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Abstract

Background: Parkinson’s Disease (PD) is a progressive neurologic disorder that affects movement and balance. Recent
studies have revealed the importance of microRNA (miR) in PD. However, the detailed role of miR and its regulation by
Transcription Factor (TF) remain unexplored. In this work for the first time we have studied TF-miR-mRNA regulatory
network as well as miR co-expression network in PD.

Result: We compared the 204 differentially expressed miRs from microarray data with 73 PD related miRs obtained from
literature, Human MicroRNA Disease Database and found a significant overlap of 47 PD related miRs (p-value,0.05).
Functional enrichment analyses of these 47 common (Group1) miRs and the remaining 157 (Group2) miRs revealed similar
kinds of over-representative GO Biological Processes and KEGG pathways. This strengthens the possibility that some of the
Group 2 miRs can have functional roles in PD progression, hitherto unidentified in any study. In order to explore the cross
talk between TF, miR and target mRNA, regulatory networks were constructed. Study of these networks resulted in 14 Inter-
Regulatory hub miRs whereas miR co-expression network revealed 18 co-expressed hub miRs. Of these 32 hub miRs, 23
miRs were previously unidentified with respect to their association with PD. Hierarchical clustering analysis further
strengthens the roles of these novel miRs in different PD pathways. Furthermore hsa-miR-92a appeared as novel hub miR in
both regulatory and co-expression network indicating its strong functional role in PD. High conservation patterns were
observed for most of these 23 novel hub miRs across different species including human. Thus these 23 novel hub miRs can
be considered as potential biomarkers for PD.

Conclusion: Our study identified 23 novel miR markers which can open up new avenues for future studies and shed lights
on potential therapeutic targets for PD.
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Introduction

Parkinson’s Disease (PD) is the second most prevailing

neurodegenerative disorder in the world after Alzheimer’s disease

(AD) [1]. The histological hallmark of PD is accumulation of

fibrillar inclusions named Lewy bodies in the dopaminergic

neurons. Lewy body accumulation leads to the malfunction and

death of those dopamine producing nerve cells in the mid brain

region, mainly in the substantia nigra (SN) [2]. Neurotransmitter

dopamine transmits messages to the part of the brain that control

movement and coordination. Thus loss of dopamine leads to

motor system disorder, leaving a person unable to control

movement normally [3]. Elderly persons throughout the globe

are mostly affected by PD having symptoms like poor memory,

tremor, bradykinesia, rigidity or stiffness of the limbs, impaired

balance and postural instability [4]. It is one of the chronic and

progressive movement disorders in which symptoms get worsen

over time. Though long studied but still there is no cure for PD.

The present treatments only reduce the extent of the symptoms

but contribute very little to the halt of disease progressions [5].

One of the main reasons behind this inadequate quantitative

treatment method is the lack of reliable diagnostic tools for PD.

Present treatment of PD solely depends on clinical symptoms

which appear in most of the cases at a very later stage when most

of the (60–70%) dopaminergic neurons are already lost [6]. Here

comes the need of incorporation of molecular markers in the

diagnosis process which can aid proper detection at an earlier

stage and slow down its progression.

MicroRNAs (miRs) are short noncoding RNA sequences (of

,22 nt length) that act as post-transcriptional regulators of

protein-coding genes by binding mainly to their 39 untranslated

region, leading to mRNA degradation or translational inhibition

[7]. The mode of regulation of the target mRNAs depends on the

sequence complementarity between the miR and the mRNA.

Thus miRs play a key role in modulating diverse cellular processes.

Transcriptomic analysis of different brain regions of PD patients

revealed that miRs play an important role in PD progression and
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pathogenesis [8]. However the underlying molecular processes

regarding the function of miRs in PD are still not clear. Altered

expression of miRs has been implicated in other neurodegener-

ative diseases like AD and Huntington Disease (HD). miR

biomarkers have been identified to play a crucial role in these

diseases [9,10]. It is now evident that miR- mediated regulation is

an emerging field of therapeutic approaches [11].

Transcription Factors (TF) are proteins that can regulate the

transcription of genes by binding to their upstream regulatory

regions [12]. It has been proposed that not only protein-coding

genes, but noncoding miR expressions are also tightly regulated by

several TFs [13]. Since TFs and miRs are both part of a common

regulatory network, they often function in a coupled manner. TFs

can regulate the transcription of both the miR and its target

mRNA by binding to their respective promoter region. miRs in

turn regulate the post-transcriptional regulation of gene by binding

to the 39 untranslated region (39 UTR) of target mRNA (Figure 1).

The simultaneous examination of such transcriptional/post-

transcriptional regulatory networks comprising TFs, miRs and the

target genes have emerged as a powerful tool to understand

biological events and identify possible biomarkers [14]. A recent

study of such miR-TF-mRNA regulatory network in Ovarian

Cancer patients identified the transcriptome biomarkers associated

with Ovarian Cancer survival and recurrence [15]. The miR-TF-

gene regulatory networks have been studied for several types of

human cancers such as colorectal and breast cancer [16,17]. miR

and TF mediated regulatory networks in Glioblastoma identified

the main regulation format consisting of miRs, TFs and their

target genes [18]. However, no such studies are available for PD.

In this work for the first time we have studied the TF-miR-

mRNA regulatory network of PD. The primary aim of our work

was to integrate transcriptomic and system biological approach to

study the cross-talk of TF, miR and their targeted mRNAs in PD.

In addition we have built the co-expression network and studied

the co-expression pattern of PD related miRs. In our TF-miR-

mRNA regulatory network we have placed the miR in the middle

layer considering the role of miRs as intermediate regulatory hubs.

Thus our regulatory network is different from the previously

studied networks which have placed the TF in the middle layer of

regulation. In this way our study identified 23 novel hub miRs

which were not previously reported to be associated with PD.

Moreover, hsa-miR-92a appeared as a common hub in both

regulatory and co-expression network indicating its strong

functional role in PD. These hub miRs can be considered as

possible biomarkers for PD which can shed insight into possible

therapeutic targets for PD.

Results

Grouping of the DE miRs
Figure 2 highlights the workflow of our analysis. We identified

the differentially expressed (DE) miRs between PD and control

patients by applying the Significance Analysis of Microarray

(SAM) with FDR value 0.3% [19]. We found 204 DE miRs. To

validate our findings, we compared the 204 DE miRs with those

73 miRs found from text-mining (PubMed and HMDD) and

found a significant overlap (p-value ,0.05) of 47 PD related miRs

(Figure 3). On the basis of this comparison, we divided the 204

DE miRs into two groups, Group 1, containing the common 47

miRs which were previously reported to be associated with PD in

different literatures or databases and Group 2, containing the rest

157 miRs which were not previously found to be associated with

PD but found to be DE in our study. This suggests that Group 2

can possibly contain novel miRs that are responsible for the

etiology of PD but still unidentified in any study.

Functional Annotation and Enrichment Analysis of the
miR Targets

The mRNA targets of each of the two groups (Group1 and

Group2) were determined from the TarmiR 1.0 platform (http://

www.tarmir.rgcb.res.in/). We used the shared target list between

three servers DIANA microT, miRanda and TargetScan and

selected the target genes with DIANA miTG score equal or

greater than 20 as the highly reliable targets. miR Target

prediction of the two miR groups revealed that 1127 unique

mRNAs were targeted by the 47 miRs present in Group1 whereas

the number of unique mRNA targets for Group2 was 1227. We

analyzed the functional property of these two target groups (1127

targets for Group1 and 1227 targets for Group2) using the

DAVID Bioinformatic Resources (http://david.abcc.ncifcrf.gov/home.

jsp) [20]. We selected SP_PIR_KEYWORDS functional annota-

tion category because maximum number of our target genes

(47.3%) were involved in this category. It was found that both the

miR groups targeted similar functional mRNAs (Table 1). Most

of the targets of these two groups belonged to the Phosphoprotein

family indicating the possible role of these miRs in various

signaling cascades. This indication was further strengthened by the

results of enrichment analysis of the miR targets. It was found that

these targets were indeed associated with various signaling

pathways such as MAPK signaling pathway (hsa04010), mTOR

signaling pathway (hsa04150), Adipocytokine signaling pathway

(hsa04920), TGF-beta signaling pathway (hsa04350), Neurotro-

phin signaling pathway (hsa04722) etc (Table 2). Proteins

involved in alternative splicing, transcriptional regulation and

transcription process are also present in the top 5 functional target

classes.

