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Brussels, Belgium and 9AI lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Received January 13, 2017; Revised June 14, 2017; Editorial Decision June 15, 2017; Accepted June 15, 2017

ABSTRACT

To further our understanding of the complexity and
genetic heterogeneity of rare diseases, it has become
essential to shed light on how combinations of vari-
ants in different genes are responsible for a disease
phenotype. With the appearance of a resource on di-
genic diseases, it has become possible to evaluate
how digenic combinations differ in terms of the phe-
notypes they produce. All instances in this resource
were assigned to two classes of digenic effects,
annotated as true digenic and composite classes.
Whereas in the true digenic class variants in both
genes are required for developing the disease, in the
composite class, a variant in one gene is sufficient to
produce the phenotype, but an additional variant in
a second gene impacts the disease phenotype or al-
ters the age of onset. We show that a combination of
variant, gene and higher-level features can differen-
tiate between these two classes with high accuracy.
Moreover, we show via the analysis of three digenic
disorders that a digenic effect decision profile, ex-
tracted from the predictive model, motivates why an
instance was assigned to either of the two classes.
Together, our results show that digenic disease data
generates novel insights, providing a glimpse into
the oligogenic realm.

INTRODUCTION

Next Generation Sequencing (NGS) and in particular
Whole Exome Sequencing (WES) have provided enormous

amounts of information on human genetic variation (1,2),
as well as on the relationship between this variation and dis-
ease (3,4). As many genetic disorders are caused by protein-
coding variants (5), exome sequencing provides a cost-
effective approach to capture the majority of the variants
directly relevant for clinicians, which has led to the identi-
fication of more than 100 new disease-gene associations in
the last few years (5,6). Nevertheless, for many disorders,
the genetic component remains only partially known (e.g.
Brugada syndrome (7) and neurodevelopmental disorders
(8)). The identification of genes implicated in a disease is
more difficult when a phenotype in a familial pedigree does
not show a clear monogenic segregation pattern, exhibiting
for instance genetic heterogeneity, incomplete penetrance
and/or non-Mendelian inheritance mechanisms (9). More-
over, even when the segregation of the causal variant is clear,
the disease can show high phenotypic variability, necessitat-
ing the consideration of additional effects in different genes
(8,10). In addition, the concept of locus heterogeneity sug-
gests that the causal relation between genes and diseases is
far from univocal (11). Some examples of disease pheno-
types being modified by variants on different loci, are Hunt-
ington disease, Bardet-Biedl syndrome or Hirschsprung dis-
ease (OMIM: #143100, #209900, #142623).

Oligogenic inheritance models are necessary in such cases
to provide a more specific link between genotype and phe-
notype (11): relaxing the monogenic assumptions in favour
of a digenic model in case of the Bardet-Biedl syndrome
improved the comprehension of the disease and provided
a clearer explanation for the observed segregation pattern
(12–14). Although insufficient data are currently available
to examine the more complex oligogenic diseases, there is
already a sufficient amount of publications reporting on the
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digenic ones (15–18), allowing one to try to shed light on the
specificities of digenic diseases.

Digenic inheritance may refer to different scenarios. In
some cases the disease phenotype is caused by a combina-
tion of unique variants in two genes, while in others two dif-
ferent phenotypes caused by variants in different genes are
combined together leading to a more complex phenotype,
which includes both previous ones (18–20). The Digenic
Diseases Database (DIDA) contains information on 44 di-
genic diseases, comprising 213 digenic combinations (16). It
contains the details about digenic combinations of variants
that cause disease, as well as annotated meta-information
concerning variants and genes involved. DIDA defines a
digenic combination as a combination of variants in two
distinct genes, which together are causative for the patient’s
phenotype (16). Given this novel resource, one can now ex-
amine each digenic combination and ask what synergistic
mechanisms lead to specific phenotypes. An answer to this
question can provide genetic and clinical insight into the
causal relationships between variants mapped on the two
genes and the disease phenotype they produce.

The majority of instances in DIDA are categorized into
one of two classes that are a coarse-grained simplification
of the original definition provided by Schäffer (15). The first
class represents true digenic instances (currently labeled as
‘on/off’ in DIDA): variants at both loci are required for
disease, variants at one of the two loci result in no pheno-
type (18). The second class we will refer to as the composite
class as it includes different possibilities (currently labeled
as ‘severity’ in DIDA): A composite instance in DIDA can
refer to mendelizing variants plus modifiers, when a driver
variant is necessary for the phenotype but rare variants in
a second gene, usually related to the same pathway/organ
system, may modify the phenotype (21)), or dual molecular
diagnosis, wherein mendelizing variants at each of the two
loci segregate independently and result in complementary
(or blended) phenotypes (18)). Throughout this paper the
true digenic class will be annotated by TD and the compos-
ite class by CO.

Further fine-tuning of these classes will become possible
when more digenic diseases data become available. Yet for
now we can limit ourselves to the current constraint, explor-
ing the reason why a certain digenic combination belongs to
the TD or CO class.

We hypothesise that genetic and biological properties re-
garding variants and genes linked to digenic combinations
can be used to differentiate between the above mentioned
digenic effect (DE) classes. The allelic state of the genes, the
impact of all the variants involved, the ability of a gene to
tolerate loss of function variants, and the relationship be-
tween genes involved are likely to determine the DE. To ex-
amine this hypothesis, we construct a classification model
that employs features consisting of different variant-, gene-
and pathway-related characteristics. Our results reveal that
quantitatively relevant predictions can be obtained in strat-
ified cross-validation settings, which are furthermore con-
firmed on an independent dataset that contains digenic
combinations not yet present in DIDA.

Next to the prediction itself, an explanation on how the
DE predictor arrives at its conclusion is also provided. Con-
cretely, the binary classification into TD or CO is trans-

formed into a clarification, representing every digenic com-
bination in DIDA by a DE profile that provides an expla-
nation of the decision process that assigns the combination
to its class. Making this decision process explicit allows us
to investigate the mechanisms related to DEs and to anal-
yse the differences between similar cases. The analysis of
three different digenic diseases reveals that relevant rules,
which clarify the nature of the digenic combination, can be
extracted.

