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Abstract

Background: Many transcripts have been generated due to the development of sequencing technologies, and
lncRNA is an important type of transcript. Predicting lncRNAs from transcripts is a challenging and important task.
Traditional experimental lncRNA prediction methods are time-consuming and labor-intensive. Efficient
computational methods for lncRNA prediction are in demand.

Results: In this paper, we propose two lncRNA prediction methods based on feature ensemble learning strategies
named LncPred-IEL and LncPred-ANEL. Specifically, we encode sequences into six different types of features
including transcript-specified features and general sequence-derived features. Then we consider two feature
ensemble strategies to utilize and integrate the information in different feature types, the iterative ensemble
learning (IEL) and the attention network ensemble learning (ANEL). IEL employs a supervised iterative way to
ensemble base predictors built on six different types of features. ANEL introduces an attention mechanism-based
deep learning model to ensemble features by adaptively learning the weight of individual feature types.
Experiments demonstrate that both LncPred-IEL and LncPred-ANEL can effectively separate lncRNAs and other
transcripts in feature space. Moreover, comparison experiments demonstrate that LncPred-IEL and LncPred-ANEL
outperform several state-of-the-art methods when evaluated by 5-fold cross-validation. Both methods have good
performances in cross-species lncRNA prediction.

Conclusions: LncPred-IEL and LncPred-ANEL are promising lncRNA prediction tools that can effectively utilize and
integrate the information in different types of features.
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Background
In the last few decades, due to the development of high-
throughput sequencing technologies, a great number of
transcripts have been generated [1]. Transcripts are a
combination of DNA translation products, including
mRNAs, tRNAs, rRNAs, and non-coding RNAs
(ncRNAs). NcRNAs are a class of RNAs that do not

encode any protein, and lncRNAs (long non-coding
RNAs) are ncRNAs with lengths exceeding 200 nucleo-
tides (nt). Although lncRNAs are not translated into
proteins, they are of great significance in various cellular
development progresses, such as gene expression/regula-
tion [2], gene silencing [3], RNA modification [4]. More
importantly, lncRNAs have been proved to be associated
with many diseases, for instance, DD3 is related to pros-
tate cancer [5] and BACE1-AS is related to Alzheimer’s
disease [6]. Predicting lncRNAs from transcripts is im-
portant to the downstream biological function analysis.
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However, traditional experimental methods for lncRNA
identification are time-consuming and labor-intensive,
thus cannot perform lncRNA prediction when dealing
with a massive number of transcripts. With the increasing
number of transcripts, efficient computational methods
especially machine learning methods for lncRNA predic-
tion are demanded. Researchers have proposed many ma-
chine learning methods for lncRNA prediction in the last
few years. These lncRNA prediction methods can be cate-
gorized into three major types, binary classifier-based
methods, deep learning-based methods, and ensemble
learning-based methods.
The binary classifier-based methods consider lncRNA

prediction as a binary classification task of two types of
transcripts: lncRNAs and protein-coding transcripts
(PCTs). Such methods make use of different features,
such as codon-related features, ORF-related features,
GC-related features, coding sequence-related features,
and structure-related features, then design classifiers to
build prediction models. Support vector machine (SVM)
[7] is a supervised learning model using associated learn-
ing algorithms to analyze the data, which is the most
commonly used classifier for lncRNA prediction. SVM
[7] is adopted in lncRNA prediction methods such as
CPC [8], CNCI [9], PLEK [10], lncRScan-SVM [11],
CPC2 [12] Longdist [13], and CPPred [14]. Random for-
est (RF) [15] uses the bagging strategy to build trees and
then constructs an uncorrelated forest of trees to make
predictions. RF is also commonly adopted in the lncRNA
prediction models, such as LncRNApred [16], LncRNA-
ID [17], COME [18], and FEElnc [19]. Logistic regres-
sion (LR) [20] is a statistical algorithm used to model
the probability of a certain class, which is used in Tra-
digo et al.’s work [21] and CPAT [22].
Recently, deep learning architecture shows the great

ability of fitting complex functions and achieves high
performance in bioinformatics [23], so it is also applied
to lncRNA prediction. For example, lncRNA-MFDL [24]
constructs a powerful lncRNA predictor by fusing mul-
tiple features based on the deep learning algorithm.
lncRNAnet [25] uses the recurrent neural network
(RNN) for RNA sequence modeling and the convolu-
tional neural network (CNN) for detecting stop codons
to better identify lncRNAs. LncADeep [26] integrates in-
trinsic and homology features to construct a deep belief
network. DeepLNC [27] uses k-mer patterns to con-
struct a deep neural network (DNN) for the identifica-
tion of lncRNAs. To enhance the generalization ability
and performance of models further, several ensemble
learning-based methods have been developed. Ensemble
learning methods combine multiple classifiers to obtain
better prediction performance [28], and bagging, boost-
ing and voting are three common ensemble learning
strategies for combining multiple classifiers. TLCLnc