In order to study the most significant GO terms (biological

processes, molecular functions, cellular components) and KEGG

pathways associated with these DE miRs, the target genes for

Group1 and Group2 miRs were separately subjected to Functional

enrichment analysis. FatiGO, a module in Babelomics 4.3.0

(http://www.fatigo.org/), was used to extract the most over-

representative GO terms (Biological Process, Cellular Component

and Molecular Function) for the groups of genes under

observation with respect to the whole genome taken as the

reference background set (p-value ,0.05) (Table 2) [21].

Enrichment analysis of mRNA targets identified that Group1

and Group 2 miRs have similar biological processes and KEGG

pathways. Cell development (GO:0048468), Neurogenesis

(GO:0022008), Neuron differentiation (GO:0030182), Negative

regulation of Gene expression (GO:0010629), Protein phosphor-

ylation (GO:0006468) were among the highly significant biological

processes shared by two groups (Table S1). While MAPK

signaling pathway (hsa04010), mTOR signaling pathway

(hsa04150), Endocytosis (hsa04144), Long-term potentiation

(hsa04720), Dilated cardiomyopathy (DCM) (hsa05414), TGF-

beta signaling pathway (hsa04350), Adipocytokine signaling

Figure 1. Regulatory relationship between TF, miR and mRNA.
TFs and miRs often function in a coupled way. TFs can regulate the
transcription of both the miR and its target mRNA by binding to their
respective promoter region, while miRs regulate gene’s post-transcrip-
tion by binding to the 39 untranslated region (UTR) of target mRNA.
doi:10.1371/journal.pone.0093751.g001

MicroRNA Networks in Parkinson’s Disease
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pathway (hsa04920) etc were the highly significant KEGG

pathways shared by the two groups (Table 3). This strengthens

the possibility that Group 2 miRs can have possible functional role

in PD progression. This established the significance of the entire

set of DE miRs found by SAM and therefore this dataset is reliable

for performing system-level analysis of PD. Interestingly Table 3
also pointed out that there are several disease pathways associated

with PD such as cancer pathways (hsa05200) and cardiovascular

disease pathways. The association of PD and Cancer has been

validated by several previous studies which showed that PD

patients are at a higher risk for certain cancers (Melanoma,

Prostate Cancer etc.) [22]. A very recent study reported an

interesting link between Parkinson’s disease and heart failure

which can be used as a validation for our finding [23].

Transcription Factor Prediction and Enrichment Analysis
of TFs

In order to study the transcriptional regulation on miR

expression, TF information for all of the 204 DE miRs were

collected from TransmiR Platform (http://202.38.126.151/hmdd/

mirna/tf/) [24]. This database contains experimentally validated

TF information for different species along with the possible role of

particular TF on each miR expression. 41 TFs were obtained for

Group 1 (47 miRs) and 56 TFs were obtained for Group 2 (157

miRs).

In order to explore the functional association of TFs in different

KEGG pathways we performed FatiGo analysis. The results

indicated that both Group 1 and Group 2 DE miRs were

regulated by similar TFs contained in similar GO terms and

KEGG pathways (Table S2). The possibility that Group 2 can

contain novel miRs responsible for PD progression is further

strengthened by the results of the ontology analysis as the Group2

miRs target similar kinds of mRNAs like Group1 miRs and they

are regulated by similar kinds of TFs.

Regulatory Network Construction and Inter Regulatory
hub miR Selection

To identify the regulatory relationship between the TFs, miRs

and mRNAs, a regulatory network was constructed for each

Group1 and Group 2 miRs. miRs, associated with the highly

significant top 20 biological processes, were selected for this

network construction. Enrichment analysis in FatiGO revealed

Figure 2. Flowchart depicting the workflow of this study.
doi:10.1371/journal.pone.0093751.g002
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that among the 47 miRs in Group1, 29 were associated with top

20 biological process and in Group2, 59miRs out of 157 miR were

associated with the top20 biological processes for Group2 (Table
S3).

We observed the regulatory network as a tripartite network

oriented in three layers from top to bottom in which TFs were

present in the uppermost layer, miRs were in the middle layer and

mRNAs were present in the lowermost layer (Figure 4, Figure 5).

Here the regulation goes down from TF to miRs and then miRs to

mRNAs. Thus the regulatory network describes the crosstalk

among the TFs, miRs and their target mRNAs. On the basis of the

number of TF (in-degree) and target mRNA (out-degree) per miR

we identified the hub nodes, miRs that play the most important

role in this tripartite regulatory network.

miRs present in the middle layer play a very important role in

Intermediate Regulation. By channeling the vast amount of

regulatory information (in terms of signals) from TFs to mRNAs

they function as bottleneck points in the tripartite network. So

identification of these intermediate regulatory (IR) points in the

network can be considered as a novel measure for detecting hub

miRs.

We used this IR measure to identify the potential IR hub miRs.

In case of regulatory network for Group1 miRs we found that the

highest IR value was 90 where the in-degree measure (m) was 9

and out-degree measure (n) was10 (Table 4). We selected the

miRs having mXn value greater than equal to 70. The 5 IR hub

miRs identified in this process were hsa-miR-29a, hsa-miR-9, hsa-

let-7a, hsa-let-7i and hsa-miR-19b showing a high association with

various signaling pathways.

In case of regulatory network for Group 2 miRs we found 9 hub

miRs. The highest IR value in this case was 130 (where m is 13

and n is 10) which was higher than the highest IR value of Group1

(Table S4). We selected miRs with IR value greater than equal to

70 (Table 5). The 9 IR hub miRs in Group 2 regulatory network

which play an important role in inter-regulatory signal transduc-

tion were hsa-miR-200c, hsa-miR-200b, hsa-miR-200a, hsa-miR-

17, hsa-miR-19a, hsa-miR-20a, hsa-miR-18a, hsa-miR-141and

hsa-miR-92a. Thus the tripartite regulatory network identified

novel hub miRs which were not reported earlier in association

with PD and hence can be considered as potential target for future

study.

In order to identify the TFs that were regulating maximum

number of miRs, we visualized the TF-miR network correspond-

ing to Group1 and Group 2 (Figure S1, Figure S2). Out-degree

analysis of TFs in these networks revealed that in case of Group1

miRs- MYC, EIF2C2, LIN28B, LIN28, NFKB1 were among the

TFs possessing high functional role in regulating PD miRs. In case

of Group 2 miRs- MYC, MYCN, ERS1, E2F1, NKX2-5, SPl1,

TGFB1, TLX3, EGR1, STAT5 were among the highly regulatory

TFs.

Hierarchical Clustering Analysis
Next we followed Hierarchical clustering (Hclust) method to

arrange the 204 DE miRs into groups based on their similarity in

expression profile to gain some meaningful biological insight.

Hclust Analysis revealed 6 clusters - cluster 1 containing 3 miRs,

cluster 2 containg 62 miRs, cluster 3 containing 99 miRs, cluster 4

containg 25 miRs, cluster 5 containg 1 miR and cluster 6

containing 14 miRs (Table S5). The mRNA targets of each of the

six clusters were determined as described previously from the

TarmiR 1.0 platform (http://www.tarmir.rgcb.res.in/) using a specific

threshold value.

The set of target list for each cluster was then separately

uploaded to FatiGo to identify the significant GO terms and

KEGG pathways associated with each cluster. Our aim was to find

out the unique biological term associated with each cluster which

we can point out as the characteristic property of that cluster.