MATERIALS AND METHODS

Datasets

The dataset used in this work is a subset of DIDA (16). We
downloaded the 124 digenic combinations for which the DE
information is available (68 TD, 56 CO). These instances are
involved in 32 different diseases. In this dataset, 69% of the
digenic combinations have heterozygous variants in both
genes and, of these heterozygous cases, 62% belong to the
TD class and 38% to CO class. The digenic combinations
with homozygous or compound heterozygous variants are
distributed as follows: 41% to the TD class and 59% to the
CO class. An in depth analysis of this dataset is performed
in the Results section.

In addition to this dataset, an independent dataset con-
taining new digenic disease cases was constructed. We man-
ually mined PubMed, retrieving data for digenic combina-
tions published between July 2015 and April 2016. This new
set contains 19 novel digenic combinations and is used as a
validation set to examine the quality of the predictor. Based
on the information in the articles, the DE of each digenic
combination was identified, labeling them with either TD
or CO. This dataset is composed of 11 unique gene pairs,
none of which are present in the current DIDA dataset, di-
vided over eight diseases (also not present in DIDA). Al-
though the dataset is balanced in terms of DE classes (10
TD, 9 CO), there is an imbalance in terms of the diseases:
4/19 and 9/19 belong respectively to either the CANDLE
syndrome (22) (OMIM: #256040) or the Alport syndrome
(23) (OMIM: #104200). This new set of digenic combina-
tions is available in Supplementary Material Table S1.

Feature definition

To construct the DE predictor, we identified different
features relevant for discriminating between the two DE
classes. We selected these features by integrating informa-
tion from different biological levels of contextualization
(24), conceptually differentiating between variant-oriented,
gene-oriented and pathway-oriented features. The following
sections define in detail the selected features.

Variant-oriented features. These features quantify the
deleteriousness of each single variant. The possible num-
ber of allelic variants in a digenic combination ranges from
two to four, depending on the zygosity of both genes (16).
Therefore, variant-oriented features are encoded using four
dimensions. Each dimension represents the pathogenicity
value (calculated using DEOGEN (24)) of each allelic vari-
ant belonging to the digenic combination. The first two di-
mensions (DEOA1, DEOA2) represent variants in the first
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gene (GeneA) and the other two (DEOB1, DEOB2) vari-
ants in the second gene (GeneB). When a gene presents
a variant in heterozygous state, only one allelic variant is
present for that gene, since the second copy is the wild type
allele. We encoded these cases as ‘silent’ variants by as-
signing a pathogenicity score of 0, to indicate a completely
harmless effect. In this way, also the zygosity state of each
gene is intrinsically represented, since the presence of a 0 for
DEOA2 or DEOB2 expresses an heterozygous state respec-
tively for gene A and gene B.

Approximately 80% of variants in the digenic combina-
tions that are used here are either missense or in-frame
indels, and thus their pathogenicity can be computed us-
ing DEOGEN. The remaining 20% correspond to several
other types, which, as explained in the manuscripts from
which they were obtained (16), are expected to be more
detrimental than the former. This includes i) variants which
alter a portion of the protein, for example nonsense and
frameshift variants resulting in altered/truncated amino
acid sequences (25), ii) variants that have been shown to
prevent the correct splicing because they are near to a
splicing site or in cryptic splice sites (26), producing non-
functional isoforms, iii) nonsense and frameshift variants
involved in nonsense-mediated mRNA decay (NMD), elim-
inating the mRNA transcripts that contain premature stop
codons (27). DEOGEN score for missense variants and
in-frame indels ranges from 0 (neutral) to 1 (deleterious),
to differentiate the other types of effects described we as-
signed to them the score 2. No distinction was made be-
tween frameshift and nonsense variants likely leading to
NMD (41 variants) or not (7 variants) according to the 50–
55 nt rule (28). The arbitrary choice of the value 2 does
not imply any proportional comparison with the DEOGEN
score obtained for missense variants and indels, but is just
a value that allows the RF model to identify a threshold to
separate missense/indels from the 20%, usually stronger, ef-
fects. Altering the value to the maximum DEOGEN score
or any other bigger value produces a predictive accuracy
equivalent to what is reported in Table 1.

Gene-oriented features. Gene-level information has been
included in the model using the ‘recessiveness index’ (REC
(29)) and the ‘essentiality’ (ESS (30)) scores of the genes in-
volved in the digenic combination. The recessiveness is the
estimated probability that the gene will cause a recessive dis-
ease if homozygously lost, while the essential genes have
been found to be critical for survival in knock-out experi-
ments in mice. We refer as EssA and RecA to the annota-
tions for the gene A and as EssB and RecB for gene B. We
addressed the missing values by using the median values in-
stead: 0.246 for REC and 0.392 for ESS.

Pathway-oriented features. Digenic diseases are often
caused by variants in two genes which often have a phys-
ical or functional relationship (11,15). From DIDA (16),
we extracted information about the possible interaction be-
tween the two genes involved in the digenic combination.
A value of 1 is assigned when the two genes are known to
share a common pathway (as evidenced from KEGG (31)
or REACTOME (32)), 0 otherwise. We refer to this feature
as Path.

The feature vectors for the DIDA dataset and the new
dataset are available in Supplementary Material files Train-
ingDataset.csv and NewDataset.csv. Note that to avoid bi-
ases in the cross-validation study, we also made sure that
each feature vector is unique in the dataset. This required us
to remove five instances from the 124 digenic combinations,
producing a non-redundant dataset of size 119 to construct
the DE predictor.

Construction and evaluation of predictive models

In this study, the scikit-learn (33) implementation of
the Random Forest (RF) algorithm (34) was used to create
a classification model for DE classes. We fixed the size of the
forest to 100 trees; to limit the flexibility of the model, we
set the maximum trees depth to 10. We prevented random
fluctuations from influencing the cross-validation results by
repeating each cross-validation 100 times, averaging the ob-
tained scores and measuring the standard deviation. This
procedure has been used for the construction of Table 1. We
evaluated the performances with the widely adopted scores
sensitivity (SEN), specificity (SPE), Matthews Correlation
Coefficient (MCC) and Area Under the Curve (AUC).

