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Abstract: Decorin (DCN) is one of the matricellular proteins that participate in normal cells’ function
as well as in cancerogenesis. While its expression in primary tumours is well known, there is
limited data about its expression in metastases. Furthermore, the post-transcriptional regulation
of DCN is still questionable, although it is well accepted that it is an important mechanism of
developing metastatic cancer. The aim of our study was to analyse the expression of DCN and
its potential regulatory ncRNAs in metastatic colorectal carcinoma (CRC). Nineteen patients with
metastatic CRC were included. Using qPCR, we analysed the expression of DCN, miR-200c and
five lncRNAs (LUCAT1, MALAT1, lncTCF7, XIST, and ZFAS1) in lymph node and liver metastases
in comparison to the invasive front and central part of a primary tumour. Our results showed
insignificant upregulation of DCN and significant upregulation for miR-200c, MALAT1, lncTCF7
and ZFAS1 in metastases compared to the primary tumour. miR-200c showed a positive correlation
with DCN, and the aforementioned lncRNAs exhibited a significant positive correlation with miR-
200c expression in metastatic CRC. Our results suggest that DCN as well as miR-200c, MALAT1,
lncTCF7 and ZFAS1 contribute to the development of metastases in CRC and that regulation of DCN
expression in CRC by ncRNAs is accomplished in an indirect manner.

Keywords: colorectal carcinoma; liver metastasis; lymph node metastasis; decorin; miR-200c; lncRNA

1. Introduction

Decorin (DCN) is one of the matricellular proteins belonging to the small leucine-rich
proteoglycan family. DCN is transcribed and translated by fibroblasts, stressed vascular
endothelial cells and smooth muscle cells [1]. It was first discovered as a protein-decorating
collagen fibre [2], but today it is known as an important regulator of collagen fibrillo-
genesis [3,4]. Moreover, DCN participates in other cellular functions such as migration,
proliferation, apoptosis and differentiation [5]. DCN also binds to growth factors, such
as TGFβ, but on the other side, it inhibits receptor tyrosine kinases, e.g., EGFR, IGF-IR
and met [1,6]. Consequently, the latter bioactivities have been attributed to evoke potent
tumour repression [1].

DCN is one of many proteins in the extracellular matrix that provides not only physical
scaffolds but also regulates many cellular processes, including cancerogenesis [7]. Several
studies reported that a lack of DCN leads to spontaneous tumour development [2]. It
has been shown that the expression of DCN is reduced in many carcinomas, e.g., in the
ovaries, lung, oesophagus and others [2,4,8,9], where DCN is mainly synthesised by stromal
cells, whereas it is almost completely absent in tumorous cells [9] or rarely by actively
dividing normal cells [3]. The expression of DCN was also shown in some studies to be
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reduced in colorectal carcinoma (CRC) [3,4]; however, we [10] and others [9] reported a
higher expression of DCN in CRC. We also showed that the DCN gene is upregulated
regardless of the presence of lymph node metastasis, and it was the only gene significantly
associated with the presence of lymph node metastasis in CRC. In the same study, we also
observed an altered expression of DCN at the invasive front of CRC compared to its central
part [10]. The extracellular matrix, including DCN, is used by disseminating tumorous cells
to insulate themselves from the insult of haemodynamic fluid shear stress in circulation and
to contribute to the establishment of a premetastatic niche by reorganizing the pre-existing
extracellular matrix structure [11].

Post-transcriptional regulation of DCN is still questionable, although it is well ac-
cepted that its aberrant expression is important in developing lymph node and liver
metastases in cancer, including CRC [12]. There are numerous known mechanisms of
post-transcriptional regulation of mRNAs, the most frequently analysed being non-coding
RNA (ncRNA) [13–16]. Among known groups of ncRNAs, miRNAs (microRNAs) and
lncRNAs (long non-coding RNAs) have proven regulatory function and contribution to
the development of metastasis in different carcinomas [17,18]. Up until now, no miRNA
was confirmed to regulate DCN, and one miRNA, i.e., miR-200c, was predicted using
bioinformatics analysis [19]. However, in vitro or in vivo correlation between expression of
miR-200c and DCN has not been shown yet.

