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Abstract: The emergence of multidrug resistance (MDR), including colistin resistance, among
Enterobacteriaceae recovered from food animals poses a serious public health threat because of the
potential transmission of these resistant variants to humans along the food chain. Village chickens
or Ayam Kampung are free-range birds and are preferred by a growing number of consumers who
consider these chickens to be organic and more wholesome. The current study investigates the
antibiogram profiles of Salmonella isolates recovered from village chicken flocks in South-central
Peninsular Malaysia. A total of 34 isolates belonging to eight serotypes isolated from village chickens
were screened for resistance towards antimicrobials including colistin according to the WHO and
OIE recommendations of critical antibiotics. S. Weltevreden accounted for 20.6% of total isolates,
followed by serovars Typhimurium and Agona (17.6%). The majority of isolates (73.5%) demonstrated
resistance to one or more antimicrobials. Eight isolates (23.5%) were resistant to ≥3 antimicrobial
classes. Colistin resistance (minimum inhibitory concentrations: 4–16 mg/L) was detected among
five isolates (14.7%), including S. Weltevreden, S. Albany, S. Typhimurium, and Salmonella spp.
Univariable analysis of risk factors likely to influence the occurrence of MDR Salmonella revealed that
the flock size, poultry production system, and use of antibiotics in the farm were not significantly
(p > 0.05) associated with MDR Salmonella. The current study highlights that MDR Salmonella occur at
a lower level in village chickens compared to that found in live commercial chickens. However, MDR
remains a problem even among free-range chickens with minimal exposure to antibiotics.
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1. Introduction

Increasing antibiotic resistance among foodborne pathogens is an emerging problem of global
health importance [1] and the overuse of antibiotics in food animal production has been reported as one
of its major drivers [2]. Colistin is a critically important antimicrobial in veterinary medicine [2], and is
considered the drug of last resort against the emergent multidrug resistant (MDR) Gram-negative
bacterial infections in humans, especially the carbapenem-resistant Enterobacteriaceae [3]. However,
the overuse of colistin in the animal industry is reported to play an important role in the global
emergence of colistin resistance [2]; as such, its use in livestock is being reconsidered in order to
preserve drug efficacy [4,5]. Consequently an increasing number of consumers are choosing to consume
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meat from organically-grown sources or sourced from environments where there is less selective
pressure that promotes the development of antibiotic resistance, thus reducing the transmission of
resistant agents through food consumption [6,7]. Such environments typically include free-range
production arrangements for food animals.

Salmonella is one of the most common foodborne bacteria worldwide [8]. Salmonella is a
Gram-negative, rod-shaped bacilli and facultative anaerobe of the family Enterobacteriaceae, which can
be broadly classified into two species based on their 16S rRNA sequence analysis: Salmonella enterica
and Salmonella bongori [9]. There are more than 2500 serovars belonging to S. enterica, the majority of
which are pathogenic and cause diseases in both animals and humans [10,11]. The global burden of
non-typhoidal Salmonella (NTS) is increasing, with one study reporting approximately 94 million cases
of NTS gastroenteritis, which is responsible for 155,000 deaths globally each year [8]. According to the
study, the majority of the NTS burden is found in the Southeast Asian and Western Pacific region [8,12].
Of the 94 million cases reported, an estimated 80.3 million are thought to be of foodborne origin [13].
Poultry and poultry products (e.g., eggs and food products containing eggs) are commonly linked to
NTS and have been demonstrated to serve as primary vehicles for human salmonellosis [8,14].

In Malaysia, several deaths and illnesses in recent years have been linked to foodborne NTS
involving contaminated chicken and related products [15]. Salmonella contamination of various
food products—sourced from either wet, retail markets or processing plants—such as chicken
carcasses, chicken portions, various chicken organs (e.g., liver and gizzards), ready-to-eat foods,
fruits, and vegetables, and other environmental sources, have been widely reported [16–18]. Only one
of these studies was conducted on live birds in commercial poultry farms [19]. Nevertheless, no study
to date has focused on village chickens in Malaysia.