To control the risk of over-fitting, we assessed the sig-
nificance of the observed performance with a permutation
test (35). We stacked the feature vectors in a M × N matrix
(where M is the number of samples and N the number of fea-
tures) and we randomly shuffled the order of the elements
within each column. In this way, the distribution of the val-
ues for each feature in the dataset remains the same, but
the combinations of features representing each instance are
permuted. We assessed the cross-validation performances
after each permutation and we repeated this procedure 10
000 times, obtaining a distribution of AUCs. From this dis-
tribution, we used the Kernel Density Estimation function
from scipy to compute the p-value for the model perfor-
mance with respect to the distribution of permutations.

Stratification according to gene pairs is necessary to avoid
bias in the prediction

A preliminary analysis of the features based on the Gini im-
portance (34) indicates that RecA and RecB are the most
important features. This may be related to the fact that
many digenic combinations with variants mapped on the
same gene pair lead to the same DE class. Nevertheless, this
should not be considered as a definitive rule, since we can
also observe digenic combinations involving the same pair
of genes, but leading to different DE. To ensure the con-
sistency and generalisability of the model, we performed
a stratified cross-validation at the pair-of-gene level using
the non-redundant dataset. Within each step of the cross-
validation, we removed from the training dataset all digenic
combinations sharing a specific pair of genes. The model is
trained on the remaining data and the predictions are eval-
uated on those that were removed. The final performance
is an average of the performance of these cross-validation
steps. In this way, we ensure that the performance evalua-
tion is less biased, obtaining a more robust predictor that
avoids learning undesired pair-of-gene dependencies.



e140 Nucleic Acids Research, 2017, Vol. 45, No. 15 PAGE 4 OF 11

Figure 1. Visualization of a DE profile for dd060 generated by treein-
terpreter library using a radar (or spider) plot. The dd060 has the fol-
lowing feature vector x = (0.46, 0.46, 0.33, 0.0, 0.96, 0, 0.3, 1.0, 0), where
the features are respectively DEOA1, DEOA2, RecA, EssA, DEOB1,
DEOB2, RecB, EssB and Path. dd060 is an instance of the CO class. When
analyzing this vector with the treeintepreter algorithm and our DE
predictor, the following vector of contributions is produced: contrib(x) =
(0.05, 0.017, 0.118, 0.027, 0.082, 0.008, 0.1718, 0.096, −0.029). Each sep-
arate contribution in contrib(x) is visualized as a filled circle on its corre-
sponding spoke of the radar plot. The value of the contribution can range
between a positive maximum (closer to the outside) to a negative minimum
(closer to the center) decision value. The lines connecting the spokes mark
the scale we use on the spokes and we added in black italic the value of
those lines. The DE profile as a whole (black line) reveals how the com-
bination of contributions favours a particular class. To explain differences
between DE profiles we will sometimes add the actual feature values com-
ing from x in a colored box with white lettering, as was done here for the
feature RecA. The values next to the legend correspond to the sums of the
positive and negative contributions respectively.

Analysis of the decision process using digenic effect profiles

For the visualization and the interpretation of the trained
Random Forest (RF) model, we relied on the treein-
terpreter python library (https://github.com/andosa/
treeinterpreter) created by Ando Saabas (unpublished
work).

Given a target feature vector x containing the values for
the nine features discussed earlier, the library visits each tree
t in the trained forest T and analyses which clauses are acti-
vated following the path of decisions leading from the root
of t to the final leaf (corresponding to the prediction t(x))
for the feature values x. While traversing t, the algorithm
records whether the features guarding the splitting nodes
pushed the final prediction towards the TD or CO class. This
method produces two major advances with respect to the
classical ‘feature relevance’ computed during the training of
the RF models (33,34). The first one is that the feature rel-
evance is computed over the entire dataset while treein-
terpreter acts on each feature vector x at a time, explain-
ing why the model T made the particular decision T(x) ∈ [0,
1]. This explanation is represented by a vector of contribu-
tions (one for each of the k = 9 features used by the RF
for the prediction, see Figure 1 as an example). We refer to
this contribution vector as the DE profile, that we visualize
by spider/radar plots in this paper. These contributions are

obtained through a mathematical inspection and decompo-
sition of the decision process within the RF: the final pre-
diction can be recovered as:

T(x) = c +
k∑

n=1

contribn(x) (1)

where c is a dataset-dependent constant and contribk(x) is
the contribution of the kth feature in the feature vector
x (for full details, see http://blog.datadive.net/interpreting-
random-forests/) Second, if the feature contributions are av-
eraged over the entire dataset instead of just focusing on x,
treeinterpreter tells, for each feature, not only its ab-
solute relevance but also whether it is used to discriminate
one class better than the other (see Supplementary Mate-
rial Figure S1) . The classical feature relevance scores focus
necessarily on the entire dataset and give therefore little in-
sight into how individual decisions are made, which is not
the case for the treeinterpreter approach (see again
https://github.com/andosa/treeinterpreter for the technical
details).