None of the lncRNAs have yet been proven to directly regulate DCN. In contrast,
there are numerous proven lncRNAs that are validated to sponge miR-200c in different
cancers, the predicted regulatory miRNA of DCN [20–28]. However, their exact role
in regulating miR-200c in CRC has yet to be elucidated. Furthermore, while there are
numerous studies describing the expression of DCN in CRC [3–5,9,12], there is limited data
about the expression of mRNA DCN in lymph node and liver metastases. So far, only one
study [29] reported a lower expression of the protein DCN in liver metastases of CRC.

Therefore, the aim of our study was to analyse the expression of DCN in the central
part and the invasive front in comparison to the lymph node and liver metastases to further
explore its role in advanced CRC. Furthermore, we tried to indirectly confirm previously
predicted regulation of DCN on mRNA level by miR-200c [19] and to analyse whether
experimentally validated lncRNAs might act as sponges for miR-200c.

2. Materials and Methods

Tissue samples from patients with CRC with lymph node and/or liver metastases were
included in the study. For routine histopathologic examination, all tissue samples were
fixed for 24 h in 10% buffered formalin and embedded in paraffin (FFPE). After fixation and
embedding, tissues were cut into 4 µm slides and stained with haematoxylin and eosin for
routine histopathological examination and classification according to pTNM (pathologic
Tumour Node Metastasis). Samples were collected retrospectively from the archives of
the Institute of Pathology, Faculty of Medicine, University of Ljubljana. On the basis of
clinical and histopathological features, samples were divided into three groups: patients
with CRC with lymph node metastases, patients with liver metastases but without lymph
node metastases and patients with carcinoma with lymph node and liver metastases.

The investigation was carried out following the rules of the Declaration of Helsinki.
The study was approved by the National Medical Ethics Committee (Republic of Slovenia,
Ministry of Health).

2.1. Isolation of Total RNA from Tissue Cores

Tissue cores from the nodal and liver metastasis of CRC were punched from FFPE
tissue blocks using a 600 µm needle. MagMax FFPE DNA/RNA Ultra kit (Applied Biosys-
tems, Thermo Fisher Scientific, Inc.; Waltham, MA, USA) was used to extract the total
RNA from three punches for each isolation. The total RNA extraction was isolated fol-
lowing the manufacturer’s instructions, with one modification: protease digestion was
performed overnight with mixing for 15 s at 300 rpm every 4 min instead of 1 h. Apart
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from the deparaffinization solution (Xylene; Sigma-Aldrich; St. Louis, MO, USA) and the
ethanol (Merck KGaA; Darmstadt, Germany), all the reagents were from Applied Biosys-
tems (Thermo Fisher Scientific, Inc.). The quantity of RNA was measured with NanoDrop
ND-1000 (Thermo Fisher Scientific, Inc.) by measuring the absorbance at 260 nm.

2.2. Selection of lncRNAs

After searching through the publication, we have identified 9 lncRNAs that were
suggested to sponge miR-200c in different types of cancer or in other diseases [20–27,30].
Among the identified lncRNAs, we have chosen those that could successfully detect specific
products of less than 100 bp using TaqMan probe. For the purpose of expression analysis,
we, therefore, selected the following lncRNAs: LUCAT1, MALAT1, lncTCF7, XIST and
ZFAS1 [20–22,27,28]. The other four lncRNAs, namely ATB, LINC02582, N-BLR and ZEB1-
AS1 [23–26], were excluded from further analysis due to the longer amplification product
of pre-designed TaqMan probes.

2.3. Reverse Transcription and Quantitative PCR (qPCR)

Associated lncRNAs LUCAT1, MALAT1, lncTCF7, XIST, ZFAS1 and mRNAs for DCN
(Table 1) were analysed relative to the geometric mean of RGs, IPO8 and B2M. lncRNAs
and mRNAs were reverse transcribed using an OneTaq RT-PCR Kit (New England Biolabs,
Ipswich, MA, USA) using random primers according to the manufacturer’s instructions.
Reverse transcription (RT) reactions were started with 3.0 µL (60 ng) of total RNA and
1.0 µL of Random Primer Mix incubated at 70 ◦C for 5 min. The 10 µL RT master mix
included 5.0 µL of M-MuLV Reaction Mix, 1.0 µL of M-MuLV reverse transcriptase and
4.0 µL of reaction mix after random priming. The reaction conditions were 25 ◦C for 5 min,
42 ◦C for 60 min and 80 ◦C for 4 min.

Table 1. List of used TaqMan gene expression assay.

