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Abstract

Obesity is associated with a low-grade inflammation including moderately increased serum levels of the acute phase protein
serum amyloid A (SAA). In obesity, SAA is mainly produced from adipose tissue and serum levels of SAA are associated with
insulin resistance. SAA has been described as a chemoattractant for inflammatory cells and adipose tissue from obese
individuals contains increased numbers of macrophages. However, whether adipose tissue-derived SAA can have a direct
impact on macrophage infiltration in adipose tissue or the development of insulin resistance is unknown. The aim of this
study was to investigate the effects of adipose tissue-derived SAA1 on the development of insulin resistance and obesity-
related inflammation. We have previously established a transgenic mouse model expressing human SAA1 in the adipose
tissue. For this report, hSAA1+/2 transgenic mice and wild type mice were fed with a high fat diet or normal chow. Effects of
hSAA1 on glucose metabolism were assessed using an oral glucose tolerance test. Real-time PCR was used to measure the
mRNA levels of macrophage markers and genes related to insulin sensitivity in adipose tissue. Cytokines during
inflammation were analyzed using a Proinflammatory 7-plex Assay. We found similar insulin and glucose levels in hSAA1
mice and wt controls during an oral glucose tolerance test and no decrease in mRNA levels of genes related to insulin
sensitivity in adipose tissue in neither male nor female hSAA1 animals. Furthermore, serum levels of proinflammatory
cytokines and mRNA levels of macrophage markers in adipose tissue were not increased in hSAA1 mice. Hence, in this
model we find no evidence that adipose tissue-derived hSAA1 influences the development of insulin resistance or obesity-
related inflammation.
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Introduction

Obesity is associated with adipose tissue inflammation and

increased macrophage infiltration [1,2]. In addition, obesity

influences systemic responses to inflammation [3,4] including

moderately increased serum levels of the acute phase protein

serum amyloid A (SAA) [5]. It has been suggested that these

processes contribute to obesity-related metabolic disturbances such

as insulin resistance and the development of type 2 diabetes [2,4–

6].

SAA has been extensively studied in many different aspects but

its function is still unclear. SAA is an apolipoprotein and, in the

circulation, it is mainly found associated with the HDL particle

[7,8]. It has been suggested that SAA is involved in processes such

as cholesterol transport [9–12], lipolysis [5,13], and opsonization

[14], and may induce production of proinflammatory cytokines

[5,15]. In response to acute inflammation, SAA is produced by the

liver [16,17], and circulating levels of SAA can rise thousand-fold

during the acute phase response [18,19]. During non-acute phase,

we [20] and others [21] have identified adipose tissue as the main

source of SAA in obese subjects.

It is well established that obesity is tightly linked to insulin

resistance [22,23]. Several studies indicate that SAA may be a part

of this link. Serum levels of SAA are associated with insulin

resistance [24–26] and in vitro studies have shown that recombi-

nant SAA can down regulate the expression of insulin signaling

and glucose homeostasis related genes in adipocytes [27,28]. It has

also been suggested that that adipose tissue inflammation,

including macrophage infiltration, is involved in the development

of insulin resistance [1,2]. SAA has been suggested to have

chemoattractant properties [29–31] and may therefore increase

macrophage infiltration. Hence, adipose tissue-derived SAA may
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have direct effects on the development of insulin resistance and

type 2 diabetes.

We have previously reported the generation of a transgenic

mouse model expressing human SAA1 (hSAA1) in the adipose

tissue with moderately elevated circulating levels of SAA

comparable those seen in human obesity [32]. In this study we

used this model to investigate whether adipose tissue-derived

hSAA1 plays a direct role in obesity-related inflammation and the

development of insulin resistance.

Materials and Methods

Ethics Statement
All animal study protocols were approved by the local Ethics

Committee for Animal Studies at the Administrative Court of

Appeals in Gothenburg, Sweden (Permit numbers 281–2008 and

328–2009).