[29] is a two-layer structured ensemble learning model.
The first layer of TLCLnc is the stacking of base SVM
predictors which takes a disjoint set of features as inputs,
and the second layer is the naïve Bayes classifier. Simo-
poulos et al. [30] put forward a plant lncRNA prediction
method based on the stochastic gradient boosting of
random forest classifiers. DeepCPP [31] considers nu-
cleotide bias information and minimum distribution
similarity feature selection to construct a DNN model
and calculate the coding potential of transcripts.
Existing methods make great progress in lncRNA pre-

diction; however, we want to stress two aspects for im-
provements. On the one hand, for feature usage, most
existing lncRNA prediction methods often utilize fea-
tures specifically used for biological transcripts [8, 18,
22], which we called transcript-specified features in the
following sections. However, there are some common
statistical features of nucleotide sequences, which we
named general sequence-derived features in the follow-
ing discussion, are rarely adopted. For example, the gen-
eral sequence-derived feature CTD mentioned in Liu’s
work [14] is rarely adopted in existing lncRNA predic-
tion methods to our knowledge. On the other hand, for
model construction, although ensemble learning models
and deep learning models have been used in lncRNA
prediction methods, existing models lack consideration
for the intricate interactions between different types of
features. As discussed above, the ensemble learning-
based lncRNA prediction methods usually adopt simple
boosting or stacking ensemble strategies, and deep
learning-based methods usually utilize basic DNN, RNN,
and CNN models. These model designs can cause the
oversights of useful information when integrating the
features to build the prediction model. Thus, flexible
and robust ensemble learning and deep learning model
constructions are still demanded for exploiting the infor-
mation in features to better facilitate lncRNA prediction.
In this study, we propose two lncRNA prediction

methods based on feature ensemble learning strategies,
namely LncPred-IEL and LncPred-ANEL. First, we extract
transcript-specified features and general sequence-derived
features from transcripts. Second, we consider two feature
ensemble strategies to integrate the information from dif-
ferent feature types, namely iterative ensemble learning
(IEL) and attention network ensemble learning (ANEL).
In the previous study, LncPred-IEL [32] builds base pre-
dictors based on different types of features and employs a
supervised iterative way to combine base predictors and
build ensemble models. As the extension of LncPred-IEL
[32], we propose a novel lncRNA prediction method
named LncPred-ANEL, which adopts a deep neural net-
work with the attention mechanism [33] to ensemble dif-
ferent types of features by adaptively learning the weight
of individual feature types.
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After model construction, we conduct experiments to
test the performances of the proposed models. We adopt
LargeVis [34] to visualize the feature vectors before and
after feature ensemble, and results demonstrate that IEL
and ANEL can differentiate lncRNAs from other tran-
scripts in feature space, which means the feature ensem-
ble strategies can effectively exploit and integrate the
information in different types of features. Then we com-
pare LncPred-IEL and LncPred-ANEL with four state-
of-the-art methods and results have shown that both
methods have better performances on evaluation met-
rics. Furthermore, we test the models on the cross-
species datasets and obtain good results, indicating the
models have good generalization ability.

Results and discussion
Evaluation metrics
We use 5-fold cross-validation (5-CV) to evaluate the
prediction models. To perform 5-CV, the datasets are
equally split into 5 subsets. One subset is used as the
testing set, 20% of the remaining four subsets are used
as the validation set and 80% are used as the training
set. In a fold of 5-CV, we train the models on the train-
ing set, and determine the optimal model parameters on
the validation set, then utilize the model to make predic-
tions on the testing set. This training-validation-testing
process is repeated 5 times until each subset has been
used for testing. The performances of prediction models
are evaluated by several commonly used metrics such as
sensitivity (SN), specificity (SP), accuracy (ACC) score,
and the area under curve (AUC), given by

SN ¼ TP
TPþ FN

SP ¼ TN
TNþ FP

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

where true positive (TP) is the number of true positive
instances predicted to be positive; true negative (TN) is
the number of true negative instances predicted to be
negative; false positive (FP) is the number of negative in-
stances predicted to be positive; false negative (FN) is
the number of positive instances predicted to be nega-
tive. The receiver operating characteristic (ROC) curve
is plotted by using the false positive rate (1-SP) against
SN for different cutoff thresholds and the AUC score is
the area under the ROC curve. We take AUC as the pri-
mary evaluation metric because it assesses the perfor-
mances of prediction models regardless of any threshold.

