
Journal of

Clinical Medicine

Article

Prediction of Submucosal Invasion for Gastric
Neoplasms in Endoscopic Images
Using Deep-Learning

Bum-Joo Cho 1,2,3,4,*,† , Chang Seok Bang 4,5,6,7,*,† , Jae Jun Lee 4,8, Chang Won Seo 1

and Ju Han Kim 3

1 Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang 14068, Korea;
donaldaq@gmail.com

2 Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
3 Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI),

Seoul National University College of Medicine, Seoul 03080, Korea; juhan@snu.ac.kr
4 Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea;

iloveu59@hallym.or.kr
5 Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, Korea
6 Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Korea
7 Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
8 Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine,

Chuncheon 24253, Korea
* Correspondence: bjcho8@gmail.com (B.-J.C.); csbang@hallym.ac.kr (C.S.B.); Tel.: +82-31-380-3835 (B.-J.C.);

+82-33-240-5821 (C.S.B.)
† These authors equally contributed as a first and corresponding author to this work.

Received: 5 May 2020; Accepted: 9 June 2020; Published: 15 June 2020
����������
�������

Abstract: Endoscopic resection is recommended for gastric neoplasms confined to mucosa or
superficial submucosa. The determination of invasion depth is based on gross morphology assessed
in endoscopic images, or on endoscopic ultrasound. These methods have limited accuracy and pose
an inter-observer variability. Several studies developed deep-learning (DL) algorithms classifying
invasion depth of gastric cancers. Nevertheless, these algorithms are intended to be used after definite
diagnosis of gastric cancers, which is not always feasible in various gastric neoplasms. This study
aimed to establish a DL algorithm for accurately predicting submucosal invasion in endoscopic
images of gastric neoplasms. Pre-trained convolutional neural network models were fine-tuned with
2899 white-light endoscopic images. The prediction models were subsequently validated with an
external dataset of 206 images. In the internal test, the mean area under the curve discriminating
submucosal invasion was 0.887 (95% confidence interval: 0.849–0.924) by DenseNet−161 network.
In the external test, the mean area under the curve reached 0.887 (0.863–0.910). Clinical simulation
showed that 6.7% of patients who underwent gastrectomy in the external test were accurately qualified
by the established algorithm for potential endoscopic resection, avoiding unnecessary operation.
The established DL algorithm proves useful for the prediction of submucosal invasion in endoscopic
images of gastric neoplasms.

Keywords: artificial intelligence; convolutional neural networks; endoscopy; gastric neoplasms

1. Introduction

Surgical resection has been the standard treatment method for gastric neoplasms. However,
the advancement of endoscopic techniques over recent years has led to a better understanding of
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various therapeutic indications and outcomes, allowing for the replacement of the classical surgery
with endoscopic resection, in a subset of gastric cancer patients who meet certain specific criteria [1,2].
The commonly accepted consensus allows for endoscopic resection with curative intent, in cases of
gastric neoplasms without lymph node metastasis (LNM). Therefore, the indication for endoscopic
resection is based on a combination of factors associated with a low LNM rate, which are retrospectively
assessed in surgically resected specimens [3,4]. These factors include the depth of invasion, its specific
size, and morphological and histological lesion properties [5]. Of note, the endoscopic resection is a
greatly preferred method, owing to its minimal invasiveness and quick patient recovery [2].

The large depth of invasion is one of the most important risk factors for LNM. Gastric neoplasms
confined only to the mucosa or superficial submucosa (within 500 µm) are potential candidates for
endoscopic resection. Therefore, precise assessment of the depth of invasion is essential for the
determination of an optimal treatment strategy for gastric cancers. Determination of invasion depth is
usually based on gross tumor morphology observed in endoscopic images or on endoscopic ultrasound
data. However, these methods are not always precise and may result in inter-observer variability.
Previous studies indicated that endoscopic ultrasound and gross morphology method are equally
accurate in estimating the invasion depth of early gastric cancers (EGCs), and that expert endoscopists
can correctly determine the invasion depth of approximately 70–80% tumors [6,7]. Since it is difficult to
precisely predict the depth of invasion of lesions prior to their resection, patients need to be informed
about the possibility of additional surgery or endoscopic resection, in case curative resection is not
achieved [8].

