0.344243 0.325541

0.091203 0.026849 0.001016 0.255542 0.164841 0.052519 0.658169

Exergy loss 0.161913 0.174291 0.150917 0.193879 0.000801 0.032876 0.596506

0.044102 0.203448 0.065778 0.129584 0.001356 0.070244 0.273043

0.025901 0.128239 0.015358 0.059363 0.037529 0.003915 0.343264

0.007092 0.001131 0.062744 0.001164 0.004684 0.052071 0.403791

0.010154 0.253454 0.058747 0.072603 0.00032 0.007991 0.475229

0.121 0.016971 0.001923 0.072516 0.009583 0.003078 0.330111

0.076389 0.133323 0.047305 0.069133 0.005933 0.001306 0.471759

0.043819 0.065064 0.069425 0.175455 0.013413 0.031039 0.227172

0.123079 0.026786 0.030161 0.165627 0.006872 0.048123 0.568253

0.117337 0.06684 0.057998 0.07614 0.052082 0.008026 0.326487

0.03392 0.042143 0.056126 0.005459 0.005337 0.021641 0.397167

0.04669 0.151349 0.226196 0.188161 0.221898 0.156827 0.590788

0.004929 0.055063 0.096807 0.147251 0.004839 0.001022 0.255376

TA B L E  9   (Continued)

https://orcid.org/0000-0003-3648-1515
https://orcid.org/0000-0003-3648-1515
https://orcid.org/0000-0003-3648-1515
https://orcid.org/0000-0002-5726-9321
https://orcid.org/0000-0002-5726-9321
https://orcid.org/0000-0002-1299-1898
https://orcid.org/0000-0002-1299-1898


4444  |     VAHEDI TORSHIZI ET Al.

EX exergy (J)
Ex specific exergy (J/kg water)
EXloss exergy loss (J)
I current intensity (A)
IP improvement potential (J)
M mass (kg)
M moisture content (kg water/kg dry matter)
Mt moisture content at any time (kg water/kg dry matter)
R2 coefficient of determination (−)
T temperature (K)
T time (s)
Tref ambient temperature (K)
V voltage (V)
Ηen energy efficiency (%)
Ηex exergy efficiency (%)
Λw latent heat of pure water (J/kg)
Λwp latent heat of sample (J/kg)

SUBSCRIP TS
0 initial
In inlet
Out outlet
P product
Ew water evaporated
∞ ambient
C Ohmic cell
E electrode
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