Enrichment analysis for the six clusters revealed that most of the

over representative pathways were shared between different

clusters and very few pathways were uniquely associated with a

single cluster. Cluster 1 and 5 were not associated with any

Figure 3. Collection of data from two different sources - miR
microarray and text mining. We obtained 204 DE miRs from
microarray expression data. Text mining incorporated information of 73
miRs which were reported to be linked with PD. This 73 miRs included
26 miRs from HMDD and 47 miRs from PubMed. Comparison of these
transcriptomic and text mining data revealed a significant overlap of 47
PD related miRs, which were termed as Group1 and the remaining 157
miRs (out of the 204 miRs) were termed as Group 2 which were not
previously reported to be associated with PD.
doi:10.1371/journal.pone.0093751.g003

Table 1. Top 5 Functional Properties associated with the mRNA targets of Group1 and Group2 miRs obtained from DAVID
Bioinformatic Resources (http://david.abcc.ncifcrf.gov/home.jsp) [20].

mRNA targets for Group1miRs mRNA targets for Group2 miRs

Term Count % p-value Term Count % p-value

Phosphoprotein 644 5.675009 4.79E-43 Phosphoprotein 729 5.7738 1.36E-57

Alternative splicing 593 5.22559 1.01E-22 Transcription regulation 243 1.9246 1.03E-23

Transcription regulation 201 1.771237 1.84E-14 Transcription 244 1.93252 9.59E-23

Transcription 203 1.788861 4.38E-14 Alternative splicing 625 4.950103 1.80E-19

Triple helix 17 0.149806 2.09E-12 Nucleus 395 3.128465 2.57E-17

doi:10.1371/journal.pone.0093751.t001
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significant GO terms and KEGG pathway. So we continued our

analysis with the remaining 4 clusters. Pathway analysis of Cluster

2, 3, 4 and 6 revealed that Axon Guidance (hsa04360), Ubiquitin

mediated proteolysis (hsa04120), Pathways in cancers (hsa05200),

Regulation of actin cytoskeleton (hsa04810) etc were highly

prevalent among four clusters (Table S6). Besides Focal Adhesion

(hsa04510), MAPK signalling pathway (hsa04010), Glioma

(hsa05214), Neurotrophin signalling pathway (hsa04722) were

highly significant in most of the clusters. Previous studies have

identified the association of these pathways with PD [25]. But our

study was first to find out the roles of these new miRs, present in

the Group 2, in these PD pathways. By this, Hclust analysis further

strengthens the significance of these 204 DE miRs and emphasizes

the association of these unreported miRs with PD.

Co-expression Network Analysis
For co-expression network analysis with the 204 DE miRs, we

first obtained the pairs of miRs that have r value greater than 0.9

and this yielded 3730 miR pairs. Out of the 204 DE miRs, we

found 195 miRs were involved in these 3730 pairs. We visualized

the entire network between them (Figure 6) using the open source

network visualization software Cytoscape version 2.8.3 [26]. We

analyzed four topological properties (degree, betweenness, eccen-

tricity and clustering coefficient) of these 195 nodes (miRs) present

in the co-expression network using the tYNA (http://tyna.gersteinlab.

org/) web interface [27].

Degree or connectivity is an important topological param-

eter of a network which represents the number of connections or

edges of a particular node [28].

Table 2. Result of the Gene Ontology (GO) analysis for the miR TFs and target mRNAs of Group 1 and Group 2 miRs obtained from
FatiGO (http://www.fatigo.org/) [21].

No. of terms associated with Target genes No. of terms associated with TFs

Group1 Group2 Group1 Group 2

GO Biological Process 595 1253 2075 2110

GO Cellular Component 79 134 217 217

GO Molecular Function 168 413 867 900

KEGG PAthways 40 88 188 192

doi:10.1371/journal.pone.0093751.t002

Table 3. Functional Enrichment analysis of the miR targets - top 20 most significant KEGG pathways associated with the target
mRNAs of Group1 and Group2 miRs.

Group 1 Group 2

ID Name p-value ID Name p-value

hsa04120 Ubiquitin mediated proteolysis 4.02E-07 hsa04010 MAPK signaling pathway 1.58E-10

hsa04010 MAPK signaling pathway 5.01E-07 hsa04720 Long-term potentiation 1.82E-09

hsa04150 mTOR signaling pathway 7.42E-07 hsa04012 ErbB signaling pathway 2.14E-09

hsa05200 Pathways in cancer 8.97E-06 hsa04114 Oocyte meiosis 6.16E-09

hsa04930 Type II diabetes mellitus 9.28E-06 hsa04350 TGF-beta signaling pathway 2.01E-07

hsa04144 Endocytosis 1.28E-05 hsa04912 GnRH signaling pathway 2.23E-07

hsa04350 TGF-beta signaling pathway 2.63E-05 hsa04914 Progesterone-mediated oocyte maturation 2.51E-07

hsa04722 Neurotrophin signaling pathway 3.14E-05 hsa04144 Endocytosis 9.03E-07

hsa05412 Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

4.94E-05 hsa05414 Dilated cardiomyopathy (DCM) 1.57E-06

hsa05414 Dilated cardiomyopathy (DCM) 5.78E-05 hsa04150 mTOR signaling pathway 2.46E-06

hsa05410 Hypertrophic cardiomyopathy (HCM) 1.35E-04 hsa04540 Gap junction 6.83E-06

hsa04720 Long-term potentiation 1.40E-04 hsa04916 Melanogenesis 1.74E-05

hsa04960 Aldosterone-regulated sodium reabsorption 1.64E-04 hsa04270 Vascular smooth muscle contraction 2.03E-05

hsa04920 Adipocytokine signaling pathway 3.52E-04 hsa04920 Adipocytokine signaling pathway 4.10E-05

hsa04115 p53-signalling-pathway 3.87E-04 hsa04020 Calcium signaling pathway 6.46E-05

hsa04520 Focal adhesion 4.48E-04 hsa05410 Hypertrophic cardiomyopathy (HCM) 8.41E-04

hsa05210 Colorectal cancer (CRC) 5.66E-04 hsa04062 Chemokine signaling pathway 9.41E-04

hsa05220 Chronic myelogenous leukemia (CML) 9.22E-04 hsa05120 Epithelial cell signaling in Helicobacter pylori
infection

6.24E-03

hsa04142 Lysosome 1.21E-03 hsa01040 Biosynthesis of unsaturated fatty acids 8.51E-03

hsa04012 ErbB signaling pathway 1.01E-02 hsa00071 Fatty acid metabolism 1.01E-02

doi:10.1371/journal.pone.0093751.t003

MicroRNA Networks in Parkinson’s Disease

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e93751

http://tyna.gersteinlab.org/
http://tyna.gersteinlab.org/
http://www.fatigo.org/


Betweenness Centrality (BC) is another topological param-

eter of a node. It is given by the expression:

g(v)~
X

s=v=t

sst vð Þ
sv

Where sst represents the total number of shortest paths from

node s to node t, and sst vð Þ is the total number of shortest paths

that pass through. BC quantifies the flow of information through a

node in the network. It specifies how a node influences the

communication among other nodes. Therefore with the increase

of BC value, the importance of a node in a network increases [29].

The eccentricity of a node is the length of its maximum

shortest paths. The maximum non-infinite length of a shortest

path between n and another node in the network is denoted as its

eccentricity. If n is an isolated node, the value of this attribute is

zero. Sometimes maximum node eccentricity is used to define the

network diameter. It can be thought of as how far a node is from

the node most distant from it in the graph [30].

In undirected networks, the clustering coefficient (Cn) of a

node n is defined as

Cn~
2en

kn kn{1ð Þð Þ

Where kn is the number of neighbors of n and en is the number of

connected pairs between all neighbors of n [31]. In both cases, the

clustering coefficient is a ratio N/M, where N is the number of

edges between the neighbors of n, and M is the maximum number

of edges that could possibly exist between the neighbors of n. The

clustering coefficient of a node is always a number between 0 and

1.