Gene or lncRNA Assay ID

B2M Hs99999907_m1
IPO8 Hs00183533_m1
DCN Hs00266491_m1

LUCAT1 Hs04978593_m1
MALAT1 Hs0191077_s1
lncTCF7 Hs01556515_m1
ZFAS1 Hs01379985_m1
XIST Hs01077162_m1

RNU6B ID 001093
miR-1274b ID 002884
miR-200c ID 002300

After cDNA synthesis, a preamplification reaction was performed using the TaqMan
PreAmp mastermix (Applied Biosystems; Thermo Fisher Scientific, Inc.) following the
manufacturer’s protocol. The TaqMan Gene Expression Assays, listed in Table 1, were
pooled, followed by dilution to 0.2× using Tris-EDTA buffer solution, pH 8.0 (Sigma-
Aldrich; Merck KGaA). The thermocycling conditions were as follows: 10 min at 95 ◦C and
10 cycles of 15 sec at 95 ◦C and 4 min at 60 ◦C.

For miRNAs, reverse transcription looped primers for specific RT of miRNAs and
a MicroRNA TaqMan RT kit (Applied Biosystems, Foster City, CA, USA) were utilised
following the manufacturer’s protocol. RNU6B and miR-1247b were used as reference
genes (RGs). miR-200c was tested relative to the geometric mean of expression of RNU6B
and miR-1247b (Table 1). Briefly, a 10 µL RT reaction master mix was performed with 10 ng
of total RNA sample, 1.0 µL of MultiScribe Reverse Transcriptase (50 U/µL), 1.0 µL of
Reverse Transcription Buffer (10×), 0.1 µL of dNTP (100 mM), 0.19 µL RNAase inhibitor
(20 U/µL), and 2.0 µL of RT primer (5×). The reaction conditions were 16 ◦C for 30 min,
42 ◦C for 30 min, 85 ◦C for 5 min.
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qPCR reactions were performed using TaqMan technology with FastStart Essential
DNA Probe Master (Roche Diagnostics, Basel, Switzerland). Each qPCR reaction contained
appropriately diluted cDNA, 2× FastStart Essential DNA Probe Master (Roche Diagnos-
tics) and 20× TaqMan gene expression assay, listed in Table 1. All qPCR reactions were
conducted on a Rotor-Gene Q system (Qiagen GmbH), and each sample was run twice.
The thermocycling conditions for gene expression were 10 min at 95 ◦C and 40 cycles of
15 s at 95 ◦C and 1 min at 60 ◦C. For miRNAs, the thermocycling conditions were 95 ◦C
for 10 min, 40 cycles for 15 s at 95 ◦C and for 60 s at 60 ◦C. The signal was collected at the
endpoint of every cycle.

To calculate the efficiency of qPCR reactions, pools of RNA samples of each group
were created. The RNA pools were reverse transcribed, and in the cases of lncRNAs and
mRNAs, the pools were preamplified as described above and diluted in 4 steps, ranging
from 5- to 625-fold dilution; qPCR reactions were run in triplicate as described above.

2.4. Statistical Analysis

To calculate relative gene expression, Cq values were corrected according to
Latham et al. [31]. To obtain ∆Cq, the Cq of the gene/lncRNA/miRNA of interest was
deducted from the geometric mean of Cq values of the reference genes. In CRC, the mR-
NAs’, miRNAs’ and lncRNAs’ expression differences were compared between both the
central part and invasive front of CRC, the central part of CRC and lymph node metastasis
and the central part of CRC and liver metastasis using ∆Cq and the Wilcoxon rank test.
For all correlations/associations, Spearman rank-order correlation was used. All statistical
analyses were performed using SPSS analytical software v24 (IBM Corp., Armonk, NY,
USA), with a cut-off of p ≤ 0.05.

3. Results
3.1. Patients and Tissue Samples

In total, we analysed 63 tissue samples from 19 patients with CRC with lymph node
and/or liver metastases. There were 13 males and 6 women, with a mean age of 70 ± 14.
The invasive front and the central part of CRC were available in all cases, whereas lymph
node metastases were available in 15 and liver metastases in 10 cases. Detailed information
is provided in Table 2.

Table 2. Patients’ characteristics and pTNM status.