Convolutional neural network (CNN) is a deep-learning (DL) algorithm widely used in the
classification of medical images and has been increasingly adopted in clinical practice [9–13]. CNN is a
type of specific artificial neural networks that consists of multiple convolutional and pooling layers
and image filters (kernels), to automatically extract certain features from images enabling an overall
classification [14,15]. CNN classifies images by performing a specialized type of linear operation with
convolutional matrices, which are small grids of parameters, and by reducing dimensions through the
max pooling process [14,15]. For example, it reduces the image dimensions from 4 × 4 pixels to 2 × 2,
by using filters to select the largest value from convolutionally operated values, and by reducing the
dimensions through max pooling. A certain feature that characterize the images extracted from the
convolutional and pooling layers is applied to the input value of the final layer of the fully-connected
neural network, and serves as the image classification through the activation functions such as softmax
regression [15].

Several studies presented CNN-based DL algorithms, which classify the invasion depth of
EGCs [16–18]. However, these algorithms are only used after the definite diagnosis of gastric cancers,
which is limited in real clinical practice, owing to various types of gastric neoplasms. Optical diagnosis
with visual inspection has a putative nature, and a definitive diagnosis only can be made after resection
of the lesions via histologic examination. Therefore, the study should include all neoplastic lesions
with potential for resectability, and this study aimed to establish a DL algorithm for the prediction of
the depth of invasion in endoscopic images of gastric neoplasms.

2. Materials and Methods

2.1. Collection of Data

Consecutive patients who were found to have any type of gastric neoplasm during upper
gastrointestinal endoscopy between 2010 and 2017 at Chuncheon Sacred Heart Hospital were enrolled.
The aim of endoscopic examinations and detailed procedures are described in our previous report [19].
All the neoplasm-suspected lesions that were resected using either the endoscopic resection (endoscopic
mucosal resection or endoscopic submucosal dissection technique (ESD)) or surgical resection were
included. Pathological assessment of each lesion was carried out by two pathologists. Samples defined
as tumors were cross-checked by yet another pathologist in the Chuncheon Sacred Heart hospital [19].
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White-light imaging (WLI) endoscopy data from gastric lesions with pathological confirmation
were retrieved from the database of Chuncheon Sacred Heart hospital in JPEG format, with a minimum
resolution of 640 × 480 pixels. Images with poor quality or low resolution disabling their proper
classification (defocusing, artifacts, shadowing, etc.) were excluded, as previously described [19].
Eventually, a total of 2899 images from 846 patients were included in the study. This study was approved
by the Institutional Review Board of Chuncheon Sacred Heart Hospital (number: 2018-07-003), and was
conducted in accordance with the Declaration of Helsinki. IRB approval number: 2018-07-003.

2.2. Construction of Dataset

All images were divided into two groups, namely the mucosa-confined group and the submucosal
invasion group, based on pathologic records reviewed by an experienced endoscopist (C.S.B.) [19].
These were also sub-classified into four classes based the following clinical properties: low-grade
dysplasia, high-grade dysplasia, EGC, and advanced gastric cancer (AGC). EGC was defined as an
adenocarcinoma confined to the mucosa or submucosa, irrespective of LNM. AGC was defined as an
adenocarcinoma infiltrating beyond the submucosal layer, irrespective of LNM. The whole dataset
was divided into two datasets, namely the training and the internal test datasets, with a ratio of 9:1.
The division was done by random sampling using patients’ IDs as sample descriptors. The same class
images from a single patient were assigned together to either the training set or the test set. The training
dataset was then divided into a proper training dataset and a validation dataset for hyper-parameter
tuning, with a ratio of 8:1, with three different random seeds.

An external test dataset was constructed through the collection of images from consecutive
patients who underwent upper gastrointestinal endoscopy at the Chuncheon Sacred Heart Hospital
between 2019 and 2020. The collection period was exclusive from that of the internal test dataset or the
training datasets.

2.3. Preprocessing of Datasets

After construction of the datasets, the submucosa-invaded group in the training dataset was
augmented to overcome the data imbalance, as the mucosal group was approximately twice as big.
Another copy of the submucosal invasion group images was created by rotating the original images
by 90 degrees. After data augmentation, the number of submucosa-invaded images was doubled,
and became similar to that of mucosa-confined images in the training dataset. Next, the whole training
dataset was amplified four times by horizontal flipping and/or vertical flipping.

Following this, all images of the training dataset were resized into 480 × 480 pixels. Finally,
the training images were normalized, using linear transformation, with the means and standard
deviations known for the ImageNet datasets in terms of three RGB channels.