The global node statistics for overall Co-expression Network

were obtained from tYNA (Table 6). The 195 miRs exhibited a

varied degree distribution with highest degree of 79 and lowest

Figure 4. Tripartite regulatory network for Group 1 miRs. This network represents the molecular cross talk between TFs, miRs and mRNAs in
PD. Square nodes in the middle layer represent miRs, diamond nodes in the upper layer representing validated TFs of respective miRs and circular
nodes in the lower most layer represent mRNA targets of the miRs. Here regulation goes down from TFs to miRs and then miRs to mRNAs. TFs
regulate the transcription of miRs whereas miRs regulate the translation process of target mRNAs. miRs with highest intermediate regulatory measure
were denoted as IR hubs. The 5 IR hub miRs in the middle layer have been enlarged for proper visualization. 29 already known PD related miRs,
associated with the top 20 most significant GO Biological Processes, were used to build this network. This network was constructed in Cytoscape
interface [26].
doi:10.1371/journal.pone.0093751.g004

Figure 5. Tripartite regulatory network for Group 2 miRs. 59 Group 2 miRs associated with the top 20 most significant GO Biological Processes
were used to build this network. This network represents the molecular cross talk between TFs, miRs and mRNAs in PD. Square nodes in the middle
layer represent miRs, diamond nodes in the upper layer representing validated TFs of respective miRs and circular nodes in the lower most layer
represent mRNA targets of the miRs. Here regulation goes down from TFs to miRs and then miRs to mRNAs. TFs regulate the transcription of miRs
whereas miRs regulate the translation process of target mRNAs. miRs with highest intermediate regulatory measure were denoted as IR hubs. The 9
IR hub miRs in the middle layer have been enlarged for proper visualization. These IR hubs represent the novel hub miRs which are not reported
previously to be linked in PD. This network was constructed in Cytoscape interface [26].
doi:10.1371/journal.pone.0093751.g005
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degree of 1. The Average number of degrees present is 38.2 with

median 45 and standard deviation 22.064. We considered the top

18 nodes (according to the maximum degree value) as the hub or

essential nodes of this network because these 18 nodes possessed

more than 80% of the total connectivity (degree .63.2).

Among the 18 hub miRs found in the co-expression network

analysis, 4 miRs (hsa-miR-30a, hsa-let-7c, hsa-let-7f-1 and hsa-

miR-147) were previously linked to PD. The remaining 14 miRs

belonged to Group2 miRs, in other word their association were

unreported in PD. The topological parameters of these 14 nodes

(Table 7) showed that the highly connected nodes (hsa-miR-190,

hsa-miR-155, hsa-miR-338-3p) also have very high BC value and

low eccentricity value. This indicated their critical position and

functional importance in the network in terms of information flow

and hence their importance in PD progression.

To find out the biological significance of these co-expressed hub

nodes we analyzed the targets of these 18 hub miRs (751 unique

genes) obtained from the co-expression network using FatiGo.

KEGG pathway analysis for the 18 hub miRs revealed somewhat

similar results like Hclust analysis. The 18 hub miRs were shown

to have significant association in several PD related pathways

which further strengthened our findings (Table 8).

Conservation Analysis
Our study identified 23 previously unreported disease markers

for PD, 9 from TF-miR-mRNA regulatory network and 14 from

miR co-expression network. Of these 23 miRs, hsa-miR-92a

appeared as hub in both regulatory and co-expression network

indicating its strong functional role in PD.

To investigate the importance of the newly identified hub miRs

from an evolutionary perspective, we studied the conservation

patterns of these 23 novel hub miRs. The PhastCons datasets of

UCSC Genome Browser (http://genome.ucsc.edu/) was used for this

purpose [32]. Here the evolutionary conservation of miR is

measured through multiple sequence alignments of 46 vertebrate

species. Through these alignments PhastCons Score is generated

which ranges from 0–1000 [33]. PhastCons score assigned to 9 IR

hub miRs showed very high evolutionary conservation of these

hub miRs (Table 9). The high evolutionary conservation pattern

of these IR hubs indicates that these may act as key regulators

among conserved species. Table S7 shows the PhastCons scores

assigned to 15 co-expressed hub miRs. It was found that 11 out of

the 14 co-expressed hub miRs were assigned medium to high

PhastCons scores indicating their strong conservation among

different species.

In order to acquire more evolutionary insight into the global

conservational view of the known homologous miR genes in

multiple species, a recently published web server microRNAviewer

was used [34]. This includes the homologous miRs, related to each

other by descent from a common ancestral DNA sequence, that

are either included in miRbase v.16 [35] or were identified by a

full cross-search using miRNAminer [36]. For a total of 49 species,

the conservation scores are available for more than 2,300 miRs

within a range of 0 to 1. The 9 novel IR hubs and the 14 co-

expressed miR hubs were both analyzed using this tool. We

obtained very high conservation scores for almost all of these 23

miRs, especially they are highly conserved in human. The

conservational view of the novel IR hubs (miR-200a, miR-200b,

miR-200c) in different organisms and the associated scores

(pictorially) are highlighted in Figure 7. Besides, the screenshot

of multiple sequence alignments for miR-200c is shown in Figure
S3 which displays a strong conservation pattern across different

species. Therefore, our claims become stronger also from the

evolutionary perspective.

In this way our study identified hsa-miR-92a as the common

hub between regulatory and co-expression network suggesting its

strong functional role in PD. Enrichment analysis of the mRNA

targets further emphasized its association in several PD pathways

(Figure 8). Moreover we found high conservation scores for this

miR in different species (Figure 9). Therefore hsa-miR-92a can

be considered as a possible biomarker for PD which is still

unidentified in any study.

Table 4. IR hub miRs identified on the basis of intermediate
regulation measure from the regulatory network of Group1
miRs which are already reported to be associated with PD.

miRs
In-degree
(m)

Out-degree
(n)

Intermediate Regulation
(mXn)

hsa-miR-29a 9 10 90

hsa-miR-9 8 10 80

hsa-let-7a 8 10 80

hsa-let-7i 7 10 70

hsa-miR-19b 7 10 70

doi:10.1371/journal.pone.0093751.t004

Table 5. IR hub miRs identified on the basis of intermediate regulation measure from the regulatory network of Group2 miRs
which are not previously reported to be associated with PD.

miRs In-degree (m) Out-degree (n) Intermediate Regulation (mXn)

hsa-miR-200c 13 10 130

hsa-miR-200b 12 10 120

hsa-miR-200a 12 10 120

hsa-miR-17 10 10 100

hsa-miR-19a 10 10 100

hsa-miR-20a 10 10 100

hsa-miR-18a 9 10 90

hsa-miR-141 7 10 70

hsa-miR-92a 7 10 70

doi:10.1371/journal.pone.0093751.t005
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Discussion

PD is one of the leading causes for progressive motor neuron

disease in elderly persons and the prevalence of this clinical

disorder is constantly growing worldwide. There is agreement

about the fact that clinical distinction of PD is often challenging at

an early stage which leads to the importance of identification of

disease biomarkers for PD. In this study we have carried out a new

kind of system-level analysis, to explore the involvement of

microRNAs in the Parkinson’s disease, which is fundamentally

different than the existing studies.

Here, we have been able to combine transcriptomic and text

mining approach to identify miR biomarkers in PD. In our work

TF-miR-mRNA regulatory networks and miR-miR co-expression

network were simultaneously analyzed and inter-regulatory

measures were used for the first time to identify bottleneck IR

hub miRs. In this way we identified 23 miRs previously not known

to be associated with PD. Of these 23 miRs 9 were identified as IR

hub miRs while the remaining 14 were identified as co-expressed

hub miRs. The tripartite regulatory network comprising TF-miR-

mRNA explored the crosstalk among the three molecular markers

and identified the hub miRs which play an important role in inter-

regulatory signal transduction. On the basis of intermediate

regulation the regulatory network identified some novel hub

miRs(hsa-miR-200c, hsa-miR-200b, hsa-miR-200a, hsa-miR-17,

hsa-miR-19a, hsa-miR-20a, hsa-miR-18a, hsa-miR-141 and hsa-

miR-92a) which were not reported earlier in association with PD

and hence can be considered as potential target for future study.

Several previous studies have related miR-200 family in cancer

metastasis and cancer progression [37]. They identified the role of

miR-200 family in Epithelial to Mesenchymal transition (EMT)

which is a crucial event in cancer metastasis. Studies have shown

that it can regulate olfactory neurogenesis [38]. A recent study has

also pointed out the role of miR-200 family in neural induction

[39] which is the earliest step in neuronal development and a link

of miR-200 has been established in neurodegeneration (in case of

Drosophila) [40]. These findings deserve follow up exploration in

human studies, so that the involvement of miR-200 family in PD

can bring out some interesting features which can be helpful in PD

therapeutics.