Animals
The generation of hSAA1+/2 transgenic mice (hSAA1 mice)

expressing human SAA1 in the adipose tissue under the control of

the aP2 promoter has previously been reported [32]. The hSAA1

mice display moderately elevated circulating levels of SAA where

SAA is found in the HDL-containing lipoprotein fraction. Hence

the model is mimicking the native form of SAA in the human

circulation where SAA is found associated with HDL. In the

present experiment heterozygous hSAA1 mice (n = 37) and their

wt littermates (n = 40) were weaned at 3 weeks of age and housed

3–7 per cage. The animals were kept in a temperature controlled

(25uC) facility with a 12 hour dark-light cycle and were given ad

libitum access to food and water. At the age of 10 weeks groups of

wt and hSAA1 mice were matched according to sex, weight and

body composition and were given either normal chow (NC) or a

pelleted high fat diet (HFD) (60 kcal% fat; D12492, Research

Diets, New Brunswick, NJ) for 12 weeks. At the end of experiment,

animals were fasted for 4 hours, sacrificed under Isoflurane

anesthesia (Baxter Kista Sweden) and blood was collected using

heart puncture. Adipose tissue depots were dissected, weighed,

snap frozen in liquid nitrogen and stored in 280uC until further

analysis.

Growth and Body Composition
Body weight was recorded weekly from 10 weeks of age and

analysis of body composition was performed at 10 and 18 weeks of

age. Body composition was assessed using dual energy X-ray

absorptiometry (DEXA) (Lunar PIXImus II Densitometer, soft-

ware version 2.10.041, GE Healthcare, Waukesha, WI), in animals

anesthetized with Isoflurane.

Oral Glucose Tolerance Test
At 21 weeks of age, the animals fed with HFD (n= 39)

underwent an oral glucose tolerance test. In brief, animals were

fasted for 4 hours and glucose solution (400 mg/ml, 2 g/kg) was

administrated by oral gavage and blood was sampled from the tail

vein. Samples were obtained before glucose administration and 15,

30, 60 and 120 minutes after. Levels of blood glucose and insulin

were analyzed using the Accu-Check glucometer (Roche, Stock-

holm, Sweden) and an ultrasensitive mouse insulin enzyme-linked

immunosorbent assay (ELISA) Kit (Chrystal Chem Inc., Downers

Grove, IL), respectively.

RNA Preparation and Gene Expression Analysis
Adipose tissue was homogenized using TissueLyser (Qiagen,

Chatsworth, CA) and RNA was isolated using the RNeasy lipid

tissue mini kit (Qiagen). Next, the High Capacity cDNA RT kit

(Applied Biosystems, Foster City, CA) was used to generate

cDNA from the RNA preparations and gene expression was

then analyzed using real-time PCR. The reaction mixture

contained TaqMan Master Mix, TaqMan Gene expression

assays and cDNA corresponding to 10 ng RNA per reaction.

The following TaqMan Gene expression assays were used for

analyzing gene expression: rplp0 (Mm99999273_gh), SAA1/2

(Hs00761940_s1), Saa3 (Mm00441203_m1), Cd68

(Mm03047340_m1), Emr1 (Mm00802529_m1), Irs1

(Mm01278327_m1), Glut4 (Slc2a4) (Mm000436615_m1), Irs2

(Mm03038438_m1) and Adipoq (Mm00456425_m1). Amplifica-

tion and detection of specific products was performed with the

ABI PRISM 7900HT Sequence Detection System (Applied

Biosystems) using default cycle parameters. A standard curve

with serial dilution of cDNA synthesized from pooled RNA was

used. All samples and standards were analyzed in triplicate.

Plasma Analyses
Plasma was isolated by centrifugation (3000 g, 4uC, 10 minutes).

Levels of human SAA and mouse SAA were analyzed using the

human SAA ELISA kit (Biosource, Camarillo, CA) and the mouse

SAA ELISA kit (Tridelta Development Ltd., Co, Kildare Ireland),

respectively. Levels of IFN-c, IL-10, IL-12p70, IL-1b, IL-6, TNF-

a and CXCL-1 were assessed in male mice fed with HFD (n= 19)

using Mouse Proinflammatory 7-plex Assay Ultra-sensitive Kit

(Meso Scale Diagnostic, LLC, Gaithersburg) and analyzed on a

SECTOR imager instrument with MSC Discovery Workbench

analysis software (Meso Scale).