Parameter settings for features
As shown in Table 2, several general sequence-derived
features have parameters. It is critical to determine the
parameters for these features because the parameter set-
tings will influence the performances of prediction
models.
The feature k-mer has a parameter k, we consider k =

1, 2, 3, 4, 5 respectively, and merge all of them as the
spectrum profile. The same setting is adopted for the re-
verse complement k-mer profile.
The mismatch profile has two parameters k and m.

We adopt the same parameter setting as the spectrum
profile for k. The parameter m means the maximum
mismatch tolerance, in this study, we suppose that m
does not exceed one-third of the length of k-mer. So, we
choose the (3, 1)-mismatch profile, the (4, 1)-mismatch
profile, and the (5, 1)-mismatch profile and merge them
to obtain the mismatch profile.
The pseudo nucleotide composition features PseDNC,

PC-PseDNC-General, PC-PseTNC-General, SC-
PseDNC-General, and SC-PseTNC-General have two
parameters (λ,w), where 0.1 ≤w ≤ 0.9 and λ is the high-
est counted rank of correlation. For PseDNC, PC-
PseDNC-General, and SC-PseDNC-General, 1 ≤ λ ≤ L −
2; for PC-PseTNC-General and SC-PseTNC-General,
1 ≤ λ ≤ L − 3. L is the shortest length of transcripts and
L = 9 in the main datasets. To determine the best param-
eter combinations, we use a grid search strategy and
build RF prediction models on the balanced CPPred [14]
Human dataset with different combinations of the two
parameters in the above ranges. The RF prediction
models achieve the highest AUC score when using pa-
rameters (7, 0.5), (7, 0.7), (6, 0.7), (7, 0.1), and (6, 0.1) for
PseDNC, PC-PseDNC-General, PC-PseTNC-General,
SC-PseDNC-General, and SC-PseTNC-General respect-
ively. We adopt the above settings for pseudo nucleotide
composition features.
The auto-cross covariance features DACC and TACC

have a parameter lag and 1 ≤ lag ≤ L − 2. To determine
the parameter lag, we build RF prediction models on the
balanced CPPred [14] Human dataset with different lag.
We obtain the highest AUC score when lag = 7, so we
set lag to 7 for auto-cross covariance features.
Therefore, all parameters are determined for features,

then we encode transcripts into feature vectors.

Convergence analysis of proposed methods
LncPred-IEL uses an iterative way to build the prediction
model, and LncPred-ANEL trains the prediction model by
optimizing the network. In this section, we want to inves-
tigate the training processes of LncPred-IEL and LncPred-
ANEL on the main datasets of Human and Mouse to
analyze the convergence of proposed methods.
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For both models, the training process will converge
until there are no significant changes in performance.
To investigate the convergence, we record the 5-CV per-
formances of LncPred-IEL and LncPred-ANEL in the
training processes. From Fig. 1a, we can see that LncPred-
IEL produces the AUC scores of 0.9601 and 0.9709 in the
8th iterating time on the main datasets of Human and
Mouse respectively. From Fig. 1b, we can see that
LncPred-ANEL produces the loss scores of 0.0356 and
0.0982 in the 23rd training epoch on the main datasets of
Human and Mouse respectively. No significant changes in
performance metrics are observed afterward. In general,
the performances of both models increase as the training
processes continue and converge after the training rounds
above. Results show that both models can gradually im-
prove lncRNA prediction performances with the training
process and then converge to stable performance values.
We point out that both LncPred-IEL and LncPred-

ANEL reach convergence very fast. However, due to the
availability of GPU acceleration of neural network and
less training parameters, the time consumption of
LncPred-ANEL is 729 s, which is less than a third of
LncPred-IEL of 2319 s when tested on our workstation
(Intel(R) Xeon(R) Gold 6146 CPU, NVIDIA 1080 Ti
GPU and 128G RAM). In the following experiments, the
iterative round of LncPred-IEL is set to 18 and the train-
ing epoch of LncPred-ANEL is set to 23.

Feature ensemble enhance performance
In this section, we will investigate how the feature en-
semble strategies enhance performance by utilizing and
integrating different types of features to make predic-
tions. We take the results on the main Mouse dataset
for example.
We utilize a visualization tool for large-scale and high-

dimensional data called LargeVis [34], which uses the
data to construct an accurate approximated K-nearest
neighbor graph and then demonstrates the graph in a

low-dimensional space. We take the feature vectors be-
fore and after feature ensemble and utilize LargeVis to
display the distribution of positive instances and negative
instances in the 2-dimensional feature space, which is
shown in Fig. 2. Specifically, for LncPred-IEL, we take the
6-dimensional input vectors in the first iterating time and
the 24-dimensional input vectors in the 18th iterating
time, which are visualized in Fig. 2a and b respectively.
For LncPred-ANEL, we take the feature embedding vec-
tors on the first training epoch and the attention embed-
ding vectors in the 22nd epoch where loss is very low,
which are visualized in Fig. 2c and d respectively.
As we can see in Fig. 2a and c, positive instances and