Surprisingly most of the 23 novel miRs were found to be

associated with several cancer pathways such as Pancreatic Cancer

(hsa-miR-200c [41], hsa-miR-141 [42]), Lung Cancer (hsa-miR-

200c [43], hsa-miR-143 [44]), Colorectal Cancer (hsa-miR-200c

Figure 6. miR-miR co-expression network. This network was built with the 195 DE miRs which have pearson correlation co-efficient greater than
0.9. Here nodes correspond to miRs, and edges between miRs represent significant co-expression relationships. Top 18 co-expressed hub miRs were
represented as square nodes, of which 4 hub miRs belonged to Group 1. The remaining 14 co-expressed hub miRs were novel miRs which were not
previously reported to be associated with PD. This network was constructed in Cytoscape interface [26].
doi:10.1371/journal.pone.0093751.g006

Table 6. Node Statistics obtained from the tYNA (http://tyna.gersteinlab.org/) web interface for the overall co-expression network
built with the 195 highly correlated miRs [27].

Degrees Clustering Coefficient Eccentricities Betweenness

Avg SD Min Max Avg SD Min Max Avg SD Min Max Avg SD Min Max

38.26 22.01 1 79 0.70 0.22 0.00 1.00 5.37 0.98 2 8 148.19 228.77 0.00 1,596.46

doi:10.1371/journal.pone.0093751.t006
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[45], hsa-miR-338-3p [46]), Bladder Cancer (hsa-miR-200b, hsa-

miR-200a, hsa-miR-141, hsa-miR-17, hsa-miR-27b) [47-49],

Breast Cancer (hsa-miR-200b [50], hsa-miR-147 [51]), Esopha-

geal Cancer (hsa-miR-200a, hsa-miR-141, hsa-miR-143, hsa-miR-

15a) [52,53], Prostate Cancer (hsa-miR-19a) [54], Oral Carcino-

ma (hsa-148b) [55], Cervical Cancer (hsa-miR-15a) [56], Gastric

Cancer (hsa-miR-192) [57] etc. Previous studies have indicated

that miR-200 family is highly expressed in Endometrial Carcino-

ma compared with that of normal endometrial tissues and could

play an important role in cancer growth [58]. It has been found

that hsa-miR-148a can be a potential therapeutic target for cancer

therapy as this miR inhibits tumor growth [59]. Moreover, hsa-

miR-181a-2 has been found to be up regulated in the head and

neck cancer patients which may be considered as possible risk

factor in these diseases [60]. Besides, hsa-miR-30d has been

implicated in medulloblastoma pathogenesis [61]. As we have

already mentioned that the association of PD and Cancer has been

established by several previous studies [62]. Therefore our finding

of these 23 miRs indicated that these miRs can be possible

regulators in both of these diseases.

In addition to these cancer pathways, the 23 hub miRs were

found to be associated with several other diseases. hsa-miR-200b

has been found to be associated with the pathophysiology of

autism [63]. Previous studies have established a link between hsa-

miR-190 and the aggressive phenotype of neuroblastoma [64].

Moreover hsa-miR-19a, hsa-miR-20a, hsa-miR-17 and hsa-miR-

155 have been reported to have a role in periodontal inflammatory

pathways [65].

In our study, results of the functional enrichment analysis

pointed out a close association between several cardiovascular

disease pathways and PD. This was also validated by the finding

that several of the hub miRs were previously related to heart

diseases. Higher expression level of hsa-miR-143 has been found

in pulmonary arterial hypertension [66]. Besides, a previous RNA

sequencing study has found that hsa-miR-143 is differentially

expressed in the right and left atria which may yield insight into

the increased arrhythmogenesis of the left atria [67]. Furthermore,

hsa-miR-192 has been identified as a predictive indicator of heart

failure after acute myocardial infarction [68].

It is noteworthy to mention that hsa-miR-92a was found to be

the hub miR in both regulatory and co-expression networks

indicating its strong functional role in PD. hsa-miR-92a has been

implicated as biomarker in several types of cancers (Pancreatic,

Prostate, Ovarian Cancer etc) [69,70]. Besides it has also been

reported to be differentially expressed in the whole blood sample

of patients with coronary artery disease which confirms hsa-miR-

92a as a possible therapeutic target for cardiovascular diseases

Table 7. Topological Properties of the 18 hub miRs identified in the co-expression Network.

Hub nodes Degree Betweenness Eccentricities Clustering Co-efficient

hsa-miR-190 79 873.58844 4 0.548847777

hsa-miR-155 77 700.1562131 4 0.568694463

hsa-miR-148a 74 183.9454213 5 0.656053314

hsa-miR-92a 74 184.0570282 5 0.65901518

hsa-miR-338-3p 73 692.74642 4 0.5304414

hsa-miR-143 71 160.4184355 5 0.671227364

hsa-miR-30a # 70 155.4571725 5 0.699792961

hsa-miR-181a-2 69 544.8636743 5 0.549019608

hsa-miR-30d 69 140.8784072 5 0.700341006

hsa-miR-589 69 159.8119127 5 0.709292413

hsa-let-7c # 67 736.5219806 5 0.674807779

hsa-miR-148b 67 578.5944648 4 0.54816825

hsa-let-7f-1 # 66 132.8030013 5 0.71048951

hsa-miR-15a 66 227.562842 5 0.718414918

hsa-miR-147 65 434.2587801 5 0.701923077

hsa-miR-192 65 105.3789872 5 0.740384615

hsa-miR-27b 64 60.13700936 5 0.766865079

hsa-miR-548c-5p 64 53.89115547 5 0.771825397

#miR previously reported to be associated with PD.
doi:10.1371/journal.pone.0093751.t007

Table 8. Top 10 most significant KEGG pathways associated
with the 18 hub miRs obtained from co-expression network
analysis.

KEGG pathways Name p-value

hsa04360 Axon guidance 6.71E-10

hsa04120 Ubiquitin mediated proteolysis 1.44E-06

hsa04114 Oocyte meiosis 2.02E-06

hsa04510 Focal adhesion 2.62E-06

hsa04350 TGF-beta signaling pathway 6.08E-06

hsa05200 Pathways in cancer 7.16E-06

hsa04010 MAPK signaling pathway 2.10E-05

hsa05222 Small cell lung cancer 3.52E-05

hsa05414 Dilated cardiomyopathy (DCM) 5.45E-05

hsa04912 GnRH signaling pathway 9.11E-05

doi:10.1371/journal.pone.0093751.t008
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[71]. In this way with the help of a new network based approach

our study proposed the exploration of several novel miR

biomarkers for PD and shed light on the association of several

disease pathways with PD.

This study was done with microarray data derived from blood

samples of PD patients. We have not been able to incorporate

brain specific PD miR expression data. However we have done

extensive text mining and identified the overlap between

microarray and text mining data. In this way we have been able

to integrate both blood and brain specific PD related miRs to our

initial dataset. Next generation sequencing data or ENCODE data

can also be used in this kind of study. Besides, our study is heavily

dependent on completeness and reliability of different databases.

Any deviation from such criteria of databases will have an effect on

our analysis.

Conclusions

We performed a system-level analysis by studying the involve-

ment of miRs in PD. In this study we have been able to combine

transcriptomic and text mining approach to identify miR

biomarkers in PD. In our work TF-miR-mRNA regulatory

networks and miR-miR co-expression network were simultaneous-

ly analyzed and inter-regulatory measures were used for the first

time to identify bottleneck IR hub miRs. In this way we identified

23 miRs previously not known to be associated with PD. Of these

23 miRs 9 were identified as IR hub miRs while the remaining 14

were identified as co-expressed hub miRs. It is noteworthy to

mention that hsa-miR-92a was found to be the hub miR in both

regulatory and co-expression networks indicating its strong

functional role in PD. Furthermore, functional enrichment

analysis of the mRNA targets associated with the 23 hub miRs

including hsa-miR-92a strengthens their association with several

PD related pathways. Moreover, our study shed light on several

shared pathways associated with PD such as cardiovascular,

cancer and different signaling pathways which strongly suggests

that PD is a multifaceted disease that involves several molecular

processes working in concert. Our study also identified very high

conservation patterns for most of the 23 novel hub miRs across the

species including human. Thus these 23 novel hub miRs can be

considered as potential disease markers and therapeutic targets for

PD. To our knowledge this is the first attempt on miR PD network

biology which demonstrates how system level analysis provide

insight into the intricate molecular cross talks associated with

complex disease.