Of interest for the current work are the single contribu-
tions contribk(x) in the DE profile, which can either be pos-
itive or negative, and that all together (plus the constant
c) constitute the final prediction. A positive contribution
means that the feature pushes the decision towards the CO
class and a negative contribution means it favors the TD
class. To make this more clear, consider the digenic com-
bination dd060 (CO instance) visualized in Figure 1. The
digenic combination dd060 is represented by the feature
vector x = (0.46, 0.46, 0.33, 0.0, 0.96, 0, 0.3, 1.0, 0). The
treeintepreter algorithm in combination with our DE
predictor will generate the following DE profile contrib(x)
= (0.05, 0.017, 0.118, 0.027, 0.082, 0.008, 0.1718, 0.096,
−0.029) and c = 0.45 for the data set. Only one feature has
a negative contribution (i.e. Path) and the rest is either close
to zero or positive. The class preference, which can be in-
ferred also from the figure, is determined by how the positive
and negative contributions alter c, making it either smaller
or bigger than the prediction threshold (which is 0.5 in this
paper). Comparing the impact of the positive contributions
with the negative ones, while taking into account this con-
stant, provides hence insight into the decision of the predic-
tor. In the dd060 example, the sum of positive contributions
equals 0.57 and the sum of negative contributions is equal
to −0.03. Clearly, the sum of positive contributions (0.57)
will tilt the decision in favor of the CO class, which can-
not be countered by the sum of the negative ones (−0.03),
confirming the assignment reported in DIDA (16). The DE
profile itself (black line in Figure 1) reveals that RecB and
then RecA are the most influential in assigning this instance
to the CO class as the larger the contribution (in both direc-
tions) the stronger it will influence the final outcome. Path,
the only one favouring the TD class, is not strong enough
to change this decision. The contributions generated by the
treeinterpreter library for each feature are not inde-
pendent: an identical feature value in two digenic combina-
tions may correspond to different contributions as the re-
sult of the influence of the other features on the decision
process (see for instance the recessiveness scores for gene
A in Figure 3). The DE profiles provide a bi-dimensional

https://github.com/andosa/treeinterpreter
http://blog.datadive.net/interpreting-random-forests/
https://github.com/andosa/treeinterpreter%20for%20the%20technical%20details
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representation of the multi-dimensional decision boundary
learned by the RF during training. Feature vectors and cor-
responding contribution vectors for dd060 are available in
Supplementary Material (Tables S2 and S3).

RESULTS

Feature vector construction reveals the necessity to correctly
define primary and secondary genes

From DIDA, we extracted 124 digenic combinations re-
lated to 32 different diseases, for which the DE classes were
clearly determined by medical literature (16). These digenic
combinations involve 206 variants mapped onto 95 differ-
ent genes, mainly missense (65%) and frameshift (15%) vari-
ants, the remaining ones are in-frame indels, nonsense or
splice variants. Among the dataset, 92 digenic combina-
tions are di-allelic, 30 tri-allelic and two are tetra-allelic.
The instances are reasonably balanced between the two DE
classes, i.e. 68 TD and 56 CO instances.

Each of the 124 digenic combinations in this dataset,
which will be used to train a RF predictor (34), is encoded
by a feature vector (see Materials and Methods). These vec-
tors are devised to contain information from different bi-
ological scales, providing a comprehensive contextualiza-
tion of various aspects implicated in the disease mecha-
nisms. Variant-level information is computed by DEOGEN
(24). Gene-level information is represented by the essen-
tiality (30) and recessiveness (29) scores of the two genes
involved (see Materials and Methods). These gene-based
scores evaluate the relevance of the mutated genes to the
individual’s health. The highest-level feature incorporated
in the feature vector is a binary pathway feature indicating
whether both genes share a common pathway or not, as ev-
idenced from REACTOME (32) and KEGG (31) (see Ma-
terials and Methods for more details).

While assembling the feature vectors, a conceptual issue
was encountered: the ordering of the two genes participat-
ing in the digenic combination. The articles from which the
data in DIDA were extracted often do not provide an order-
ing of the genes, or remain relatively vague about which gene
should be considered the primary. As a consequence, the
ordering of most digenic combinations in the database was
done arbitrarily. In the medical literature, primary disease
genes are considered those that ‘stand out’ in initial associ-
ation and/or linkage studies (36), while secondary genes are
detected later and they are supposed to be less detrimental,
usually only contributing to the phenotype caused by vari-
ants in primary genes. Since this clinical annotation is not
available for all the digenic combinations in DIDA and since
the same gene may be involved in different digenic combi-
nations, causing different diseases (with both a primary or
secondary role depending on the specific case), we chose to
adopt a consistent and reproducible definition for the gene
order in the digenic combinations by using the Gene Dam-
aging Index (GDI) (37). We assigned this score to each gene
in our dataset and, within each digenic combination, we call
‘Gene A’ the one with lower GDI (least tolerant to variants)
and ‘Gene B’ the other. As such, we expect the most detri-
mental characteristics to be observed for gene A in the data
set. As we will show later on, this choice has an important
role to play in the predictions.

Figure 2. Distribution of feature values for both classes: Red dots repre-
sent the TD class while blue ones indicate the CO class. The four DEO
scores, obtained with DEOGEN (24) represent the variant-effect pre-
dictions for the two alleles of the first (DEOA1, DEOA2) and second
(DEOB1, DEOB2) gene. RecA and RecB are the recessiveness scores for
Gene A and B obtained from (29). EssA and EssB scores indicate when a
gene is essential (1) or not (0) as evinced from knock-out experiments in
mice (30). Finally the path feature represents whether both genes are part
of the same pathway (1) or not (0).

Analysis of ordered gene features identifies classification po-
tential

Applying the gene ordering discussed in the previous sec-
tion, the feature value distributions among the dataset can
be grouped per DE class, as shown in Figure 2. Red dots
represent the TD class data points, while blue ones indicate
the CO class. The feature vector has 9 dimensions: four of
them are variant-based and are represented by DEOGEN
scores for the two alleles of gene A (DEOA1, DEOA2) and
gene B (DEOB1, DEOB2). DEOGEN scores range from
0 (neutral) to 1 (pathogenic), while the other variants (e.g.
nonsense, frameshift and splicing) were assigned the value
2 (see subsection Feature Definitions). At the gene level,
RecA, EssA and RecB, EssB represent respectively the re-
cessiveness (29) and essentiality (30) scores of genes A and
B. We handled the missing values by substituting them by
the median values. Path is a binary feature which is 1 if genes
A and B share a common pathway (31,32).

The data in Figure 2 show that the TD class (red) tends
to have slightly more deleterious variants on the first copy
of gene B (DEOB1) than the CO class (blue) (Kolmogorov-
Smirnov (KS) test p-value=0.03). It is also noticeable that
many DEOGEN scores are equal to 0 for the variants in
the second allele of gene A (DEOA2) and gene B (DEOB2),
which is due to the fact that many digenic combinations in
DIDA are heterozygous variants with the wild-type allele
on the second copy of the gene.