Statistical Analysis
Data are reported as mean 6 SEM unless otherwise stated.

Statistical analyses were performed using PASW 19.0 (Chicago,

IL). The Mann-Whitney U-test was used to investigate possible

differences between groups. Repeated measures analysis of

variance (ANOVA) was used to assess possible differences in

growth between groups. A p-value of less than 0.05 was considered

significant.

Results

SAA Expression, Growth and Body Composition
In line with previous analyses in male hSAA1 mice, we

confirmed that hSAA1 is expressed in gonadal and retroperitoneal

white adipose tissue and that serum levels of hSAA is increased

after administration of HFD [32]. In this study we also found the

same patterns in female hSAA1 mice (data not shown). In line with

our previous data [32], mouse SAA adipose tissue expression and

plasma levels were higher in HFD groups (data not shown).

Furthermore, as shown previously [32] there was a significant

reduction (females) or trend towards reduction (male) of mSAA3

expression in the gonadal adipose tissue in hSAA1 mice fed with

HFD compared to wt mice on the same diet, indicating that hSAA

is functional in the mouse.

Furthermore, for HFD- or NC-fed groups, similar growth

patterns in hSAA1 and wild type mice were observed throughout

the experiment for both male (Figure 1) and female animals

(Figure S1). In line with these results, hSAA1 and wild type mice

displayed similar body composition at 18 w of age (data not

shown).

hSAA, Insulin Sensitivity and Inflammation in Mice
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Glucose Tolerance and Adipose Tissue mRNA Levels of
Genes Related to Insulin Sensitivity
After 11 weeks of HFD administration, blood glucose and

insulin levels were similar in male wt and hSAA1 mice (Figure 2a

and 2c). No differences in blood glucose or insulin were seen at 0,

15, 30, 60 and 120 minutes after glucose administration (Figure 2a

and c) and the area under the curve did not differ between wt and

hSAA1 mice (Figure 2b and d). Female hSAA1 mice displayed no

difference in blood glucose levels during the oral glucose tolerance

test compared to their wt controls and there were no significant

difference in blood glucose area under the curve (Figure S2a and

S2b). Blood insulin levels in female hSAA1 mice were significantly

lower 15 minutes after glucose administration compared to female

wt mice. However, insulin area under the curve did not display

any significant difference between female wt and hSAA1 mice

(Figure S2c and S2d).

Adipose tissue mRNA levels of genes related to insulin

sensitivity, Irs1, Irs2, Glut 4 and adiponectin, were similar in

male hSAA1 mice and their wt controls in both depots investigated

(Figure 3a and b). Furthermore, expression of all four genes was

significantly down-regulated in adipose tissue depots from male

animals fed with HFD compared to those fed with NC. In female

mice, gonadal and retroperitoneal adipose tissue expression levels

were similar regardless of genotype except for Glut4 in the gonadal

depot which displayed significantly lower levels of Glut4 in wt mice

fed with HFD (Figure S3a and S3b). In the retroperitoneal fat

depot, a majority of the genes related to insulin sensitivity

displayed a significant reduction/or a trend towards down-

regulation in the groups fed with HFD (Figure S3b).

Levels of Inflammatory Markers in Adipose Tissue and
Plasma
Both wt and hSAA1 males and females had significantly higher

mRNA levels of macrophage markers, Cd68 and Emr1, in both

the gonadal and retroperitoneal adipose tissue when fed with HFD

compared with NC (Figure 4a and b; Figure S4a and 4Sb).

However, there were no significant differences in mRNA levels of

Cd68 and Emr1 between hSAA1 mice and their wt littermates.

Levels of inflammatory markers were measured in plasma from

HFD-fed male mice. With the exception of lower levels of CXCL1

in hSAA1 mice, no significant differences in IFN-c, IL-10, IL-

12p70 or IL-1b or TNF-a between hSAA1 and wt mice were

found (Table 1).