Methods

Data Collection
Microarray expression data was collected from Gene Expression

Omnibus (GEO). Moreover, extensive text mining information

about PD-associated miRs was collected from two sources -

literature stored in PubMed (http://www.ncbi.nlm.nih.gov/pubmed)

and Human MicroRNA Disease Database (HMDD) [72].

Microarray Data Collection from GEO. Exiqon miR

microarray data of GSE16658 family was downloaded from

Table 9. Summary statistics for the conservation analysis obtained from the PhastCons dataset of UCSC Genome Browser (http://
genome.ucsc.edu/) for the 9 novel IR hub miRs (which are not previously linked with PD) [32].

miR name Position (obtained from miRBase) [35] PhastCons Score

Smallest Biggest Average

hsa-miR-200c chr12: 7072862–7072929 562 562 562

hsa-miR-200b chr1: 1102484–1102578 314 566 440

hsa-miR-200a chr1: 1103243–1103332 509 510 510

hsa-miR-17 chr13: 92002859–92002942 659 659 659

hsa-miR-19a chr13: 92003145–92003226 720 720 720

hsa-miR-20a chr13: 92003319–92003389 750 750 750

hsa-miR-18a chr13: 92003005–92003075 720 720 720

hsa-miR-141 chr12: 7073260–7073354 558 558 558

hsa-miR-92a * chr13: 92003568–92003645 750 750 750

* hsa-miR -92a appeared as a common hub in both regulatory and co-expression network.
doi:10.1371/journal.pone.0093751.t009

Figure 7. Conservational view of miR 200a, miR 200b and miR 200c in different species. This figure indicates high conservation pattern of
these three novel IR hubs in different species including human. This information was obtained from miRNAviewer which presents a global view of
homologous miR genes in many species [34]. The colored legend indicates the conservation level of each grouped miR. Grey box indicates that the
miR was not identified in this genome, under stringent parameters. Symbols N indicate miRs registered in miRbase [35].
doi:10.1371/journal.pone.0093751.g007
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GEO dataset browser (http://www.ncbi.nlm.nih.gov/geo/) [73]. Un-

like other studies, this experiment was done on peripheral blood

mononuclear cells (PBMCs) tissue samples of PD patients. Though

PD primarily affects neurons in the mid brain region, information

gathered from the study of PD blood samples can be proven useful

to understand the pathobiology of PD because studies have

indicated that the miR expression pattern in normal brain appears

to be more similar to PBMCs than to other tissues [74]. The

microarray data contained miR expression profiles obtained from

PBMCs tissue of 19 PD patients and 13 controls (Figure S4). The

clinical characteristics of the patients were given in the supple-

mentary file (Table S8). Samples were labeled with Hy3 and Hy5

dyes. Hy3 was used for individual sample labeling and Hy5 was

used for Common Reference Pool. The ExiMiR package was used

for normalization of miR expression data [75]. Logarithmic

conversion [log2 (Hy3/Hy5)] was performed in order to obtain the

unified expression profile of the whole dataset which was used for

further study.

Collecting Information about PD-associated miRs

through text-mining. We browsed HMDD and collected the

names of validated miRs that are listed as responsible for PD

progression. We found 26 such miRs from HMDD. Further, we

searched PubMed and collected reports about 47 more miRs that

were already known to be associated with PD. For our search we

used terms such as ‘microRNAs-PD’, ‘microRNA and Parkinson’s

Disease’, ‘microRNAs in Parkinson’s disease’, etc. and the timeline

was set with 2000 to 2013. In this way, we obtained a list of 73

miRs that have association with PD (Table S9).

Differentially Expressed miR Selection
Significance Analysis of Microarray (SAM) was used to identify

the differentially expressed (DE) miRs in the disease state which

were either up-regulated or down-regulated. SAM calculates the

False Discovery Rate (FDR) based on permutation analysis and

relative difference of expression data. The test statistic is given by:

Figure 8. Association of TFs, target mRNAs and significant KEGG pathways with hsa-miR-92a. This miR appeared as a common hub
between regulatory and co-expression network. Functional enrichment analysis strengthens its role in several PD related pathways.
doi:10.1371/journal.pone.0093751.g008

Figure 9. Conservational view of miR 92a in different species. According to miRbase information, miR 92a is presently denoted as miR 92a-2.
This figure indicates high conservation pattern of this miR which was found to be a common hub between regulatory and co-expression network.
The information regarding the conservation analysis was obtained from miRNAviewer which presents a global view of homologous miR genes in
many species [34]. The colored legend indicates the conservation level of each grouped miR. Grey box indicates that the miR was not identified in this
genome, under stringent parameters. Symbols N indicate miRs registered in miRbase [35].
doi:10.1371/journal.pone.0093751.g009
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di~
ri

sizso

Where di is the relative difference in gene expression, r is the

linear regression coefficient of gene i, si is the standard error of r

and so is a constant chosen to minimize the coefficient of variation

of di.

FDR is a statistical method that minimizes the number of

incorrectly rejected null hypotheses in a test or it minimizes the

number of false discoveries in a test. The lower the FDR the

higher is the chance of finding a significant result with less number

of false discoveries. Thus SAM assigns a score to each gene on the

basis of change in gene expression relative to the standard

deviation of repeated measurements.

In our study we found that at FDR value 0.3% (after sensitivity

analysis) 204 miRs were DE among control and disease conditions.

All of these 204 miRs were upregulated in PD. These 204 miRs

were used to carry out the next phase of our study.

Target Prediction
miR target prediction platform TarMiR 1.0 (http://www.tarmir.

rgcb.res.in/) was used to identify the targets of the DE miRs.

TarMiR1.0 is an integrated database that holds pre-computed

microRNA target lists from nine commonly used miR target

prediction servers along with target lists from the only server that

provides a list of experimentally validated targets. Among them we

used three servers DIANA micro T, miRanda and TargetScan to

retrieve information from the pre-computed miR target lists in a

customizable and comprehensive manner. These 3 prediction

tools were selected because of the highest ratio of correctly

predicted targets over other prediction tools. The shared/common

targets of these three databases were selected for each miR. Gene

list was then screened with the DIANA miR targeted gene (miTG)

score. miTG score reflects the weighted sum of the scores of all

conserved and nonconserved miR recognition elements on the 39

UTR of the target mRNA. We selected the target genes with

miTG score equal or greater than 20 as the highly reliable targets.

Previous study by Satoh et Al. (2011) reported that targets with the

miTG score (,20) indicates significantly lower precision score

than the targets with miTG score more than 20, where precision

score is an indicator of the correctness in predicted interactions

[76]. Target prediction revealed that 1127 unique mRNAs were

targeted by the 47 miRs present in Group1 whereas the number of

unique mRNAs targets for Group2 was 1227. The mRNA targets

of the 23 novel PD miR biomarkers were further validated from

the TarBase 6.0 [77].

Regulatory network Construction
In order to identify the regulatory relationship between the TFs,

miRs and mRNAs, a regulatory network was constructed for each

Group1 and Group 2 miRs. Both the networks were filtered based

on the overrepresented GO biological processes. miRs, associated

with the highly significant top 20 GO biological processes, were

selected for this network construction. The TFs obtained from

TransmiR database were used in this regulatory network. Top 10

target interactions (target genes with miTG score equal or greater

than 20 were considered as the highly reliable targets) for each

miR was shown in this network.

On the basis of the number of TF (in-degree) and target mRNA

(out-degree) per miR we identified the hub nodes, miRs that play

the most important role in this tripartite regulatory network. Let us

assume the number of TFs per miR is m and number of target

mRNA per miR is n (as we have chosen only top ten targets above

the Diana miTG score 20, the upper limit of n is always 10). So

each miR will be regulated by m number of TFs (signals) which

will further dictate the miR to repress n number of targets. In

other word each miR will exert its action via n number of possible

ways. Thus the amount of regulatory information passing through

a miR is mXn. We identified this in-degree, out-degree measure as

one of the most important properties of hub miRs. This represents

the intermediate regulatory (IR) property of a miR. It quantifies

the flow of information through a node in the network. In our

study nodes with such high IR values are considered as the IR hub

nodes. These nodes are positioned in the central position in the tri

partite regulatory network depicting the high amount of informa-

tion flowing through them. We identified these IR hub nodes on

the basis of the number of regulatory TFs and number of regulated

mRNA connected to a particular miR. Higher this value higher is

the probability of that miR to be involved in various signaling

pathway hence can be probable candidate biomarker in a certain

disease condition.