negative instances are not classified by the initial feature
vectors, while in Fig. 2b and d, positive instances are
separated from negative instances after the feature en-
semble. We can draw three conclusions from the results,
first, the performances of the two methods enhance with
the training processes. Second, both methods can extract
useful information from the six types of features to fa-
cilitate prediction. Third, both feature ensemble learning
methods can effectively integrate six types of features
based on interactions between different feature types to
distinguish lncRNAs from PCTs. Specifically, the itera-
tive feature ensemble process in LncPred-IEL and the at-
tention mechanism to selectively concentrate on
important feature types in LncPred-ANEL can better fa-
cilitate the prediction results.

Comparison with state-of-the-art methods
In this section, we compare LncPred-IEL and LncPred-
ANEL with several state-of-the-art methods including
CPAT [22], CPC2 [12], Longdist [13], and CPPred [14].
Those lncRNA prediction methods reported good perfor-
mances. We adopt the default parameter setting described
in the original paper for state-of-the-art methods. All pre-
diction methods are evaluated using 5-CV.

Fig. 1 Training processes of LncPred-IEL and LncPred-ANEL. a AUC scores of LncPred-IEL models in each iterating time. b Loss scores of LncPred-
ANEL models in each training epoch
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We compare LncPred-IEL and LncPred-ANEL with
other methods using the main datasets of Human and
Mouse, which are balanced datasets containing the same
number of lncRNAs and PCTs. The results are shown in
Fig. 3a and d, LncPred-IEL achieves the highest AUC
scores and LncPred-ANEL has the second-highest AUC
scores. And we point out that LncPred-ANEL has the
highest ACC scores indicating that LncPred-ANEL can
accurately predict lncRNAs from PCTs. LncPred-ANEL
also has the highest SP scores, suggesting it could reduce
false-positive predictions. As far as we are concerned,

there are two reasons why LncPred-IEL and LncPred-
ANEL outperform others. First, both methods utilize
general sequence-derived features, bringing common
statistical information of nucleotide sequences to the
prediction. Second, LncPred-IEL and LncPred-ANEL are
flexible feature ensemble methods, which can extract
and integrate information from different types of fea-
tures to enhance lncRNA prediction performances.
Furthermore, we also test the methods on imbalanced

datasets of Human and Mouse, which have 1:2 and 1:3
ratio of the number of positive instances to negative

Fig. 2 LargeVis visualization of feature vectors. a and b are the visualizations of feature vectors before and after feature ensemble of LncPred-IEL
respectively. c and d are the visualizations of feature vectors before and after feature ensemble of LncPred-ANEL respectively

Fig. 3 LncRNA prediction model performances on balanced and imbalanced datasets of Human and Mouse respectively
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instances. As we can see in Fig. 3b, c, e, and f, LncPred-
IEL always has the highest AUC scores and LncPred-
ANEL always has the second-highest AUC scores, sug-
gesting that both methods are robust on imbalanced data-
sets. Noteworthy, although SN scores of most methods
decline because the prediction results of models trained
on imbalanced datasets favor the majority type i.e. PCTs.
LncPred-ANEL always has the highest SN scores, indicat-
ing it can effectively distinguish lncRNAs and can capture
some intrinsic information from features that makes
lncRNAs different from PCTs.

Cross-species prediction
In this section, we test the ability of LncPred-IEL and
LncPred-ANEL to perform cross-species lncRNA predic-
tion. We train both models on the main datasets of Human
and Mouse, and then make predictions for transcripts from
CPPred Fruit Fly and Zebrafish datasets, detailed descrip-
tion of the datasets can be found in Table 1.
Figure 4 shows that LncPred-IEL and LncPred-ANEL

perform well on the Fruit Fly and Zebrafish datasets. As
shown in Fig. 4a, LncPred-IEL trained on the main Hu-
man dataset produces the AUC scores of 0.8248 and
0.8999 for Fruit Fly and Zebrafish lncRNA prediction,
respectively. LncPred-IEL trained on the main Mouse
dataset achieves AUC scores of 0.9395 and 0.9841 for
Zebrafish and Fruit Fly lncRNA prediction, respectively.
As shown in Fig. 4b, LncPred-ANEL trained on the main
Human dataset produces the AUC scores of 0.7928 and
0.8109 for Fruit Fly and Zebrafish lncRNA prediction,
respectively. LncPred-ANEL trained on the main
Mouse dataset achieves AUC scores of 0.9501 and
0.9410 for Fruit Fly and Zebrafish lncRNA prediction,
respectively. That is, LncPred-IEL and LncPred-ANEL
both can distinguish lncRNAs from coding RNAs in a
cross-species manner, indicating both models have
good generalization ability and can capture some com-
mon differences between lncRNAs and PCTs among
the four species.