Discussion

In this study we find no evidence that adipose tissue-derived

human SAA1 influences insulin sensitivity or obesity-related

inflammation in mice. We here demonstrate that hSAA1

transgenic mice have similar glucose and insulin responses as

their wt controls during an oral glucose tolerance test. Further-

more, mRNA levels of genes related to insulin sensitivity in

adipose tissue from hSAA1 mice were not decreased compared to

those seen in wt animals. In this study we also demonstrate that

mRNA levels of macrophage markers in adipose tissue and

circulating levels of pro-inflammatory markers are not increased in

hSAA1 mice. This indicates that adipose tissue-derived human

SAA1 does not have proinflammatory properties and does not

affect obesity-related inflammation or insulin sensitivity in mice.

In our study we have used a hSAA1 transgenic mouse model

which mimics the human obese state, i.e. expression of hSAA1 in

the adipose tissue and moderately elevated circulating levels of

SAA associated to its’ natural carrier HDL [32]. Effects of SAA on

lipoprotein profiles and atherosclerosis have previously been

studied in vivo using viral over-expression and genetically modified

mice producing SAA in the liver [33–35]. However, we believe

that our model is better suited when studying the long-term effects

of adipose tissue-derived SAA1 on metabolic or inflammatory

function in vivo.

We show in this study that oral glucose tolerance and mRNA

levels of genes related to insulin sensitivity are not decreased in

hSAA1 mice. This was an unexpected finding as previous studies

show that serum levels of SAA are associated with diabetes and

insulin resistance in both humans and mice [27,36,37]. Further-

more, in type 2 diabetes patients, PPAR-c agonists reduce the

serum levels of SAA in parallel with an improvement of glycemic

status and insulin sensitivity [38]. In addition, in vitro studies

indicate that SAA may down-regulate the expression of insulin

signaling and glucose homeostasis related genes [13,27,28].

However, in our study, glucose response during an oral glucose

tolerance test was similar in hSAA1 mice and wt controls in spite

of hSAA1 mice displaying circulating levels of hSAA comparable

to serum levels of SAA in obese humans. In line with these results,

we found no decrease in the expression of genes related to insulin

sensitivity in hSAA1 mice. Hence, our results from this mouse

model indicate that hSAA1 may be an inert marker of insulin

resistance instead of an active player in the development of insulin

resistance.

The mRNA levels of the macrophage markers Cd68 and Emr1

in adipose tissue were unchanged in hSAA1 mice suggesting that

adipose tissue-derived hSAA1 does not function as a local

chemoattractant for inflammatory cells. Previous studies using

recombinant SAA have shown that SAA can act as a chemoat-

tractant for neutrophils and monocytes, and the chemoattractant

responsiveness for SAA is higher in type 2 diabetes patients

[29,30]. Another suggested mechanism for the chemoattractant

effect of SAA is induction of Ccl2 [27], a factor known to induce

macrophage migration in adipose tissue [6]. However, our results

suggest that adipose tissue-derived hSAA1 does not influence to

the local adipose tissue inflammation seen in obesity.

Obesity is not only associated with a local inflammation in

adipose tissue but also with low-grade inflammation [3,4]. This

is illustrated by an increase in circulating levels of SAA but also

other cytokines such as IL-6 and TNF-a [39,40]. Recombinant

SAA can induce cytokine production in monocytes both at the
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Figure 1. Animal growth curves. Growth curves for male hSAA1
mice (filled squares) and wt mice (open circles) fed either with a HFD
(solid line) or NC (dashed line) for 12 weeks. n = 8–10 per group.
doi:10.1371/journal.pone.0072204.g001
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RNA and protein level [15,30]. To investigate whether hSAA1