Group Age
(Mean ± SD) Male:Female pTNM Tissue Samples

N+ M0 74.2 ± 13.4 7:2 pT3N1 (n = 6) pT4N2M0 (n = 1)
pT4N2M1 (n = 2)

Invasive front (n = 9)
Central part (n = 9)

Lymph node metastasis (n = 9)

N0 M+ 70.5 ± 4.9 2:2
pT1 (n = 1)

pT3N0 (n = 1) pT3N0M1 (n = 1)
pT4aN1a (n = 1)

Invasive front (n = 4)
Central part (n = 4)

Liver metastasis (n = 4)

N+ M+ 63.8 ± 15.5 4:2 pT3N1 (n = 1) pT3N2M1 (n = 1)
pT4N1M1 (n = 4)

Invasive front (n = 6)
Central part (n = 6)

Lymph node metastasis (n = 6)
Liver metastasis (n = 6)

3.2. Expression of Decorin in the Central Part and the Invasive Front of Primary Colorectal
Carcinoma in Comparison to Lymph Node and Liver Metastases

The expression of DCN was present in all analysed groups; the results are presented in
Figure 1. Gene expression of DCN was downregulated in the central part when compared
to the invasive front of primary CRC, in lymph nodes or in liver metastases. The downreg-
ulation was observed in the central part and the invasive front of CRC compared to lymph
node and liver metastasis. None of the comparisons yielded statistically significant results.
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Figure 1. Expression of decorin in the central part and the invasive front of primary colorectal
carcinoma in lymph node and liver metastases. Legend: ∆Cq, delta Cq.

3.3. Expression of miR-200c in the Central Part and Invasive Front of Primary Colorectal
Carcinoma in Comparison to Lymph Node and Liver Metastases

The expression of miR-200c was present in all analysed groups and is presented in
Figure 2. The expression of miR-200c was upregulated, but not significant, in the central part
of CRC in comparison to the invasive front. The expression of miR-200c was significantly
downregulated in the central part of CRC as well as the invasive front when compared
either to lymph node or liver metastases (p = 0.001 and p = 0.008 in the central part and
p = 0.001 and p = 0.008 at the invasive front).
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3.4. Expression of lncRNAs in the Central Part and the Invasive Front of Primary Colorectal
Carcinoma in Comparison to Lymph Node and Liver Metastases

When comparing the central part of CRC to the invasive front, LUCAT1, XIST and
ZFAS1 were non-significantly upregulated in all groups, while MALAT1 and lncTCF7 were
non-significantly downregulated.

When comparing lymph node metastases to both the central part and invasive front
of CRC, the difference in expression of MALAT1 was significant in both cases (p = 0.041
and p = 0.013, respectively) and of lncTCF7 only when compared to the invasive front
(p = 0.050). The expression of LUCAT1 was upregulated in the central part of CRC when
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compared to the expression in lymph node metastasis. LUCAT1, XIST and ZFAS1 did not
show any statistically significant change in expression when comparing the central part of
CRC or the invasive front to the lymph node metastasis.

Additionally, all investigated lncRNAs were downregulated in the central part and the
invasive front of CRC when compared to liver metastasis. The difference in expression of
the investigated lncRNAs in the invasive front of CRC was not significant when compared
to the expression in liver metastases. Nonetheless, significant differences were observed in
the expression of MALAT1, lncTCF7 and ZFAS1 in the central part of CRC when compared
to the expression in liver metastasis (p = 0.011, p = 0.013 and p = 0.007, respectively). The
expression of the selected lncRNAs is presented in Figure 3.
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3.5. Correlations between miR-200c, Target Gene Decorin and the Investigated lncRNAs

XIST did not correlate significantly with any of the other investigated lncRNAs,
miR-200c or DCN. miR-200c had several statistically significant correlations: a weak posi-
tive correlation with DCN, lncTCF7 and ZFAS1 and a moderate positive correlation with
MALAT1. Additionally, DCN correlated significantly and positively with several of the
investigated lncRNAs; a weak positive correlation was observed with lncTCF7 and ZFAS1,
while a moderate positive correlation was observed with MALAT1. Furthermore, several
of the investigated lncRNAs correlated significantly and positively with each other, the
strongest being between MALAT1 and ZFAS1. Other comparisons and complete data on
correlation coefficients and corresponding p-values are summarised in Table 3.
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Table 3. Significant Spearman correlation coefficients and corresponding p-values for investigated
comparisons between the miR-200c, decorin and analysed lncRNAs.