Conclusion
LncRNA prediction is a very important topic in the field of
bioinformatics. In this paper, we propose two lncRNA pre-
diction models based on feature ensemble learning, namely

LncPred-IEL and LncPred-ANEL. First, we encode the
transcripts into feature vectors, we not only consider
transcript-specified features but also adopt general
sequence-derived features including spectrum profiles, mis-
match profiles, reverse complement k-mer, pseudo nucleo-
tide composition, and auto-cross covariance. We consider
two strategies for feature ensemble, namely iterative ensem-
ble learning (IEL) and attention network ensemble learning
(ANEL). LncPred-IEL builds base predictors based on six
types of features and employs a supervised iterative way to
combine base predictors and build ensemble models. Ex-
tending our previous work, LncPred-ANEL employs an at-
tention mechanism to ensemble six feature types, which
places more attention on the features contributing more to
prediction results. Experiments demonstrate that both
LncPred-IEL and LncPred-ANEL can effectively separate
positive instances and negative instances in the feature
space. We also compare LncPred-IEL and LncPred-ANEL
with other state-of-the-art models, and results show that
LncPred-IEL and LncPred-ANEL produce overall better
performances on evaluation metrics. LncPred-IEL and
LncPred-ANEL’s ability of cross-species prediction are also
tested on several datasets and obtain good results. In con-
clusion, LncPred-IEL and LncPred-ANEL are useful tools
for lncRNA prediction and great complementary to experi-
ments and traditional techniques.

Methods
Datasets
We collect two types of transcripts for experiments:
lncRNAs and PCTs. We download the annotated
lncRNAs and PCTs from GENCODE [35], which is a
public repository containing annotations about the
Human and Mouse genome performed by manual anno-
tation, computational analysis, and experimental valid-
ation. We obtain lncRNAs and PCTs for Mouse (Release
M21) and Human (Release 29) respectively. Because
there are some redundant transcripts, we cluster tran-
scripts and remove similar transcripts with a similarity
threshold of 80% by using an open-source program
called CD-HIT [36]. Then we take all lncRNAs as posi-
tive instances and sample the same number of PCTs as
negative instances, and build our main datasets of Hu-
man and Mouse respectively.
We also adopt the Human (Homo sapiens), Mouse (Mus

musculus), Fruit Fly (Drosophila melanogaster), and Zeb-
rafish (Danio rerio) transcripts from CPPred datasets [14]
for further analysis, which contains lncRNAs from
Ensembl database [37] (Release 90) and PCTs from NCBI
RefSeq [38] (Release 95).
The details about the datasets are demonstrated in

Table 1. In the following sections, the main datasets are
used to evaluate the proposed methods and compare

Table 1 Summary of the datasets

Description Species # Positive # Negative

Main datasets Human 24,162 24,162

Mouse 27,595 27,595

CPPred datasets Human 23,384 23,384

Mouse 15,345 15,345

Fruit Fly 2775 17,399

Zebrafish 6840 15,534
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different methods. CPPred datasets are used for param-
eter setting and cross-species lncRNA prediction.

Feature extraction
In this section, we introduce six types of features to
build lncRNA prediction models. In our study, we con-
sider transcript-specified features, which are features
specifically used for biological transcripts. Transcript-
specified features are proved to be useful for lncRNA
prediction by previous studies [8, 18, 22]. Besides, we
also consider five types of general sequence-derived
features, which are common statistical features of nu-
cleotide sequences, containing spectrum profile, re-
verse complement k-mer profile, mismatch profile,
pseudo nucleotide composition, and auto-cross covari-
ance [39]. Details are described as follows. For the con-
venience of the feature description, we define a given
transcript as

S ¼ N1N2N3⋯NL

where L is the total length of the transcript and Ni ∈ {A,
G, C, U} denotes the i th nucleotide of the transcript.