2.4. Training of CNN Models

Two CNN models, pre-trained with the ImageNet Large Scale Visual Recognition Challenge
dataset were adopted, namely the Inception-ResNet-v2 and the DenseNet−161 models. The details
of the models were described previously (https://arxiv.org/abs/1602.07261 and https://arxiv.org/abs/
1608.06993). The Inception-ResNet-v2 was selected for its high performance, despite the huge number
of weights, and the DenseNet−161 was selected for its good performance with a lower number of
parameters. The backbone of both CNN models was frozen as a fixed feature extractor, and the final
fully connected layers were fine-tuned using the training dataset.

Binary cross entropy was used as the loss function. The Adam optimizer was adopted, and the
initial learning rate was 1 × 10−4. The learning rate was reduced as 1/10 at every 10 epochs, until it
reached 1 × 10−7, and the learning rate was maintained on that level. After training of 50 epochs,
early stopping was applied with the patience of 50 epochs. The batch size was 16, and no dropout
was used.

https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
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A class activation map (CAM) was implemented onto the CNN models, to show the attention
map of the established algorithms. The final few layers of the CNN architectures were replaced by a
global average pooling and a softmax layer. The training was performed using the PyTorch platform
on the hardware system, with NVIDIA GeForce RTX 1080 Ti graphics processing units, dual Xeon
central processing units, 128 GB RAM, and a water-cooling system.

2.5. Main Outcome Measurements and Statistics

The primary readout was the accuracy of the models in discriminating whether the lesion was
mucosa-confined or submucosa-invaded in endoscopic images. The secondary outcome was the
discrimination performance for the EGC subgroup. The model performances were tested three times
upon random test sets changes. The main evaluation metric was the area under the curve (AUC) and
the maximized diagnostic accuracy. Additionally, sensitivity, specificity, positive predictive value,
and negative predictive value were evaluated at the optimal threshold points, maximizing Youden’s
index. The categorical variables are expressed as percentages with 95% confidence intervals (CIs),
and continuous variables are presented as mean ± standard deviation. A p value of < 0.05 was
considered as statistically significant. All the analyses were performed using R software version 3.6.3
(The R Foundation for Statistical Computing, Vienna, Austria) and Python programming language
(Python Software Foundation, version 3.7.5) with Scikit-learn package version 0.20.3.

3. Results

3.1. Composition of Datasets

A total of 2899 images from 846 patients were analyzed in this study. Among them, the images
of submucosa-invaded lesions accounted for 34.5% (n = 999), and that of mucosa-confined lesions
for 65.5% (n = 1900). In the internal test set, 309 images from 85 patients were included, among
which 102 images from 27 patients were submucosa-invaded lesion images. The external test set
comprised 206 images from 197 patients, and the submucosa-invaded lesion images accounted for
38.8% (n = 80). Table 1 describes the baseline composition of enrolled images in the training, internal
testing, and external testing datasets.

Table 1. Composition of datasets used in the development and testing of the deep-learning algorithm.

Whole Dataset Training Set Internal Test Set External Test Set
Number

of
Images

Number
of

Patients

Number
of

Images

Number
of

Patients

Number
of

Images

Number
of

Patients

Number
of

Images

Number
of

Patients

Overall 2899 846 2590 762 309 85 206 197
Mucosa-confined

lesions 1900 580 1693 522 207 58 126 119

Low-grade
dysplasia 727 233 630 205 97 28 68 66

High-grade
dysplasia 421 131 390 123 31 8 21 21

EGC 752 230 673 205 79 25 37 37
Submucosa-invaded

lesion 999 270 897 243 102 27 80 78

EGC 282 81 242 71 40 10 23 23
AGC 717 189 655 172 62 17 57 55

EGC, early gastric cancer; AGC, advanced gastric cancer.

3.2. Prediction of Submucosal Invasion in any Given Gastric Neoplastic Lesions

Table 2 describes the performance of CNN models in the internal test dataset. The mean AUC
and accuracy of the Inception-ResNet-v2 was 0.786 (95% CI, 0.779–0.793) and 77.4% (76.7–78.0%),
respectively. The mean AUC and the accuracy of the DenseNet−161 was 0.887 (0.849–0.924) and 84.1%
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(81.6–86.7%), respectively. The receiver operating characteristic curve of the best performance model
for internal test is presented in Figure 1a.

Table 2. Diagnostic performance of the established algorithm classifying submucosal invasion in the
internal test dataset.