A comparison of the RecB and EssB distributions be-
tween the two classes shows that in the composite cases,
the gene B is generally less relevant than in the true digenic
cases, both in terms of lower RecB (KS P-value = 0.00011)
and lower EssB (KS P-value = 0.0059) scores. Furthermore,
a comparison between RecA and RecB within each class
shows that in the CO class, the distributions are more differ-
ent compared to those of the TD class (KS test P-value of
0.0022 and 0.0045 for the TD and CO classes respectively).
These former observations are interesting results as they are
consistent with our separation in two digenic classes: in the
CO case, the role of the gene B is minor when compared to
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Table 1. Incremental contribution of the features used in our model for
the predictive quality

Scheme Sen. Spe. MCC AUC (S.D.)

DEO 0.63 0.68 0.31 0.64 (0.01)
DEO+ESS 0.63 0.70 0.33 0.65 (0.01)
DEO+REC 0.66 0.61 0.27 0.66 (0.01)
DEO+ESS+REC 0.72 0.66 0.38 0.74 (0.01)
DEO+ESS+REC+PATH 0.71 0.70 0.42 0.79 (0.01)

Sen and Spe refer respectively to sensitivity and specificity. MCC and AUC
are the Matthew correlation coefficient and Area Under the Curve results.

gene A. In the case of the true digenic class, we can observe
a less unbalanced state between the two genes, suggesting
that they are equally contributing to the phenotype.

Figure 2 also reveals that the TD class generally has more
genes sharing the same pathway (KS P-value = 0.017).

Cross-validated predictions are accurate

In Table 1, we show the incremental predictive contribu-
tions of the features used in our model. We start by adding
the four DEOGEN scores (DEOA1, DEOA2, DEOB1,
DEOB2), obtaining a performance significantly better than
random predictions. DEOGEN was selected to predict the
effects of missense and indel variants as it was shown to out-
perform other state of the art methods like SIFT, Polyphen2
and CADD (24), as motivated by Supplementary Table S4.

This first step indicates that the pathogenicity of the vari-
ants involved in the digenic combination is, to a certain ex-
tent, related to the DE. Adding gene-level features (such as
Ess and Rec) improves the performances both in terms of
MCC and AUC. When including all features, the classifier
achieves 79% of AUC and 0.42 of MCC; >70% of the TD
elements are correctly identified.

When machine learning methods are applied on a small
dataset, the risk of over-fitting has to be taken into consider-
ation. To control this problem, we computed the p-value of
our performances using a permutation test (35) (see Meth-
ods). The performances reached by our model have a P-
value of 8.6 × 10−11 computed over 10k column-wise ran-
dom permutations of the feature values.

As already mentioned, the assignment of primary and
secondary roles to the genes using GDI scores is crucial for
the DE predictor development (see Methods for more de-
tails). Comparing the AUC obtained by the GDI-ordered
model with a distribution of AUCs collected by training
identical RF models using 1000 random assignments of
gene A and B roles, reveals that this choice leads to signifi-
cant differences in the result with a P-value <0.01 (0.00285,
see Supplementary Material Figure S2).

Predictions remain robust on an independent dataset

To provide further validation for the predictive model, the
performance of the model was also evaluated on a inde-
pendent dataset of novel digenic combinations that are cur-
rently not present in DIDA (see Supplementary Material
Table S1). This additional evaluation is especially mean-
ingful given the risk for overfitting that always exists when
training on small datasets. This set consists in newly col-
lected digenic combinations published between July 2015

Figure 3. Radar plot of the DE profiles for the digenic combinations dd026
(CO) and dd027 (TD), two instances related to autosomal glaucoma. The
feature vectors of both digenic combinations are identical except for the
DEOA1 score, making it the feature that decides to which class either in-
stance is assigned : with all other features being equal, the high DEOA1
value (0.77 as opposed to 0.13) leads the DE predictor to decide in favour
of the CO class. The plot also shows also that even when values in the fea-
ture vector x are identical the contributions contribn(x) may be different, as
can be seen for the RecA feature. Feature vectors and corresponding deci-
sion vectors for dd026 and dd027 are available in Supplementary Material
(Table S2 and Table S3).

and April 2016 (see Methods). As the size of this indepen-
dent set is very limited, the metrics used in Table 1 do not
convey properly the quality of the predictions on this new
set. For this reason we decided to show the actual classifica-
tion results via the confusion matrix (see Table 2). The pre-
dictions for each instance are available in the Supplemen-
tary Table S1.

One can observe in Table 2 that although we identify all
the new CO instances correctly, the majority of TD cases ap-
pear to be misclassified as CO. Examining the actual data
(see Supplementary Table S1) we see that all four CANDLE
syndrome cases were misclassified (22). This error affects
the specificity of the predictor since half of the TD class
members are misclassified. We hypothesize that this error
may be due to missing information on the recessiveness of
the genes PSMA3 and PSMB4 as well as the lack of es-
sentiality information for genes PSMB8 and PSMB9. Simi-
lar information is missing for two other TD class instances,
producing also a misclassification. Notwithstanding this is-
sue, the results on this independent set are highly encourag-
ing and the quality of the DE predictor will improve as new
well-annotated digenic data become available.