Hierarchical Clustering (Hclust) analysis of the DE miRs
We wanted to classify the DE miRs into groups of miRs with

similar expression patterns. Clustering is one of such methods that

allow us to arrange data into groups of genes based on their

similarity in expression profile to gain some meaningful biological

inference about that set of genes. Clustering method can be

hierarchical or non hierarchical. We approached the Hclust

method that groups objects into clusters and specify relationships

among objects in a cluster. It builds hierarchy of clusters like a

phylogenetic tree. Hclust works on the idea that objects that are

close to each other are more connected than to objects that are

present at a distance. So in this method nearby objects are joined

to form a cluster based on their distance [78].

Hclust can be of two types Agglomerative (starts with a single

object and aggregates nearby objects into clusters) and Divisive

(starts with the entire data set and divides it into small clusters). For

a hierarchical agglomerative clustering procedure, each object is

considered as a cluster. The first step is the calculation of distance

between objects in a data matrix. We used the sample correlation

method for calculating pair wise distance between two objects.

Given an m-by-n data matrix X, where row vectors are x1, x2,

…, xm, the various correlation distances between the vector xs and

xt are defined as follows

Correlation distance

dst~1{
xs{xsð Þ xt{xtð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xs{xsð Þ xs{xsð Þ0
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt{xtð Þ xt{xtð Þ0
q

Where xs~
1
n

P
j

xsj and xt~
1
n

P
j

xtj .

Based on the pairwise distances between them, objects that are

similar to each other are grouped into clusters. After this is done,

pairwise distances between the clusters are re-calculated, and

clusters that are similar are grouped together in an iterative

manner until all the objects are included into a single cluster [79].

This information can be represented as a dendrogram, where the

distance from the branch point is indicative of the distance

between the two clusters or objects.

Since a cluster is composed of several objects there are several

candidates to calculate the distance between two clusters. For this

one needs to choose the linkage criterion for Hclust analysis. There

are several methods of Hclust depending on the linkage criterion
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chosen. Popularly used methods are Single linkage clustering,

complete linkage clustering, average linkage clustering or centroid

linkage clustering. We used the average linkage clustering. Instead

of calculating the minimum or maximum distance between two

clusters, this method calculates the average distance between all

possible pairs of objects in the two clusters.

The 204 DE miRs were subjected to Hclust (Agglomerative

with average linkage clustering) analysis which revealed 6 clusters.

These clusters were then subjected to GO analysis.

Co-expression Network Analysis
Genes present in a same pathway often exhibit similar

expression profiling under varied conditions. Therefore a group

of genes that have similar expression pattern in different

physiological conditions can be possible candidate of a similar

pathway. These groups of genes represent a functional module and

it is believed that each such module undergoes similar transcrip-

tional regulation [80]. This is also relevant with miRs. If a group of

miRs is found to have similar expression pattern over different

conditions that can indicate their presence in a same functional

module. In order to find such functional modules we studied the

DE miR over control and disease conditions in the form of a co-

expression network which is an undirected graph, where the graph

nodes correspond to miRs, and edges between miRs represent

significant co-expression relationships [81].

To create a co-expression network first of all we measured the

Pearson correlation coefficient (r) for all possible combination of

pairs of DE miRs over control and disease conditions. The basic

formula for computing r is

r~

P
X{X
� �

Y{Y
� �

nSxSy

where X and Y are the scores of the variables whose Correlation

Coefficient are being measured (here X and Y represent the

expression values of two miRs), X and Y are their respective

means and Sx and SY are the respective standard deviations, and n

is the number of individuals or pairs of scores in the sample.

As we wanted to study the highly correlated miR pairs, we

selected those pair of miRs which have correlation coefficient

greater than a certain threshold (r[(0:9,0:99)). These pairs of miRs

thus represent a highly correlated co-expression module which can

have characteristic biological significance.

Supporting Information

Figure S1 TF-miR network for Group 1 miRs. Figure

shows the interaction between the highly significant 29 miRs from

Group1and their respective TFs. Diamond nodes in the outer

layer represent TFs and the circular nodes in the inner layer

represent miRs. TF out-degree or miR in-degree can be visualized

in this network where the direction of regulation is from TF to

miR.

(TIF)

Figure S2 TF-miR network for Group 2 miRs. Figure

shows the interaction between the highly significant 59 miRs from

Group2 and their respective TFs. Diamond nodes in the outer

layer represent TFs and the circular nodes in the inner layer

represent miRs. TF out-degree or miR in-degree can be visualized

in this network where the direction of regulation is from TF to

miR.

(TIF)

Figure S3 Multiple alignment of miR-200c across
different species. This information was obtained from

miRNAviewer which presents a global view of homologous miR

genes in many species [34]. Multiple alignment is colored gray for

aligned sequences, red for mismatches and blue for mature miR

region.

(TIF)

Figure S4 Heatmap of the 204 DE miRs across 19 PD
and 13 control samples. Red blocks represent disease samples

whereas green represents control samples. This figure was

generated in MATLAB (R2012b).

(TIF)

Table S1 Functional Enrichment analysis of the miR
targets. This file contains the information of top 20 over-

representative GO Biological Processes associated with the mRNA

targets of Group1 and Group2 miRs.

(DOCX)

Table S2 Functional Enrichment analysis of the miR
TFs. This file contains the information of top 20 most significant

KEGG Pathways associated with the TFs of Group1 and Group2

miRs.

(DOCX)

Table S3 List of highly significant miRs from Group1
and Group2 which were used to create regulatory
networks. This file lists down 29 miRs from Group1 and 59

miRs from Group2 which were associated with the top 20 over-

representative GO biological processes and later used to build up

the respective regulatory networks.

(XLSX)

Table S4 TF and mRNA target information for the 14 IR
hub miRs. TF information was obtained from TransmiR

database and top 10 target information was obtained from

TarMiR platform. The shared target list of three servers DIANA

microT, miRanda and TargetScan were used to retrieve mRNA

target information.

(XLSX)

Table S5 Distribution of 204 DE miRs across 6 different
hierarchical clusters. This file contains the result of hierar-

chical clustering analysis in which cluster 2, 3, 4 and 6 appeared as

the most significant miR clusters containing 62, 99, 25 and 14

miRs respectively.

(XLSX)

Table S6 Top 20 most over-representative KEGG
pathways associated with the four significant miR
clusters obtained from hierarchical clustering analysis.

(XLSX)

Table S7 Result of the PhastCons analysis for the 14 co-
expressed hub miRs which were not previously found to
be linked with PD. Conservation analysis performed with the

PhastCons dataset in UCSC genome browser resulted in high

PhastCons scores for most of the co-expressed hubs specially for

hsa-miR-92a which was found to be common in both regulatory

and co-expression networks.

(DOCX)

Table S8 Clinical Information about the experimental
group. This file contains the clinical information of the 19 PD

patients and 13 Control individuals as provided by the authors

[73].

(XLSX)
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Table S9 List of 73 PD related miRs obtained through
text mining. 26 PD related miRs were obtained from HMDD

and 47 more miRs were obtained from PubMed. In this way, 73

miRs were found to have association with PD. This file lists down

the respective sources (either PMID or HMDD) of all these 73 PD

related miRs.

(XLSX)

Acknowledgments

The authors would like to thank the Department of Biophysics, Bose

Institute, Kalyani University and the Indian Statistical Institute (ISI) for

their co-operation and support.

Author Contributions

Conceived and designed the experiments: PC MB SB DR. Performed the

experiments: PC. Analyzed the data: PC MB DR. Contributed reagents/

materials/analysis tools: PC MB SB DR. Wrote the paper: PC MB SB DR.

References

1. Fitzgerald JC, Plun-Favreau H (2008) Emerging pathways in genetic Parkinson’s

disease: autosomal-recessive genes in Parkinson’s disease–a common pathway?

FEBS Journal 275(23): 5758–5766.

2. Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in

Parkinson’s disease: molecules implicated in the formation and degradation of

alpha-synuclein aggregates. Neuropathology 27(5): 494–506.

3. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. Journal of

Neurology, Neurosurgery and Psychiatry 79(4): 368–376.

4. Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of

Parkinson disease: molecules to medicine. J Clin Invest 116: 1744–1754.

5. Esposito E, Cuzzocrea S (2010) New therapeutic strategy for Parkinson’s and

Alzheimer’s disease. Curr Med Chem 17(25): 2764–2774.

6. Khoo SK, Petillo D, Kang UJ, Resau JH, Berryhill B, et al. (2012) Plasma-based

Circulating MicroRNA Biomarkers for Parkinson’s Disease. J Parkinsons Dis

2(4): 321–31.

7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell

136(2): 215–233.

8. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, et al. (2007) A microRNA

feedback circuit in midbrain dopamine neurons. Science 317(5842): 1220–1224.

9. Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, et al.

(2011) microRNA-34c is a novel target to treat dementias. The EMBO Journal

30: 4299–4308.

10. Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, et al. (2011) Hsa-

miR-34b is a plasma-stable microRNA that is elevated in pre-manifest

Huntington’s disease. Human Molecular Genetics 20: 2225–2237.

11. Yang N, Kaur S, Volinia S, Greshock J, Lassus H, et al. (2008) MicroRNA

microarray identifies let-7i as a novel biomarker and therapeutic target in human

epithelial ovarian cancer. Cancer Res 68:10307–10314

12. Zaret KS, Carroll JS (2011) Pioneer transcription factors: Establishing

competence for gene expression. Genes Dev 25(21): 2227–2241.

13. Bandyopadhyay S, Bhattacharyya M (2009) Analyzing miRNA co-expression

networks to explore TF-miRNA regulation. BMC Bioinformatics 10: 163.

14. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the

mammalian microRNA-transcription factor regulatory network. PLoS Comput

Biol 3(7): e131.

15. Delfino KR, Rodriguez-Zas SL (2013) Transcription factor-microRNA-target

gene networks associated with ovarian cancer survival and recurrence. PLoS

ONE 8(3): e58608.

16. Aguda BD (2013) Modeling microRNA-transcription factor networks in cancer.

Adv Exp Med Biol 774: 149–67.

17. Sengupta D, Bandyopadhyay S (2013) Topological patterns in microRNA-gene

regulatory network: studies in colorectal and breast cancer. Mol Biosyst 9(6):

1360–71.

18. Sun J, Gong X, Purow B, Zhao Z (2012) Uncovering microRNA and

transcription factor mediated regulatory networks in glioblastoma. PLoS

Comput Biol 8: e1002488.

19. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays

applied to the ionizing radiation response. Proceedings of the National Academy

of Sciences of the United States of America 98: 5116–5121.

20. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID:

database for annotation, visualization, and integrated discovery. Genome Biol

4(5): P3.

21. Al-Shahrour F, Minguez P, Tarraga J, Medina I, Alloza E, et al. (2007)

FatiGO+: a functional profiling tool for genomic data. Integration of functional

annotation, regulatory motifs and interaction data with microarray experiments.

Nucleic Acids Res 35: W91–96.

22. Kisby GE, Spencer PS (2013) Parkinsonism and cancer. JAMA Neurol

70(3):414–5.

23. Chen Y, Dorn GW (2013) PINK1-phosphorylated mitofusin 2 is a Parkin

receptor for culling damaged mitochondria. Science 340: 471–475.

24. Wang J, Lu M, Qiu C, Cui Q (2009) TransmiR: a transcription factor-

microRNA regulation database. Nucleic Acids Res (Database Issue) 38:D119–

D122.

25. Sutherland GT, Matigian NA, Chalk AM, Anderson MJ, Silburn PA, et al.

(2009) A cross-study transcriptional analysis of Parkinson’s disease. PloS ONE

4(3): e4955.

26. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a
software environment for integrated models of biomolecular interaction

networks. Genome Res 13(11): 2498–504.

27. Yip KY, Yu H, Kim PM, Schultz M, Gerstein M (2006) The tYNA platform for

comparative interactomics: a web tool for managing, comparing and mining
multiple networks. Bioinformatics 22(23): 2968–70.

28. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science
286(5439): 509–512.

29. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nat Rev Genet 5(2): 101–113.

30. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.

Nature 393(6684): 440–442.

31. Goh KI, Oh E, Jeong H, Kahng B, Kim D (2002) Classification of scale -free

networks. Proc. Natl. Acad. Sci 99: 12583–12588.

32. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The

human genome browser at UCSC. Genome Res 12(6): 996–1006.

33. Siepel A, Bejerano G, Pedersen JS, Hinrichs A, Hou M, et al. (2005)

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res 15: 1034–1050.

34. Kiezun A, Artzi S, Modai S, Volk N, Isakov O, et al. (2012) miRviewer: A
multispecies microRNA homologous viewer. BMC Research Notes 5: 92.

35. Griffiths-Jones S (2010) miRBase: microRNA sequences and annotation. Curr
Protoc Bioinformatics 12(12.9): 1–10.

36. Artzi S, Kiezun A, Shomron N (2008) miRNAminer: a tool for homologous

microRNA gene search. BMC Bioinformatics 9: 39.

37. Mongroo PS, Rustgi AK (2010) The role of the miR-200 family in epithelial-

mesenchymal transition. Cancer Biol Ther 2010, 10: 219–222.

38. Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, et al. (2008)

Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57:

41–55.

39. Du ZW, Ma LX, Phillips C, Zhang SC (2013) miR-200 and miR-96 families
repress neural induction from human embryonic stem cells. Development 140:

2611–8.

40. Masashi Abe and Nancy M . Bonini (2013) MicroRNAs and Neurodegener-

ation: Role and Impact. Trends Cell Biol 23(1): 30–36.

41. Yu J, Ohuchida K, Mizumoto K, Sato N, Kayashima T, et al. (2010)

MicroRNA, hsa-miR -200c, is an independent prognostic factor in pancreatic
cancer and its upregulation inhibits pancreatic cancer invasion but increases cell

proliferation. Mol Cancer 9:169.

42. Xu L, Li Q, Xu D, Wang Q, An Y, et al. (2014) has-miR-141 downregulates

TM4SF1 to inhibit pancreatic cancer cell invasion and migration. Int J Oncol

44(2):459–66.

43. Shi WY, Liu KD, Xu SG, Zhang JT, Yu LL, et al. (2014) Gene expression
analysis of lung cancer. Eur Rev Med Pharmacol Sci 18(2):217–28.

44. Zhang N, Su Y, Xu L (2013) Targeting PKCe by miR-143 regulates cell
apoptosis in lung cancer. FEBS Lett 587(22):3661–7.

45. Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, et al. (2006) Prognostic
Values of microRNAs in Colorectal Cancer. Biomark Insights 2:113–121.

46. Xue Q, Sun K, Deng HJ, Lei ST, Dong JQ, et al. (2014) MicroRNA-338-3p
Inhibits Colorectal Carcinoma Cell Invasion and Migration by Targeting

Smoothened. Jpn J Clin Oncol 44(1):13–21.

47. Han Y, Chen J, Zhao X, Liang C, Wang Y, et al. (2011) MicroRNA expression

signatures of bladder cancer revealed by deep sequencing. PLoS ONE
6(3):e18286.

48. Xie P, Xu F, Cheng W, Gao J, Zhang Z, et al. (2012) Infiltration related
miRNAs in bladder urothelial carcinoma. J Huazhong Univ Sci Technolog Med

Sci 32(4):576–80.

49. Yuan L, Chu H, Wang M, Gu X, Shi D, et al. (2013) Genetic variation in

DROSHA 39UTR regulated by hsa-miR-27b is associated with bladder cancer
risk. PLoS ONE 8(11):e81524.

50. Wee EJ, Peters K, Nair SS, Hulf T, Stein S, et al. (2012) Mapping the regulatory
sequences controlling 93 breast cancer-associated miRNA genes leads to the

identification of two functional promoters of the Hsa-miR-200b cluster,
methylation of which is associated with metastasis or hormone receptor status

in advanced breast cancer. Oncogene 31(38):4182–95.

51. Uhlmann S, Mannsperger H, Zhang JD, Horvat EÁ, Schmidt C, et al. (2012)
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