Model AUC Accuracy (%) Sensitivity (%) Specificity (%)
Positive

Predictive
Value (%)

Negative
Predictive
Value (%)

Whole dataset
Inception-Resnet-v2 0.786 (0.779–0.793) 77.4 (76.7–78.0) 72.5 (71.5–73.6) 72.9 (71.3–74.6) 56.9 (55.2–58.7) 84.4 (83.6–85.1)

DenseNet−161 0.887 (0.849–0.924) 84.1 (81.6–86.7) 78.8 (75.4–82.2) 80.0 (76.8–83.2) 66.1 (61.6–70.6) 88.4 (86.4–90.4)
EGC (n = 119)

Inception-Resnet-v2 0.612 (0.599–0.626) 66.1 (65.0–67.2) 56.7 (55.0–58.3) 57.0 (54.1–59.9) 40.0 (38.3–41.8) 72.2 (70.9–73.4)
DenseNet−161 0.694 (0.607–0.781) 71.4 (67.1–75.8) 60.8 (54.9–66.7) 61.6 (54.2–69.0) 44.7 (37.7–51.7) 75.5 (70.4–80.6)

AUC, area under the curve; EGC, early gastric cancer.
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For the external test dataset, the mean AUC and accuracy of the Inception-ResNet-v2 were 0.769
(0.755–0.783) and 74.1% (71.0–77.2%), as presented in Table 3. The mean AUC and the accuracy of the
DenseNet−161 were 0.887 (0.863–0.910) and 77.3% (75.4–79.3%), respectively. The receiver operating
characteristic curves of the best performance model for external test is presented in Figure 1b.

Table 3. Diagnostic performance of the established algorithm for the prediction of submucosal invasion
in the external test dataset.

Model AUC Accuracy (%) Sensitivity (%) Specificity (%)
Positive

Predictive
Value (%)

Negative
Predictive
Value (%)

Whole dataset
Inception-Resnet-v2 0.769 (0.755–0.783) 74.1 (71.0–77.2) 72.5 (72.5–72.5) 74.3 (73.0–75.7) 64.2 (62.9–65.5) 81.0 (80.7–81.3)

DenseNet−161 0.887 (0.863–0.910) 77.3 (75.4–79.3) 80.4 (79.6–81.3) 80.7 (78.5–83.0) 72.6 (70.1–75.1) 86.6 (85.9–87.4)
EGC (n = 60)

Inception-Resnet-v2 0.609 (0.572–0.647) 65.0 (61.7–68.3) 58.0 (55.1–60.8) 62.2 (56.9–67.5) 52.2 (40.8–63.6) 70.4 (67.3–73.4)
DenseNet−161 0.747 (0.712–0.782) 67.2 (64.4–70.1) 65.2 (65.2–65.2) 70.3 (67.2–73.4) 57.8 (55.3–60.3) 76.5 (75.7–77.2)

AUC, area under the curve; EGC, early gastric cancer.

At the fitting point maximizing Youden index, the mean sensitivity and specificity of the model in
the external test dataset were 72.5% (72.5–72.5%) and 74.3% (73.0–75.7%) by the Inception-Resnet-v2, and
80.4% (79.6–81.3%) and 80.7% (78.5–83.0%) by the DenseNet−161, respectively (Table 3). The positive
predictive value and the negative predictive value of the DenseNet−161 were 72.6% (70.1–75.1%) and
86.6% (85.9–87.4%), respectively. The confusion matrices of the best performance model are presented
in Figure 2.
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3.3. Prediction of Submucosal Invasion in Subgroup of EGCs

Only a subgroup of EGCs was distributed in both the mucosa-confined and the submucosal
invasion group as presented in Table 1, so the subgroup analysis of the performance was carried out.
In the internal test dataset, the AUC and accuracy of the models in the prediction of submucosal
invasion of EGC were 0.694 (0.607–0.781) and 71.4% (67.1–75.8%) by the DenseNet−161, respectively
(Table 2).

In the external test dataset, which comprised 60 images, the mean AUC and accuracy of the
DenseNet−161 were 0.747 (0.712–0.782) and 67.2% (64.4–70.1%), respectively (Table 3).