Transcript-specified features
There are many transcript-specified features used in exist-
ing lncRNA prediction models. CPAT [22] adopts open
reading frame (ORF) length, ORF coverage, Fickett score
[40], and Hexamer score. CPC [8] and CPC2 [12] both
utilize ORF integrity, isoelectric point (pI), Gravy, and In-
stability index. CPPred [14] employs the composition,
transition, and distribution (CTD) features. The features
are useful for lncRNA prediction, so we consider those
transcript-specified features above when building our
models. Details about these features are described below.
ORF length is the length of the first ORF in a tran-

script. ORF coverage is the ratio of the longest ORF

length to the transcript length. Fickett [40] score is
transformed from the nucleotide position frequencies
and base composition of a transcript by a lookup table.
Hexamer score [22] is calculated based on in-frame hex-
amer frequency of coding and non-coding transcripts,
and a positive Hexamer score suggests a transcript is
protein-coding. ORF integrity reflects whether the lon-
gest ORF starts with a start codon and ends with a stop
codon. pI, Gravy, and Instability index are structure-
related features. pI denotes the theoretical isoelectric
point of the predicted peptide encoded by the given
transcript. Gravy is the grand average of hydropathicity
and Instability index reflects the stability of the predicted
peptide [41].
The feature CTD [42] is a global transcript descriptor,

which is composed of nucleotide composition, nucleo-
tide transition, and nucleotide distribution. Nucleotide
composition denotes the percentage composition of each
nucleotide in the entire sequence. Nucleotide transition
describes the percentage conversion frequency of four
nucleotides between adjacent positions. Nucleotide dis-
tribution calculates the percentage conversion frequency
of four nucleotides between five relative positions (0, 25,
50, 75, and 100%) along the transcript.

Spectrum profile
The spectrum profile, also known as k-mer, is a statis-
tical ‘signature’ of the underlying sequence [43, 44]. k-
mer describes the frequency of k-length contiguous sub-
sequences. Given a sequence S, k-mer is defined as

f spek Sð Þ ¼ c1; c2;⋯; c4kð Þ

where ci is the occurrence frequency of corresponding k-
length contiguous subsequences.

Fig. 4 Cross-species prediction results of LncPred-IEL (a) and LncPred-ANEL (b)
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Reverse complement k-mer (k-RevcKm) profile
This feature takes the reverse complement of the se-
quence into regard. Given a sequence S, the reverse
complement k-length contiguous subsequences will be
cut after generating k-mer, then the remaining k-length
subsequences are extracted to create a feature vector
called k-RevcKmer. For instance, if k = 2, there are 16 k-
mers (‘AA’, ‘AC’, ‘AG’, ‘AT’, ‘CA’, ‘CC’, ‘CG’, ‘CT’, ‘GA’,
‘GC’, ‘GG’, ‘GT’, ‘TA’, ‘TC’, ‘TG’, ‘TT’), but by removing
the reverse complementary k-mers, there are only 10
unique k-mers in the reverse complementary k-mer pro-
file (‘AA’, ‘AC’, ‘AG’, ‘AT’, ‘CA’, ‘CC’, ‘CG’, ‘GA’, ‘GC’,
‘TA’). Detailed descriptions of this feature can be found
in [45, 46].

Mismatch profile
The mismatch profile is similar to k-mer but has an-
other parameter m (m < k) describing mismatch toler-
ance in the k-length contiguous subsequences. For
instance, if k = 3 and m = 1, the symbol (3, 1) denotes a
3-length subsequence that has a maximum one mis-
match. Assuming subsequence ‘ACG’ satisfies (3, 1), we
need to consider 3 possible cases, ‘XCG’, ‘AXG’, and
‘ACX’ where ‘X’ in each case can be replaced by any
nucleotide. (k, m)-mismatch profile is given by

f mis
k Sð Þ ¼

Xm

j¼0
c1 j;

Xm

j¼0
c2 j;⋯;

Xm

j¼0
c4k j

� �

where cij denotes the occurrence frequency of the i th k-
length contiguous subsequence with j mismatches, i = 1,
2, 3, ⋯, 4k and j = 0, 1, 2, ⋯, m.

Pseudo nucleotide composition
In computational proteomics, the feature pseudo amino
acid composition (PseAAC) is proposed by chou [47] to
utilize the sequence-order information of protein
sequences and has rapidly penetrated many areas of bio-
informatics [48–50]. In our work, we take a variant form
of PseAAC in the nucleotide research field called pseudo
nucleotide composition as one of the features.
Pseudo nucleotide composition considers global se-

quence order information by the physicochemical prop-
erties of its constituent nucleotides [47]. In this study,
various forms of pseudo nucleotide compositions are
considered, including the basic feature pseudo dinucleo-
tide composition (PseDNC) and four variants: parallel
correlation pseudo dinucleotide composition (PC-
PseDNC-General), parallel correlation pseudo trinucleo-
tide composition (PC-PseTNC-General), series correl-
ation pseudo dinucleotide composition (SC-PseDNC-
General), and series correlation pseudo trinucleotide
composition (SC-PseTNC-General).