has proinflammatory systemic effects we measured inflammatory

markers in plasma in animals fed with HFD. With the

exception of the lower levels of CXCL1 in hSAA1 mice, no

Figure 2. Levels of blood glucose and blood insulin during an oral glucose tolerance test. A) Blood glucose levels during an oral glucose
tolerance test in male wt mice (open circles) and male hSAA1 mice (filled squares) fed with HFD. B) Blood glucose area under the curve (AUC) in male
mice fed with HFD. C) Blood insulin levels during oral glucose tolerance test in male wt mice (open circles) and male hSAA1 mice (filled squares) fed
with HFD. D) Blood insulin area under the curve (AUC) in male mice fed with HFD. n = 9–10 per group.
doi:10.1371/journal.pone.0072204.g002
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Figure 3. Adipose tissue mRNA levels of genes related to insulin sensitivity. mRNA levels of insulin sensitivity-related genes in (A) the
gonadal fat depot and (B) the retroperitoneal fat depot in male mice. n = 8–10 per group. *indicates p,0.05, **p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0072204.g003
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significant differences in IFN-c, IL-10, IL-12p70 or IL-1b or

TNF-a between hSAA1 and wt mice were found. Hence, we

found no sign of increased cytokines in the circulation of

hSAA1 mice.

Research devoted to the study of SAA function has been going

on for more than 30 years. This research suggests that SAA is a

multifunctional molecule that may affect a large number of

processes in the body [5,9–12,14,15]. Recently, the choice of

methods for investigating SAA function has been criticized

regarding whether previous experiments actually imitate the

physiological condition [41]. A majority of the previous studies

have been performed using a de-lipidated, recombinant protein

that is not identical to endogenous human SAA [28–30]. The

physiological relevance of this recombinant protein has been

questioned since it was recently reported to display different

properties compared to endogenous hSAA [42–44]. This indicates

that some of the published data regarding the function of SAA

need to be reevaluated.

In conclusion, results from our hSAA1 mouse model, mimicking

the human obese state with increased expression of hSAA1 in

adipose tissue and moderately elevated circulating levels of SAA,

imply that adipose tissue-derived hSAA1 does not influence insulin

sensitivity or obesity-related inflammation in mice. This opens up

the possibility that the moderately elevated serum level of SAA in

obesity could be an inert marker of insulin resistance instead of

playing an active role in the development of type 2 diabetes and

the obesity-related inflammation.

Supporting Information

Figure S1 Animal growth curves. Growth curves for female

hSAA1 mice (filled squares) and wt mice (open circles) fed either

with a HFD (solid line) or a NC (dashed line) for 12 weeks. n = 10

per group. Data are presented as mean 6 SEM.

(EPS)

Figure S2 Levels of blood glucose and blood insulin
during an oral glucose tolerance test. A) Blood glucose

levels during an oral glucose tolerance test in female wt mice (open

circles) and hSAA1 mice (filled squares) fed with HFD. B) Blood

glucose area under curve (AUC) in female mice fed with HFD. C)

Blood insulin levels during an oral glucose tolerance test in female

wt mice (open circles) and hSAA1 mice (filled squares) fed with

HFD. D) Blood insulin area under curve (AUC) in female mice fed

with HFD. n= 10 per group. *indicates p,0.05, **p,0.01. Data

are presented as mean 6 SEM.

(EPS)

Figure S3 Adipose tissue mRNA levels of genes related
to insulin sensitivity. mRNA levels of insulin signaling related

genes in (A) gonadal fat depots and (B) retroperitoneal fat depots in

female mice. n = 10 per group. *indicates p,0.05, **p,0.01. Data

are presented as mean 6 SEM.

(EPS)

Figure S4 Adipose tissue mRNA levels of macrophage
markers. mRNA levels of macrophage markers in (A) gonadal

fat depots and (B) the retroperitoneal fat depot in female mice.

n = 10 per group. *indicates p,0.05, **p,0.01. Data are

presented as mean 6 SEM.

(EPS)
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Table 1. Inflammatory markers in plasma.

Wt
n=10

hSAA1
n=9

IFN-c 1.660.38 2.660.9

IL-10 38.164.1 56.2614.9

IL-12 p70 78.1611.7 131.4641.0

IL-1b 4.360.7 3.060.5

IL-6 27.562.4 35.268.2

TNF-a 1.960.2 1.760.2

CXCL1 464.8644.5* 345.8629.7*

Levels of inflammatory markers in plasma (pg/ml) in male mice fed with HFD.
n = 9–10 per group.
*indicates p,0.05.
doi:10.1371/journal.pone.0072204.t001
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