3.4. Clinical Simulation in the Application of DL Algorithm for the Determination of Therapeutic Strategy

Clinical simulation was done for the lesions in the external test, assuming that the established
algorithm was used to determine the therapeutic strategy choice: either the endoscopic resection or
classical surgery. The choice was determined based on the depth of invasion in gastric neoplasms
(Figure 3). Among 206 lesions, 117 lesions (56.8%) were endoscopically resected and 89 lesions (43.2%)
were surgically resected in the external test dataset. For the endoscopically resected lesions, 115 lesions
(98.3%) were confined to mucosa and two lesions (1.7%) invaded submucosa. All the mucosa-confined
lesions achieved curative resection through endoscopic resection. However, two submucosa-invaded
lesions did not achieve curative resection through ESD, and were subject to additional surgery for
the definitive treatment. Like endoscopists who underestimated the invasion depth of these two
lesions during their real clinical practice, the DL algorithm also diagnosed them as mucosa-confined
lesions (wrong answer cases by DL algorithm in endoscopically resected lesions) (Figure 4a,b). For the
surgically resected lesions, 78 lesions (87.6%) were submucosa-invaded and 11 lesions (12.4%) were
mucosa-confined. Among the 11 mucosa-confined lesions that were potential candidates for endoscopic
resection, six lesions (6.7%) were correctly classified as mucosa-confined lesions by the DL algorithm
(correct answer case by DL algorithm for ESD candidate in surgically resected lesions) (Figure 4c).
However, endoscopists determined these mucosa-confined lesions as submucosa-invaded lesions in
their real practice, thus imposing surgical treatment as the therapeutic strategy. Figure 4d shows
a representative case of surgically resected mucosa-confined lesion, which was also determined as
submucosa-invaded lesion by the DL algorithm (wrong answer case by DL algorithm in surgically
resected lesions).
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Figure 4. Representative images of correctly or incorrectly determined lesions by the deep-learning
(DL) algorithm. (a): Wrong answer case by the DL algorithm in endoscopically resected lesions
(moderately differentiated adenocarcinoma with SM2 invasion); (b): wrong answer case by the DL
algorithm in endoscopically resected lesions (well differentiated adenocarcinoma with SM3 invasion);
(c): correct answer case by the DL algorithm for endoscopic submucosal dissection (ESD) candidate
in surgically resected lesions (mucosa-confined signet ring cell carcinoma with 1 cm diameter);
(d): wrong answer case by the DL algorithm in surgically resected lesions (mucosa-confined poorly
differentiated adenocarcinoma within expanded indication); DL, deep-learning; ESD, endoscopic
submucosal dissection.

3.5. Attention Maps

Representative images of CAM for classifying submucosal invasion in endoscopic images are
presented in Figure 5. The CAM images correctly demonstrated the submucosal neoplastic area, which is
characterized by irregular/nodular surface, deep ulceration, fusion/clubbing fold, or irregular protrusion.
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Figure 5. Representative images of the attention map.

4. Discussion

In this study, we established a DL algorithm with a substantial diagnostic performance, in terms
of discriminating the depth of invasion of gastric neoplasms (based on endoscopic white-light images)
into a binary class (mucosa-confined vs. submucosa-invaded). The highest AUC value in the
internal and external tests commonly reached 0.887. As the utilized learning model is data-driven
and ‘black-box’-type in its nature, the only way to verify the real diagnostic performance of the
DL algorithm was validation with an external test dataset [20]. Hence, we utilized an external test
diagnostic verification method and observed the same algorithm performance value (AUC of 0.887),
as during the internal testing.

Medical datasets tend to be heterogenous and imbalanced; hence, they are difficult to study in an
artificial intelligence setting. In line with this, they are problematic when it comes to achieving optimized
performance and reproducing the training performance of a DL algorithm in a real (clinical) setting.
For instance, the fraction of ‘abnormal’ gastric lesions is normally much lower than that of ‘normal’
gastric lesions, making real-life lesion datasets significantly different from experimental datasets.
We utilized consecutive samples derived from ‘real-life’ patients, so the fraction of mucosa-confined
lesions was three times higher than that of submucosa-invaded lesions in these datasets (Table 1).
Therefore, we had to adopt a data augmentation method in the submucosa-invaded lesion group,
to minimize the imbalance in the training process. The learning rate scheduling and early stopping
were also applied, to prevent overfitting (when the learning process tailors itself too much on the
training data, and its performance cannot be reproduced on any new data). However, it is difficult to
maintain the internal testing performance in the external testing dataset, because there is no optimal
way to prevent the overfitting of a DL algorithm. In our study, the main reason for a comparable
diagnostic performance in external testing was the improvement of the data imbalance. The proportion
of submucosal invasion group was increased in the external testing, compared to that in the internal
testing. The external testing in our study was not performed in a multicenter setting with large
datasets, so the real value of the established algorithm could be verified in the future with clinical
application studies.