Exploring disease instances using DE profiles

Although our model appears to be fairly accurate, under-
standing these predictions requires the support of an ex-
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Table 2. Confusion matrix showing the prediction result on the indepen-
dent dataset (19 instances). COact and TDact are the actual class labels,
while COpred and TDpred are the predicted class labels. The combination
COact and COpred correspond to the true positive predictions and the com-
bination TDact and TDpred to the true negative predictions. The MCC is
0.41

COpred TDpred

COact 9 0 9
TDact 7 3 10

16 3

planation, comprehensible for geneticists and clinicians. To
achieve this goal, it is important to distill from the RF how
decisions are made and represent this in a meaningful man-
ner. The open source treeinterpreter library (see Ma-
terials and Methods) was used to perform this task. In sum-
mary, this method visualizes the propensity of each feature
to vote for one of the two classes, expressing its contribu-
tion to the final decision of the RF model (see Materials
and Methods and also Figure 1 for an explanation of the
visualization). The bigger the absolute value of the feature’s
contribution, the more important the corresponding feature
is in pushing that decision in favor of a particular class. A
negative contribution means that this feature voted in favor
of the TD class, whereas a positive contribution pushed the
decision toward the CO class. Each line shown in the fig-
ures corresponds to a decision profile, which we called in
the Materials and Methods section a DE profile, for a spe-
cific digenic combination and the colors show to which class
each profile belongs (red spectrum = true digenic, blue spec-
trum = composite). As explained in the Methods section,
one can examine this DE profile for each digenic combina-
tion, as is done in the current section, or one can consider
the distribution of contributions produced per feature (see
Supplementary Material Figure S1), evaluating in this way
their importance for a particular class.

In the following subsections a number of cases will be dis-
cussed, showing that the DE profiles are consistent when ex-
amining them in the light of the publications in which they
were first identified.

For reasons of illustration, we will focus here on the DE
profiles for cases where both classes are present, clarifying
in this way how the decision process within the RF deter-
mines the outcomes. Essentially all instances in DIDA can
be visualized and analyzed in a similar manner.

The impact of variants in MYOC are crucial in determin-
ing DE class for autosomal glaucoma. The first cases we
show are the digenic combinations in DIDA with identi-
fiers dd026 and dd027. Both lead to autosomal glaucoma
(OMIM: #231300, #137750), an eye disease characterized
by damage to the optic nerve. It is one of the major causes of
bilateral blindness in the world, and interestingly it exhibits
variable onset because of Mendelian or multifactorial traits
(38). The digenic combinations dd026 and dd027 share a
common variant (R368H) in the gene CYP1B1, but have
different variants in MYOC, as shown in Table 3. These two
instances were reported in two different studies (39,40).

It was observed in (39) that the variant G399V in MYOC
alone leads to the development of the disease. Yet, the vari-

Table 3. Digenic cases related to autosomal glaucoma available in DIDA

id Gene A Var. Gene B Var. Cl.

dd026 MYOC G399V/+ CYP1B1 R368H/+ CO
dd027 MYOC Q48H/+ CYP1B1 R368H/+ TD

‘Var’ refers to variants and ‘Cl’ to class, with ‘TD’ being the true digenic
and ‘CO’ the composite class. For more information about dd026 and
dd027, see Supplementary Table S5.

ant Q48H discussed in (40) did not produce any pheno-
typic effect. Vincent et al. (39) hypothesized that the vari-
ant R368H in CYP1B1 may influence the mean age of onset
of the disease. Individuals in the family of dd026, carrying
both the CYP1B1 and the MYOC variants developed glau-
coma with a mean age at onset of 27 years (range 23–38
years). Individuals with only the MYOC variant developed
the disease with a mean age at onset of 51 years (range 48–
64 years). Although this digenic combination is supported
by one single pedigree, a two-tailed unpaired t-test analysis
showed that the difference in age at onset between these two
groups in the same family was statistically significant (39).

On the contrary, in the case of the patient represented by
the combination dd027, the parents are each carrier of one
variant in one of the two genes (40). They show no signs
of the disease. Both variants in MYOC and CYP1B1 are
hence necessary to develop glaucoma, which is in contrast
with what was observed for the digenic combination dd026.

Following the initial definition of the DE categories (see
Introduction), we consider dd026 as having a mendelizing
variant in MYOC that segregates independently, and has
a phenotype that can be modified by variants in CYP1B1.
The instance dd027, for whom neither carrier parent has the
disease, is considered to follow a digenic model of inheri-
tance. Consequently, we labeled dd026 and dd027 as com-
posite (CO) and true digenic (TD), respectively.

Since the features REC, ESS and Path are identical for
both digenic combinations as they are related to the same
gene pair and the variants for the gene CYP1B1 (DEOB1
and DEOB2) are identical in both cases, they have a similar
DE profile, as shown in Figure 3. The essential difference is
in the contribution for DEO1A, which is the pathogenicity
prediction for the variant on the first allele of MYOC. In
dd026, the missense variant G399V is predicted to be dele-
terious (DEOA1 value = 0.77).

The pathogenicity of the variant G399V may be enough
for the development of the disease without the presence of
variants in a second gene, justifying the CO label for dd026.
Accordingly, the decision profile in Figure 3 shows how the
DEOA1 feature is determinant for the prediction of the CO
class.

In dd027, the DEOA1 value of variant Q48H is 0.13, indi-
cating that the variant is much less detrimental, and in this
case the feature pushes the decision to the TD class. As such
our feature DE profile provides an interpretation coherent
with the results in the literature.

It is interesting to note here that even though the feature
values for the RecA are the same in both instances (0.41),
the differences in DEOA1 induce a shift in their contribu-
tions. This example illustrates the non-linear effect that each
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Table 4. Digenic cases related to ocultaneous albinism available in DIDA

id Gene A Var. Gene B Var. Cl.

dd029 TYR A490Cfs* OCA2 V443I/+ CO
20/R402Q

dd121 TYR R116*/+ OCA2 A481T/+ TD

‘Var’ refers to variants and ‘Cl’ to class, with ‘TD’ being the true digenic
and ‘CO’ the composite class. For more information about dd029 and
dd121, see Supplementary Table S5.

feature has on the other ones in the decision process, as was
discussed in Materials and Methods.

Biallelic and triallelic states cause a different phenotype in
oculocutaneous albinism. Another interesting case is pro-
vided by the digenic combinations dd029 and dd121, re-
capped in Table 4, as it shows how the zygosity state can
influence the decision process. The digenic combinations
dd029 and dd121 cause the development of oculocutaneous
albinism (OMIM: #203200), a condition that involves vari-
ants in the genes mediating melanin synthesis (41). This af-
fects the pigmentation of the skin, hair, eyes and leads to
other visual anomalies. The two combinations share a com-
mon pair of genes, but with different variants leading to dif-
ferent classes. The triallelic combination dd029 (25) leads to
the composite class, the biallelic combination dd121 leads
to the true digenic class (42).