Malaysian consumers increasingly prefer safer, wholesome, organic foods [20,21]. Moreover,
in light of growing concerns over the transmission of antibiotic resistance via the food chain, the demand
for these organic food products will likely increase over time. Therefore, village chicken production is an
emerging niche market catering for this preference [22], with village chickens raised in a more “organic”
free-range environment as compared to commercial broiler chickens. In this study, we described
patterns of antibiotic resistance, including colistin resistance, and associated risk factors for the
development of MDR in Salmonella isolates isolated from live local village chickens in South-central
Peninsular Malaysia.

2. Results

2.1. Antimicrobial Resistance and Antibiogram Profiles of the Salmonella Isolates

Tables 1 and 2 illustrate the isolate antibiotic resistance profile, multiple antibiotic resistance
(MAR) index, and resistance phenotypes. Among the isolates, 26.5% (n = 9) were susceptible to all
antibiotics, while 73.5% (n = 25) were resistant to at least one tested antibiotic. Multidrug resistance
was displayed by eight isolates (23.5%). Ciprofloxacin (100%), gentamicin (97.1%), norfloxacin (97.1%),
cefotaxime (97.1%), and ceftiofur (97.1%) were effective against most isolates. The highest level of
resistance was observed for tetracycline (35.3%) and streptomycin (35.3%; Table 1).
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Table 1. Antibiogram of Salmonella isolates recovered from village chickens of the central and Southern
Peninsular Malaysia.

Antimicrobial Agents No. Tested
Antibiogram of Salmonella Isolates

Resistant (%) Intermediate (%) Sensitive (%)

Gentamicin 34 00 1 (2.9) 33 (97.1)
Amoxicillin-Clavulanate 34 2 (5.9) 2 (5.9) 30 (88.2)

Nitrofurantoin 34 4 (11.8) 00 30 (83.8)
Ciprofloxacin 34 00 00 34 (100)
Kanamycin 34 1 (2.9) 2 (5.9) 31 (91.2)

Trimethoprim 34 7 (20.6) 00 27 (79.4)
Norfloxacin 34 00 1 (2.9) 33 (97.1)
Tetracycline 34 12 (35.3) 1 (2.9) 21 (61.8)

Nalidixic acid 34 5 (14.7) 00 29 (85.3)
Chloramphenicol 34 4 (11.8) 00 30 (88.2)

Ampicillin 34 6 (17.6) 00 28 (82.4)
Cefotaxime 34 1 (2.9) 00 33 (97.1)

Streptomycin 34 12 (35.3) 11 (32.4) 11 (32.4)
Sulfonamides 34 10 (29.4) 00 24 (70.6)

Ceftiofur 34 0 1 (2.9) 33 (97.1)
Colistin 1 34 5 (14.7) 0 29 (85.3)

1 Minimum inhibitory concentrations (MICs) was determined by the microbroth dilution method using the MIC-Strip
kit (MERLIN Diagnostika GmbH, Bornheim, Germany).

Table 2. Antibiotic resistance patterns of Salmonella recovered from village chickens in the South-central
Peninsular Malaysia.

Sources Resistance Profiles Salmonella Serovars
Colistin MIC 1

MAR Index 2
Conc. (mg/L) R/I/S 3

Cloacal swab AmpTeWS3SFNaCt Salmonella spp. 4 R ≥0.2
Flies TeWS3SFCtxAmc S. Molade 2 S ≥0.2

Cloacal swab AmpS3WNaCn S. Weltevreden 8 R ≥0.2
Cloacal swab AmpS3WNaCn S. Weltevreden 8 R ≥0.2

Drinking water AmpTeS3SCn S. Albany 16 R ≥0.2
Cloacal swab TeWS3 S. Corvallis 0.25 S ≥0.2
Cloacal swab TeS3S Salmonella spp. 2 S ≥0.2

Drinking water TeS3S S. Albany 2 S ≥0.2
Feed TeNa S. Weltevreden 2 S <0.2

Drinking water TeNa Salmonella spp. 2 S <0.2
Drinking water AmpTe S. Weltevreden 2 S <0.2
Drinking water AmpS3 S. Weltevreden 0.5 S <0.2
Cloacal swab TeS S. Molade 0.5 S <0.2
Cloacal swab TeW S. Typhimurium 4 R <0.2
Cloacal swab TeW S. Agona 2 S <0.2
Cloacal swab Ct S. Enteritidis 2 S <0.2
Cloacal swab Te Salmonella spp. 0.25 S <0.2
Cloacal swab Te S. Typhimurium 0.25 S <0.2
Cloacal swab Te S. Typhimurium 0.25 S <0.2