Previous studies have established DL algorithms for the discrimination of the invasion depth of
gastric cancers [16–18]. Kubota et al. established a deep neural network-based algorithm classifying
the depth of gastric cancer invasion, irrespective of EGC or AGC. The discriminating accuracy was
77.2%, 49.1%, 51%, and 55.3% for stages T1–T4, respectively (the accuracy discriminating between T1a
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(mucosa-confined) and T1b (submucosa-invaded) was 68.9%) [16]. Zhu et al. also built a CNN-based
algorithm for the discrimination of invasion depth in EGC or AGC, and reported a diagnostic accuracy
of up to 89.16% [17]. Yoon et al. enrolled only EGC cases, and also constructed a CNN-based algorithm.
In their study, the AUC for discriminating the depth of invasion was 0.851 [18].

Importantly, all these previous studies report internal testing accuracy or AUC, with no external
testing verifications. Therefore, their reported diagnostic performances might be exaggerated,
as external testing should always be performed when determining a learning model’s accuracy.
Moreover, all previous studies assumed that a definitive diagnosis of gastric cancers was made prior to
the application of their DL algorithms. However, clinical studies of gastric neoplasms reveal that the
final pathology status is upgraded in 15.9% of cases, and downgraded in 6.9% of cases after ESD or
surgery, as compared to the status defined upon an initial endoscopic biopsy (i.e., initial diagnosis
of low-grade dysplasia on the endoscopic biopsy can be changed to the final diagnosis of EGC after
ESD, thus upgrading the pathological status) [21]. Conclusively, such algorithms cannot be utilized
in clinical practice (as not all lesions found during endoscopy are gastric cancers). The diagnostic
performance of the established model in our study seems to be lower than that of the previous studies,
which stems from discrepancies in the inclusion criteria.

Previous studies focused only on gastric cancers, which is not a realistic approach in clinical
settings. Therefore, the per-class performance of EGC in our study is also lower than that of the other
studies. Notably, as we only performed external testing of performance verification, a comparison of
the diagnostic performance with other studies is not possible. Further training with the accumulation
of EGC cases would definitely enhance the per-class performance observed in our study.

Although we did not test this established algorithm in a real clinical setting, we conducted a
retrospective clinical simulation on an external testing dataset, categorized by a therapeutic strategy
employed. Interestingly, our algorithm underestimated the invasion depth of two lesions (shallow
erosion was noted in both cases), which had also been a mistake made by endoscopists prior to our
study (Figure 4a,b). However, among the 11 mucosa-confined and surgically resected lesions, six
lesions (6.7%) were correctly classified as mucosa-confined lesions by our DL algorithm, thus potentially
avoiding unnecessary operation in 6.7% of patients in the clinical simulation. This indicates a clinical
utility of our algorithm in the therapeutical decision-making process. This clinical simulation was not
performed in a randomized and controlled manner, so more evidence through a randomized-controlled
trial would elucidate the real value of this algorithm [22].

Despite its potential prognostic applicability, our study has several limitations. First, the utilized
images were retrieved from a single medical center and their number was rather small. Second, the
external testing dataset was also retrieved from a single medical center, and no multicenter validation
was conducted. These two limitations are expected to be resolved by a prospective multicenter
validation of the established algorithm. Third, the clinical utility of the algorithm was only confirmed
in a retrospective clinical simulation. Therefore, a randomized study in a clinical setting would shed
light on the real utility of this model.

In conclusion, the algorithm established in this study stems as a useful tool for the prediction of
submucosal invasion events of gastric neoplasms, based on their endoscopic images. Thus, it has a
potential clinical relevance during the choice of surgical strategy in gastric tumor patients.
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Abbreviations

DL deep-learning
LNM lymph node metastasis
EGC early gastric cancer
CNN Convolutional Neural Network
ESD endoscopic submucosal dissection
WLI white-light imaging
AGC advanced gastric cancer
CAM class activation map
AUC area under the curve
CI confidence interval

References

1. Bang, C.S.; Yang, Y.J.; Lee, J.J.; Baik, G.H. Endoscopic submucosal dissection of early gastric cancer with
mixed-type histology: A systematic review. Dig. Dis. Sci. 2020, 65, 276–291. [CrossRef] [PubMed]