Comparing the DE profiles of the digenic combinations
dd029 and dd121 in Figure 4, one can observe again that
gene and pathway contributions are equal, with EssA and
RecA favouring the TD class (negative contribution) and
EssB and RecB favouring the CO class (positive contribu-
tion). The Path feature also votes in favour of the TD class.
The differences in the variant effects in the second allele
of gene A, i.e. DEOA2, and the first allele of gene B, i.e.
DEOB1, are deciding the final class assignment: for dd029
(blue line), DEOA2 (DEOGEN value = 0.54) in combina-
tion with DEOB1 (DEOGEN value = 0.52) is decisive in
voting for the CO class. In case of dd121 the second allele
in gene A is harmless (DEOA2 = 0) and DEOB1 is slightly
higher (DEOB1 = 0.56) , leading the DE predictor to de-
cide in favour of the TD class. Thus, even when the DEOB1
values are quite similar in both digenic combinations, their
synergy with the larger difference in DEOA2 makes both
features essential for the identification of the correct class.

Unfortunately, for dd029 and dd121 no familial studies
are available, making the interpretation of the influence of
the variant in the second allele of the TYR gene more diffi-
cult. Nonetheless, a genetic explanation may arise from the
monogenic inheritance model of this disease and the two
associated genes. The mode of inheritance for oculocuta-
neous albinism is autosomal recessive for the TYR gene
(OMIM: #203100), as well as for the OCA2 gene (OMIM:
#203200). In dd029, compound heterozygous variants in
TYR are enough for the development of the disease (25).

In digenic combination dd121, the heterozygous variants
in TYR and OCA2 are by themselves not enough for devel-
oping the disease (42), which is supported by an autosomal
recessive model for the two genes, but together they lead
to the digenic TD effect. Interestingly, this DE profile dif-

Figure 4. Radar plot for the decision process of the RF predictor for the
digenic combinations dd029 (CO) and dd121(TD), two instances related
to Oculocutaneous Albinism. The deciding factor in this example is due to
the difference in allelic state between the two instances: On the one hand,
the high feature value of DEOA2 in combination with the DEOB1 value
leads the DE predictor to decide to put the dd029 in the CO class. On the
other hand, the harmless state of the second allele in gene A (DEOA2 =
0) in combination with a similar feature value for the first allele of gene B
leads the decision towards the TD class. See Methods for an explanation
of the radar plot. Feature vectors and corresponding decision vectors for
dd029 and dd121 are available in Supplementary Material (Table S2 and
Table S3)

ference is also relevant for other diseases in DIDA, as for
instance haemochromatosis (OMIM: #235200).

Recessiveness determines the classification of combinations
in Bardet-Biedl syndrome. Bardet-Biedl syndrome (BBS)
is a genetically heterogeneous disorder represented by vari-
ous clinical phenotypes, for instance pigmentary retinal dys-
trophy, polydactyly, obesity, developmental delay, and renal
defects (12). BBS genes and other genes involved in the de-
velopment of the disease have an autosomal recessive in-
heritance pattern when interpreted via a monogenic model
(e.g OMIM: *209901, *604896, *606151). Table 5 lists in-
stances in DIDA leading to BBS for which it was possible
to define the DE, reported in different studies (dd074 (12),
dd075 (43), dd082 and dd083 (44), dd084 dd085 and dd204
(26), dd086 (45)) .

As there are multiple DE profiles here, we can try to in-
fer more general rules that may be relevant to discriminate
between the two types of DE in Bardet-Biedl syndrome. As
can be inferred from Figure 5, the recessiveness scores, es-
pecially in the first genes, appear to be the determining fac-
tor. Additional influence is provided by the variant effects
in the first allele of gene A (which is either BBS2, BBS1 or
BBS7). When BBS2 is gene A, a low recessiveness (RecA =
0.1) drives the decision towards the TD class (dd074, dd075,
dd082 and dd083). This provides the main difference with
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Table 5. Digenic cases related to Bardet-Biedl syndrome available in DIDA. In the Class column, ‘TD’ refers to the true digenic and ‘CO’ to the composite
class. The symbol ‡ indicates that the variant enhances the use of a cryptic splice acceptor site, making it a severe variant. The gene CCDC28B is called
MGC1203 in the reference publication (26). For more information about these digenic combinations, see Supplementary Table S5.

id Gene A Variants Gene B Variants Class

dd074 BBS2 Y24*/Q59* MKKS Q148*/+ TD
dd075 BBS2 T558I/T558I BBS4 A364E/A364E TD
dd082 BBS2 R413*/+ BBS4 P503L/+ TD
dd083 BBS2 R643H/+ BBS4 K46R/+ TD
dd204 BBS1 M390R/M390R CCDC28B splicing‡/+ TD
dd084 BBS1 Y113*/M390R CCDC28B splicing‡/+ CO
dd085 BBS1 E549*/M390R CCDC28B splicing‡/+ CO
dd086 BBS7 G63R/+ BBS4 L114Wfs*28/+ CO

Figure 5. Radar plot for the decision process of the RF predictor for eight
digenic combinations leading to Bardet-Biedl syndrome, i.e. three associ-
ated with the CO class (blue spectrum) and five related to the TD class (red
spectrum). This visualization shows that the recessiveness in gene A (which
can be either BBS2, BBS1 or BBS7) together with DEOA1 pushes the in-
stances towards the TD class. Note that dd084 and dd085 have identical
feature values and hence identical contributions, resulting in overlapping
lines in the radar plot. See Methods for an explanation of the radar plot.
Feature vectors and corresponding decision vectors for these digenic com-
binations are available in Supplementary Material (Tables S2 and S3).

those favouring the CO class (dd084, dd085 and dd086),
whose primary gene (gene A) is either BBS1 or BBS7. The
only exception for the latter group is the case dd204, which
involves BBS1 but is assigned to the TD class (26). In that
case the milder variant effect in the first allele in the gene
BBS1 is the determining factor, leading to a TD prediction,
even when that gene has a similar recessiveness influence on
the DE profile as the other CO classified pairs. Hence the
DE predictor has learned to detect the differences between
the instances dd084, dd085 and dd204.