Correlations and
p-Values DCN miR-200c LUCAT1 MALAT1 XIST lncTCF7 ZFAS1

DCN 1 0.296 (0.027) / 0.452 (<0.001) / 0.278 (0.034) 0.357 (0.006)
miR-200c 0.296 (0.027) 1 / 0.425 (0.001) / 0.313 (0.018) 0.375 (0.004)
LUCAT1 / / 1 0.633 (<0.001) / 0.613 (0.001) 0.516 (0.006)
MALAT1 0.452 (<0.001) 0.425 (0.001) 0.633 (<0.001) 1 / 0.741 (<0.001) 0.746 (<0.001)

XIST / / / / 1 / /
lncTCF7 0.278 (0.034) 0.313 (0.018) 0.613 (0.001) 0.741 (<0.001) / 1 0.641 (<0.001)
ZFAS1 0.357 (0.006) 0.375 (0.004) 0.516 (0.006) 0.746 (<0.001) / 0.641 (<0.001) 1

4. Discussion

The purpose of this study was to evaluate the expression of DCN in the central part
and the invasive front of primary CRC in comparison to lymph node and liver metastases.
Our results showed that the expression of DCN was downregulated in the central part
and the invasive front of CRC compared to lymph node and liver metastases. Further, we
examined whether the expression of miR-200c was negatively correlated to the expression
of DCN and validated the expression of some lncRNAs as potential sponges for miR-200c.
The Spearman correlation coefficient showed a positive, statistically significant correlation
between the expression of DCN and miR-200c as well as between lncRNAs MALAT1,
lncTCF7 and ZFAS1 and miR-200c. These three lncRNAs were also the only ones that were
significantly downregulated in the central part or the invasive front of CRC when compared
to metastases.

Previous studies of DCN expression in CRC were mostly based on a comparison
between the expression in tumorous and healthy mucosa [3,4,32]. Our study, however,
compared the expression between the central part and the invasive front of CRC to lymph
node and liver metastases. The expression of DCN was slightly downregulated in both the
central part and invasive front of CRC in comparison to lymph node and liver metastases,
but the difference in expression was not significant. There are limited data about the
heterogeneity of expression of either protein or the mRNA of DCN in different parts of
CRC. In our previous study, we compared the expression of DCN in the central part
to the expression of DCN in the invasive front, and this was further confirmed in the
present study [10]. Another group analysed the expression pattern of protein DCN in
healthy mucosa, primary tumour and liver metastases of CRC [29]. Immunohistochemistry
conducted by Reszegi et al. showed that the expression of DCN was downregulated in
the stroma of the primary tumour compared to the stroma of healthy mucosa. In the liver
metastases, the expression of the protein was the same when compared to the adjacent
liver tissue but significantly lower than in the normal colon and primary CRC [29]. Based
on these and our observations, we speculated that the decreased expression of protein
DCN and slight upregulation of mRNA DCN in liver metastases compared to the primary
tumour may reflect the regulation at the post-transcription level by ncRNAs.

Regarding the gradient of expression of miR-200c in CRC, we did not observe any
changes in expression; however, some studies reported upregulation of miR-200c in the
central part in comparison to the invasive front of CRC [33,34]. In concordance with our
results of miR-200c expression, Hur et al. [35] also found downregulation of miR-200c
in primary CRC in comparison to liver metastases. In contrast, another study showed
miR-200c upregulation in primary CRC compared to liver metastases [36]. However, to
the best of our knowledge, this was the first report of miR-200c expression in lymph node
metastases of CRC in comparison to primary CRC besides our previous study that focused
on the epithelial-mesenchymal transition [37]. Furthermore, our results suggest that in
contrast to a previous bioinformatics analysis [19], miR-200c has a positive influence on
DCN expression in CRC metastases. We can only speculate that the observed positive
correlation between the expression of miR-200c and DCN suggests that DCN is regulated by
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miR-200c in an indirect manner (through another factor or binding of miR-200c on promotor
region of DCN) rather than a direct manner (binding of miR-200c to the 3′-UTR of DCN).