2. Bang, C.S.; Baik, G.H. Using big data to see the forest and the trees: Endoscopic submucosal dissection of
early gastric cancer in Korea. Korean J. Intern. Med. 2019, 34, 772–774. [CrossRef] [PubMed]

3. Gotoda, T. Endoscopic resection of early gastric cancer. Gastric Cancer 2007, 10, 1–11. [CrossRef] [PubMed]
4. Gotoda, T.; Yanagisawa, A.; Sasako, M.; Ono, H.; Nakanishi, Y.; Shimoda, T.; Kato, Y. Incidence of lymph

node metastasis from early gastric cancer: Estimation with a large number of cases at two large centers.
Gastric Cancer 2000, 3, 219–225. [CrossRef] [PubMed]

5. Soetikno, R.; Kaltenbach, T.; Yeh, R.; Gotoda, T. Endoscopic mucosal resection for early cancers of the upper
gastrointestinal tract. J. Clin. Oncol. 2005, 23, 4490–4498. [CrossRef] [PubMed]

6. Choi, J.; Kim, S.G.; Im, J.P.; Kim, J.S.; Jung, H.C.; Song, I.S. Comparison of endoscopic ultrasonography and
conventional endoscopy for prediction of depth of tumor invasion in early gastric cancer. Endoscopy 2010, 42,
705–713. [CrossRef] [PubMed]

7. Choi, J.; Kim, S.G.; Im, J.P.; Kim, J.S.; Jung, H.C.; Song, I.S. Is endoscopic ultrasonography indispensable in
patients with early gastric cancer prior to endoscopic resection? Surg. Endosc. 2010, 24, 3177–3185. [CrossRef]
[PubMed]

8. Kim, Y.-I.; Kim, H.S.; Kook, M.-C.; Cho, S.-J.; Lee, J.Y.; Kim, C.G.; Ryu, K.W.; Choi, I.J.; Kim, Y.-W. Discrepancy
between clinical and final pathological evaluation findings in early gastric cancer patients treated with
endoscopic submucosal dissection. J. Gastric Cancer 2016, 16, 34–42. [CrossRef] [PubMed]

9. Cho, B.-J.; Bang, C.S. Artificial intelligence for the determination of a management strategy for diminutive
colorectal polyps: Hype, hope, or help. Am. J. Gastroenterol. 2020, 115, 70–72. [CrossRef] [PubMed]

10. Zhang, X.; Hu, W.; Chen, F.; Liu, J.; Yang, Y.; Wang, L.; Duan, H.; Si, J. Gastric precancerous diseases
classification using CNN with a concise model. PLoS ONE 2017, 12, e0185508. [CrossRef] [PubMed]

11. Taha, B.; Dias, J.; Werghi, N. Convolutional neural networkasa feature extractor for automatic polyp detection.
In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China,
17–20 September 2017.

12. Tajbakhsh, N.; Gurudu, S.R.; Liang, J. Automatic polyp detection in colonoscopy videos using an ensemble of
convolutional neural networks. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical
Imaging (ISBI), New York, NY, USA, 16–19 April 2015.

13. Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.;
Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for
detecting gastric cancer in endoscopic images. Gastric Cancer 2018, 21, 653–660. [CrossRef] [PubMed]

14. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and
application in radiology. Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]

15. Bang, C.S. Deep learning in upper gastrointestinal disorders: Status and future perspectives.
Korean J. Gastroenterol. 2020, 75, 120–131. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10620-019-05761-w
http://www.ncbi.nlm.nih.gov/pubmed/31367880
http://dx.doi.org/10.3904/kjim.2019.170
http://www.ncbi.nlm.nih.gov/pubmed/31272143
http://dx.doi.org/10.1007/s10120-006-0408-1
http://www.ncbi.nlm.nih.gov/pubmed/17334711
http://dx.doi.org/10.1007/PL00011720
http://www.ncbi.nlm.nih.gov/pubmed/11984739
http://dx.doi.org/10.1200/JCO.2005.19.935
http://www.ncbi.nlm.nih.gov/pubmed/16002839
http://dx.doi.org/10.1055/s-0030-1255617
http://www.ncbi.nlm.nih.gov/pubmed/20652857
http://dx.doi.org/10.1007/s00464-010-1112-0
http://www.ncbi.nlm.nih.gov/pubmed/20490559
http://dx.doi.org/10.5230/jgc.2016.16.1.34
http://www.ncbi.nlm.nih.gov/pubmed/27104025
http://dx.doi.org/10.14309/ajg.0000000000000476
http://www.ncbi.nlm.nih.gov/pubmed/31770118
http://dx.doi.org/10.1371/journal.pone.0185508
http://www.ncbi.nlm.nih.gov/pubmed/28950010
http://dx.doi.org/10.1007/s10120-018-0793-2
http://www.ncbi.nlm.nih.gov/pubmed/29335825
http://dx.doi.org/10.1007/s13244-018-0639-9
http://www.ncbi.nlm.nih.gov/pubmed/29934920
http://dx.doi.org/10.4166/kjg.2020.75.3.120
http://www.ncbi.nlm.nih.gov/pubmed/32209800