Auto-cross covariance
Generated from the idea that a transcript can be viewed
as a time sequence of the corresponding properties,
auto-cross covariance [51] measures the correlation
between properties of any two nucleotide residues and
then transforms nucleotide sequences into vectors with
fixed lengths. Auto-cross covariance has two compo-
nents: auto-covariance (AC) and cross-covariance (CC).
AC measures the correlation of the same property be-

tween two nucleotides in the sequence, and the AC cor-
relation of residue i between two nucleotides separated
by a distance of lag can be calculated as

AC i; lagð Þ ¼
XL − lag

j¼1

Si; j − �Si
� �

Si; jþlag − �Si
� �

= L − lagð Þ

where L is the length of the sequence, Si, j is the PSSM
score of residue i at position j, S̄i is the average PSSM
score of residue i along the whole sequence. In this way,
the dimensionality of AC is 4 × LAG, where LAG is the
maximum of lag.
CC measures the correlation of two different proper-

ties between two nucleotides in the transcripts, and the
CC correlation of residue i1 and residue i2 between two
nucleotides separated by a distance of lag can be calcu-
lated as

CC i1; i2; lagð Þ ¼
XL − lag

j¼1

Si1; j − �Si1
� �

� Si2; jþlag − �Si2
� �

= L − lagð Þ
where S̄i1 (S̄i2 ) is the average PSSM score for residue
i1 (i2). Because there are two residues in the formula,
CC is not symmetrical, the total dimensionality of CC is
12 × LAG.
Different types of auto-cross covariance features com-

bine AC and CC, such as dinucleotide auto-covariance
(DAC), dinucleotide cross-covariance (DCC), trinucleo-
tide auto-covariance (TAC), and trinucleotide cross-
covariance (TCC). In this study, we adopt the combin-
ation of DAC and DCC (DACC) and the combination of
TAC and TCC (TACC) [52].

Iterative ensemble learning (IEL)
In this section, we introduce the iterative feature ensem-
ble strategy to build the lncRNA prediction model, ab-
breviated as LncPred-IEL. The workflow of LncPred-IEL
is shown in Fig. 5a.
First, we extract the six types of features in section fea-

ture extraction to encode the transcripts into feature
vectors. As we can see in Table 2, some features have
very high dimensions, which can result in feature redun-
dancy and prediction noise. So, we adopt a two-step ap-
proach for feature selection to determine the most
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discriminative features subsets. The first step is to assess
the importance of all features using Analysis of Variance
(ANOVA) and sort all features according to their im-
portance. ANOVA is a statistical method used to analyze
the differences among group means in a sample [53].
Then we employ the minimal redundancy maximal rele-
vance (mRMR) [54] to determine the optimal feature
subsets. Therefore, we obtain six groups of optimal fea-
ture subsets for further analysis.
Second, we utilize the random forest (RF) classifier to

construct the base predictors. RF is a commonly used
machine learning algorithm for classification, regression,
and other tasks [55]. We adopt the RF classifier to build
base predictors because of its high efficiency and high
accuracy. We use the Python package scikit-learn (v
0.20.3) [56] to implement RF classifiers. We build one
base predictor on one optimal feature subset using the
RF classifier. In this way, we build a total of six RF-based
predictors using six groups of optimal feature subsets
respectively.
Third, we use the iterative feature ensemble learning

strategy to construct the final prediction model. The
idea is originated from a layer-wise way of learning fea-
tures in the deep neural network (DNN) [57]. We com-
bine six base predictors to develop an ensemble model.
In the stage of prediction, each of base predictors gen-
erates a score for a given sequence indicating the prob-
ability of the sequence being lncRNA. To integrate
outputs from multiple base predictors, we adopt a novel
nonlinear feature ensemble approach, which is de-
scribed as follows. (i) For a given sequence, we combine
the six probability scores generated by base predictors
into a 6-dimensional feature vector. (ii) We build an

RF-based ensemble model using the 6-dimensional fea-
ture vectors as input vectors, and the labels (lncRNA or
PCT) of these sequences as outputs. (iii) We take the
ensemble model as a new base predictor and add it to
the set of base predictors. Iteratively, the ensemble
model is generated from base predictors and then used
as a new base predictor. (iv) The iteration process will
continue until observing no performance improvement
or reaching the maximum iteration round.