Similarly, the expression of the three of five investigated lncRNAs positively correlated
to the expression of miR-200c; therefore, sponging of miR-200c by selected miRNAs is
probably not the case. Speculatively, all these ncRNAs might be, for instance, under the
regulation by the same transcription factor. However, all of the five investigated lncRNAs
had already been reported to be upregulated in CRC in comparison to healthy mucosa.
Moreover, the expression of all lncRNAs had been positively correlated to the development
of metastases [38–47]. According to the available publications, there is no data regarding a
comparison of the expression of investigated lncRNAs in the central part of CRC to that in
the invasive front, lymph node and liver metastases of CRC.

Although LUCAT1 was downregulated in our samples of primary CRC in comparison
to liver metastasis, downregulation did not reach statistical significance. The lncRNAs’
expression profiles of CRC tissue from patients with liver metastases to those without
metastases revealed that LUCAT1 is a liver metastasis-associated lncRNA. It was also
shown that knockdown of LUCAT1 could significantly inhibit cells’ invasion, suggesting
that it might play an important role in liver metastasis by promoting cells’ invasion [38].
Another study confirmed that LUCAT1 promoted metastases through the stimulating
migration and invasion of CRC cell lines [39].

We observed a significantly downregulated expression of MALAT1 in the central part
of CRC in comparison to lymph node and liver metastases. Similar results were reported
by Liu et al., who found the expression of MALAT1 to correlate to liver metastasis status
and to be significantly downregulated in CRC tissue compared to excised liver metastases.
They also showed that MALAT1 was significantly upregulated in primary CRC patients
who developed liver metastasis within 5 years of initial diagnosis, compared to the primary
CRC of patients with no metastasis. A positive signature comprising of high MALAT1 also
correlated with the progression to high-grade CRC [40]. Our study further supports the
observation of a significantly lower expression of lncRNAs in primary CRC in comparison
to metastases.

LncRNA lncTCF7 was found to be downregulated in the central part and the invasive
front of CRC when compared to lymph node and liver metastases, respectively. lncTCF7
is believed to have an essential role in maintaining cancer stem cell self-renewal. Its
expression has been shown to correlate with lymph node metastasis and stage, promote
invasion and migration of tumour cells [41]. Another study supported this observation
and additionally showed its significant association with depth of invasion. lncTCF7 also
promoted proliferation. As such, it might predict progression, facilitate tumour growth
and promote the formation of metastases in CRC [42].

However, in our study, we were not able to confirm any statistically significant change
in expression for XIST, but we observed an insignificant upregulation in primary CRC in
comparison to lymph node metastases and no change in the expression in primary CRC in
comparison to liver metastases. However, it has been reported that XIST expedited and
promoted the growth of metastases in CRC [43,44].

Finally, we observed a downregulation of lncRNA ZFAS1 in primary CRC compared
to lymph node and liver metastases. The expression of ZFAS1 was shown to be lower in
primary CRC than in metastasis, and it was shown to be positively correlated with lymph
node invasion and pTNM stage [45]. ZFAS1 was also associated with an aggressive CRC
phenotype. Its knockdown inhibited cell proliferation and invasion in vitro and metastases
in vivo [46]. Furthermore, a high expression of ZFAS1 was observed in advanced stages
of CRC; its silencing reduced the cells’ migration and invasion abilities, supporting the
function of ZFAS1 in the development of metastases of CRC [47].

There are two main limitations of our study. The first is the small number of patients
with an unequal female-to-male ratio. However, this was the consequence of collecting the
samples from the same patients with CRC from primary tumour, lymph node and/or liver
metastases. The second one is the lack of functional validation of regulation of DCN by
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miR-200c. However, our results suggest that this could be a rather complex investigation
since we observed the positive rather than expected negative correlation between miR-200c
and DCN.

5. Conclusions

In conclusion, there are three main findings from our study. First, we found an insignif-
icant downregulation of the DCN gene in primary CRC in comparison to metastases, which,
regarding the reported upregulated protein expression in primary CRC in comparison
to metastases, suggests that there is a post-transcriptional level of the regulation of DCN.
Second, we observed a significant downregulation of the investigated ncRNAs in primary
CRC in comparison to metastases, suggesting their important role in the development of
metastases. Finally, the observed positive regulation between the expression of all these
RNAs suggests that DCN and miR-200c might be regulated in an indirect rather than a direct
manner. However, our study provides further evidence of an important role not only of
DCN and miR-200c but also of lncRNAs MALAT1, lncTCF7 and ZFAS1 in the development
of metastases in CRC.
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