J. Clin. Med. 2020, 9, 1858 14 of 14

16. Kubota, K.; Kuroda, J.; Yoshida, M.; Ohta, K.; Kitajima, M. Medical image analysis: Computer-aided diagnosis
of gastric cancer invasion on endoscopic images. Surg. Endosc. 2012, 26, 1485–1489. [CrossRef] [PubMed]

17. Zhu, Y.; Wang, Q.-C.; Xu, M.-D.; Zhang, Z.; Cheng, J.; Zhong, Y.-S.; Zhang, Y.-Q.; Chen, W.; Yao, L.-Q.;
Zhou, P.-H.; et al. Application of convolutional neural network in the diagnosis of the invasion depth
of gastric cancer based on conventional endoscopy. Gastrointest. Endosc. 2019, 89, 806–815. [CrossRef]
[PubMed]

18. Yoon, H.J.; Kim, S.; Kim, J.-H.; Keum, J.-S.; Oh, S.-I.; Jo, J.; Chun, J.; Youn, Y.H.; Park, H.; Kwon, I.G.; et al.
A lesion-based convolutional neural network improves endoscopic detection and depth prediction of early
gastric cancer. J. Clin. Med. 2019, 8, 1310. [CrossRef] [PubMed]

19. Cho, B.-J.; Bang, C.S.; Park, S.W.; Yang, Y.J.; Seo, S.I.; Lim, H.; Shin, W.G.; Hong, J.T.; Yoo, Y.T.; Hong, S.H.; et al.
Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network.
Endoscopy 2019, 51, 1121–1129. [CrossRef] [PubMed]

20. Yang, Y.J.; Bang, C.S. Application of artificial intelligence in gastroenterology. World J. Gastroenterol. 2019, 25,
1666–1683. [CrossRef] [PubMed]

21. Lee, J.H.; Min, Y.W.; Lee, J.H.; Kim, E.R.; Lee, H.; Min, B.-H.; Kim, J.J.; Jang, K.-T.; Kim, K.-M.; Park, C.K.
Diagnostic group classifications of gastric neoplasms by endoscopic resection criteria before and after
treatment: Real-world experience. Surg. Endosc. 2016, 30, 3987–3993. [CrossRef] [PubMed]

22. Abadir, A.P.; Ali, M.F.; Karnes, W.; Samarasena, J.B. Artificial intelligence in gastrointestinal endoscopy.
Clin. Endosc. 2020, 53, 132–141. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00464-011-2036-z
http://www.ncbi.nlm.nih.gov/pubmed/22083334
http://dx.doi.org/10.1016/j.gie.2018.11.011
http://www.ncbi.nlm.nih.gov/pubmed/30452913
http://dx.doi.org/10.3390/jcm8091310
http://www.ncbi.nlm.nih.gov/pubmed/31454949
http://dx.doi.org/10.1055/a-0981-6133
http://www.ncbi.nlm.nih.gov/pubmed/31443108
http://dx.doi.org/10.3748/wjg.v25.i14.1666
http://www.ncbi.nlm.nih.gov/pubmed/31011253
http://dx.doi.org/10.1007/s00464-015-4710-z
http://www.ncbi.nlm.nih.gov/pubmed/26694184
http://dx.doi.org/10.5946/ce.2020.038
http://www.ncbi.nlm.nih.gov/pubmed/32252506
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Collection of Data 
	Construction of Dataset 
	Preprocessing of Datasets 
	Training of CNN Models 
	Main Outcome Measurements and Statistics 

	Results 
	Composition of Datasets 
	Prediction of Submucosal Invasion in any Given Gastric Neoplastic Lesions 
	Prediction of Submucosal Invasion in Subgroup of EGCs 
	Clinical Simulation in the Application of DL Algorithm for the Determination of Therapeutic Strategy 
	Attention Maps 

	Discussion 
	References