The role of recessiveness, evidenced from the previous
paragraph, is coherent with its definition: a very low REC
means that a gene, even when presenting two mutated al-
leles, cannot alone cause the disease by itself. Additional
variants in gene B are required, making it all true digenic
instances. By contrast, higher REC score in gene A and the
presence of strong variants in its alleles put the digenic com-
binations into the composite DE class. In conclusion for the
Bardet-Biedl digenic combinations, we see that the contri-

butions of DEOA1, RecA and RecB are the decisive factors
in the classification.

DISCUSSION

The study of digenic diseases is an initial step towards the
comprehension of oligogenic diseases. A peculiar aspect re-
lated to digenic disease is the DE, which concerns the possi-
ble digenic mechanisms causing the observed different phe-
notypic outcomes. To make this analysis treatable with the
currently available data, we simplified the original Schäffer
description (15) by grouping them into two main classes, i.e
the true digenic (TD) and composite (CO) class, with the lat-
ter including mendelizing variants plus modifiers and dual
molecular diagnosis.

The DE may be considered simply the sum of the effects
of the variants involved, but it should be treated as an emer-
gent property of digenic combinations. For this reason, the
DE was studied considering the synergy between the im-
pact of the variants, the role of the genes involved and their
molecular relationship. We hypothesized that using this in-
formation one can distinguish between the two simplified
DE types.

This hypothesis was confirmed through the construction
of a machine learning model using the labeled data avail-
able in DIDA. The stratified cross-validation shows that the
DE predictor is highly effective. To assess the robustness
of the DE predictor further, we examined an independent
dataset, containing digenic combinations and diseases not
yet present in DIDA. Although the small size of this new
dataset does not allow an exhaustive evaluation, the cur-
rent results are encouraging. A limiting factor, which was
revealed when analyzing the independent set, appears to be
the availability of all relevant annotations: Missing values
for gene-related features appear to lead to many erroneous
predictions, i.e. assigning instances of the TD class to the
CO class. As with any predictive method, more and better
annotated data will improve the quality of the model.

In order to escape the black box nature of a RF predic-
tor we introduced the notion of a DE profile that quanti-
fies how the features are used internally by the RF to as-
sign an instance to a class. The DE profile shows how each
feature contributed to the final prediction, making the de-
cision process explicit. The selected cases reported in this
manuscript show that either single features or combinations
of them push the decision in one or the other direction and
that tie-breaking features are sometimes required to make
the final decision. In this manner, DE profiles can be used
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to examine newly identified, hence unlabeled, digenic com-
binations, supporting clinicians and geneticists in the analy-
sis of their newly generated data. This DE classification will
also one day impact patient- and family counselling as it
may be used to provide biological understanding as well as
a way to assess the recurrence risk within the family. Genetic
counselling about digenic combinations needs to integrate
two type of information, the bi-locus mode of inheritance
(true digenic or composite) and the variant allelic state at
each locus (mono- or bi-allelic). The DE classification will
help the counsellors at the locus level. Additionally, the DE
profiles will be used in the context of a novel bioinformatics
pipeline that aims to identify and rank novel digenic com-
binations as has been done for single genes (46).

We observed that some general properties of digenic com-
binations are distinctive for the two classes, and somehow
reflect the underlying biological mechanisms. It emerges
that in the TD class the recessiveness scores of the two
genes are more similar, and this may be related to the fact
that both genes are equally contributing to the phenotype.
On the other hand, the lack of balance between the reces-
siveness of the two genes, which is common in those in-
stances consisting in mendelizing variants plus modifiers
(CO class), leads to an asymmetric situation. In this case the
primary gene is indeed the main factor responsible for the
disease and the secondary contributes less to the phenotype.
We also noticed that the DE is often strongly influenced by
the impact of the variants involved as well as their zygos-
ity, which is implicitly encoded in the feature vector. In our
model the final predictions depend on the combination of
gene-based and variant-based features. For example, genes
with high recessiveness in the primary gene and strong vari-
ants in both its alleles tend to the CO class, which is sup-
ported by the definition of a recessive gene in a monogenic
inheritance model

Apart from the novelty of the DE predictor and the pro-
files one can produce, our work underlines the importance
of clearly identifying the primary and secondary genes in
the digenic combination. The definition of the primary gene
influences both the general performance and the DE pro-
files, making this ordering crucial. Our work reveals that
the GDI provides a useful unbiased criterium to order the
genes. Yet, while this simplification solves the problem of
reproducibility of the vectors and it has a positive influence
on performance, it is not an ideal solution. In fact, when two
genes are highly recessive and one of them has homozygous
or heterozygous compound strong variants while the other
heterozygous variants, the first one should be consider as
primary gene, even if it has a slightly lower GDI. Further
analysis in this area is therefore required.

A limitation of the current study is the coarse-grained la-
beling of each digenic combination into true digenic and
composite classes. As was recently also argued by Katsanis
(47) the causality in human genetic disorders should be con-
sidered to be a continuum. We are convinced that true di-
genic and composite classes should be considered to be part
of this continuous spectrum between monogenic and oli-
gogenic diseases. Yet such an analysis is at this moment not
feasible given the current limitations on the available data.
Improvements in this issue are expected given the identifica-
tion of 20 novel articles on digenic diseases within one year

after the creation of DIDA and the observation that the On-
line Mendelian Inheritance in Man (OMIM) database in-
troduced new inheritance categories ‘digenic recessive’ and
‘digenic dominant’ (e.g. OMIM: #209900, #220290), allow-
ing for the further expansion of the data on digenic diseases.

In conclusion, the current research shows for the first time
an analysis of digenic combinations and their effects, using a
classification model. While the true digenic cases can be ev-
idently considered as pure digenic, the composite ones con-
stitute part of the boundary between monogenic and oli-
gogenic diseases. We tried to extract generalisable observa-
tions regarding their differences, with the aim of elucidating
one small piece of the complex puzzle of oligogenic diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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