Attention network ensemble learning (ANEL)
In this section, to better utilize and integrate the six types
of features, we propose a novel attention network ensem-
ble learning strategy to build the lncRNA prediction
model as the extension of our previous work [32], abbrevi-
ated as LncPred-ANEL. The workflow of LncPred-ANEL
is shown in Fig. 5b.
Inspired by the cognitive attention mechanism of

the human brain, attention mechanism is designed in
deep learning to selectively concentrate on a few rele-
vant features [33]. The attention mechanism emerges
as a result of the development of the neural network
translation system in natural language processing
(NLP) [33], and are widely used in other areas, such
as bioinformatics [58], computer vision [59], speech
processing [60], etc. Inspired by the hierarchical
attention mechanism proposed by [61], we develop an
attention network ensemble learning method called
LncPred-ANEL.
First, there are six groups of features for a given se-

quence, and each group of features is respectively
encoded into embeddings with the same dimensions
using a fully-connected embedding layer. Let fi

Fig. 5 The workflow of LncPred-IEL (a) and LncPred-ANEL (b)
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denotes the i th embedding produced by the embed-
ding layer, i = 1, 2, ⋯, 6. Second, an attention layer is
designed to learn the attention embedding from six
types of embeddings, the formulas are described as
follows,

hi ¼ ReLU Ww f i þ bwð Þ

αi ¼
exp hi

Thw
� �

P
i exp hTi hw

� �

Fatt ¼
X

i
αi f i

Specifically, the embedding fi is mapped into a hid-
den representation hi using a nonlinear ReLU func-
tion, and hi is normalized to obtain the attention
weight αi. The attention embedding Fatt is obtained

by calculating the weighted sum of the six types of
embeddings. Ww, bw and hw are randomly initialized
trainable parameters. Third, Fatt is used as the input
for a multilayer perceptron (MLP) to yield the predic-
tion score.
We use PyTorch (v 1.5.0) [62] to implement LncPred-

ANEL. We adopt the cross-entropy loss function, and
choose the Adam optimizer with learning rate 5e-3, and
set the batch size to 32. We use a dropout layer with a
drop probability of 0.5 after the fully-connected feature
embedding layer to prevent overfitting.

Abbreviations
LncPred-IEL: A lncRNA prediction method based on iterative ensemble
learning strategy;; LncPred-ANEL: A lncRNA prediction method based on the
attention network ensemble learning strategy;; 5-CV: 5-fold cross-validation;
ncRNA: Non-coding RNA; lncRNA: Long non-coding RNA; nt: Nucleotide;
PCT: Protein-coding transcript; SVM: Support vector machine; RF: Random
forest; LR: Logistic regression; RNN: Recurrent neural network;

Table 2 Details of six types of features

Feature Dimensionality Parameter

Transcript-specified ORF length 1 No parameter

ORF integrity 1 No parameter

ORF coverage 1 No parameter

Fickett score 1 No parameter

Hexamer score 1 No parameter

pI 1 No parameter

Gravy 1 No parameter

Instability index 1 No parameter

CTD 30 No parameter

General
sequence-derived

Spectrum profile 1-mer 4 No parameter

2-mer 16 No parameter

3-mer 64 No parameter

4-mer 256 No parameter

5-mer 1024 No parameter

Mismatch profile (3, m)-mismatch profile 64 m: the maximum mismatch

(4, m)-mismatch profile 256 m: the maximum mismatch

(5, m)-mismatch profile 1024 m: the maximum mismatch

Reverse complement k-mer profile 1-RevcKmer 2 No parameter

2-RevcKmer 10 No parameter

3-RevcKmer 32 No parameter

4-RevcKmer 136 No parameter

5-RevcKmer 528 No parameter

Pseudo nucleotide composition PC-PseDNC-General 16 + λ λ: the highest counted rank

PC-PseTNC-General 64 + λ λ: the highest counted rank

SC-PseDNC-General 16 + 6 × λ λ: the highest counted rank

SC-PseTNC-General 64 + 12 × λ λ: the highest counted rank

PseDNC 16 + λ λ: the highest counted rank

Auto-cross covariance DACC 36 × lag lag: the distance between residues

TACC 4 × lag lag: the distance between residues
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CNN: Convolutional neural network; DNN: Deep neural network; ORF: Open
reading frame; pI: Isoelectric point; CTD: Composition, transition, and
distribution; k-RevcKm: Reverse complement k-mer; PseDNC: Pseudo
dinucleotide composition; PC-PseDNC-General: Correlation pseudo
dinucleotide composition; PC-PseTNC-General: Parallel correlation pseudo
trinucleotide composition; SC-PseDNC-General: Series correlation pseudo
dinucleotide composition; SC-PseTNC-General: Series correlation pseudo
trinucleotide composition; AC: Auto-covariance; CC: Cross-covariance;
DAC: Dinucleotide auto-covariance; DCC: Dinucleotide cross-covariance;
TAC: Trinucleotide auto-covariance; TCC: Trinucleotide cross-covariance;
DACC: The combination of DAC and DCC; TACC: The combination of TAC
and TCC; ANOVA: Analysis of Variance; mRMR: Minimal redundancy maximal
relevance; NLP: Natural language processing; MLP: Multilayer perceptron;
SN: Sensitivity; SP: Specificity; ACC: Accuracy; AUC: Area under ROC curve;
ROC: Receiver operating characteristic
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