Feed Amp S. Typhimurium 0.5 S <0.2
Feed Amp S. Albany 0.25 S <0.2

Cloacal swab S S. Agona 0.25 S <0.2
Cloacal swab S S. Agona 0.25 S <0.2
Cloacal swab S S. Agona 0.25 S <0.2
Cloacal swab S S. Agona 0.25 S <0.2
1 MIC, minimum inhibitory concentration (mg/L) according to the MIC-strip microbroth dilution method, 2 MAR,
multiple antibiotic resistance index, MAR index = No. of resistance antibiotic types/total number of antibiotic
types tested, 3 R/I/S, Resistant, Intermediate or Susceptible according to the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) guidelines (http://www.eucast.org/clinical-breakpoints/) (Te, Tetracyclines; Amp,
Ampicillin; S, Streptomycin; W, Trimethoprim; S3, Sulfonamides; Amc, Amoxicillin-clavulanate; Na, Nalidixic acid;
Ct, Chloramphenicol; Ctx, Cefotaxime; Cn, Gentamicin; F, Nitrofurantoin; K, Kanamycin).

http://www.eucast.org/clinical-breakpoints/
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Figures 1–3 show the frequency distribution of isolates resistant to commonly used antimicrobials
according to the various sample sources, farms utilizing antimicrobials for treatment, and farm
production systems. Generally, higher percentages of resistance were observed among isolates from
farms that use antibiotics as compared to those farms that did not, and from the free-range system
compared to the other systems. Most isolates found to manifest antimicrobial resistance were recovered
from cloacal samples (Table 2). Table 3 presents the distribution and percentages of MDR Salmonella
recovered from cloacal swabs, drinking water, and flies caught at the farm.
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Figure 1. Frequency of Salmonella isolates recovered from various sources resistant to commonly
used antibiotics from the South-central Peninsular Malaysia. (Te, Tetracycline; S, Streptomycin;
W, Trimethoprim; S3, Sulfonamides; Amp, Ampicillin; Na, Nalidixic acid; Cn, Gentamicin; Ct,
Chloramphenicol; F, Nitrofurantoin; Ctx, Cefotaxime; Amc, Amoxicillin-clavulanate).Antibiotics 2020, 9, x FOR PEER REVIEW 5 of 13 
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Figure 2. Frequency of resistance of Salmonella isolates recovered from village chickens of the
South-central Peninsular Malaysia against antimicrobials according to the flocks with or without
antibiotic use (Te, Tetracycline; S, Streptomycin; W, Trimethoprim; S3, Sulfonamides; Amp, Ampicillin;
Na, Nalidixic acid; Cn, Gentamicin; Ct, Chloramphenicol; F, Nitrofurantoin; Ctx, Cefotaxime; Amc,
Amoxicillin-clavulanate).
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Figure 3. Frequency of resistance of Salmonella isolates from village chickens of the South-central
Peninsular Malaysia according to the chicken production systems (Te, Tetracycline; S, Streptomycin;
W, Trimethoprim; S3, Sulfonamides; Amp, Ampicillin; Na, Nalidixic acid; Cn, Gentamicin;
Ct, Chloramphenicol; F, Nitrofurantoin; Ctx, Cefotaxime; Amc, Amoxicillin-clavulanate).

Table 3. Distribution of multidrug resistant (MDR) Salmonella isolates recovered from native chickens
of the South-central Peninsular Malaysia.

Sources No. of MDR Salmonella % Positive 1

Cloacal swabs (n = 17) 5 29.4%
Drinking water (n = 9) 2 22.2%

Flies (n = 3) 1 33.3%
1 Fisher’s exact test, p > 0.05 (not significant).

For colistin, the minimum inhibitory concentrations (MICs) of the Salmonella isolates ranged from
0.25 to 16 mg/L (Table 2). Five (14.7%) of the Salmonella isolates had MICs of 4–16 mg/L. According to
the European Committee on Antimicrobial Susceptibility Testing (EUCAST) MIC breakpoints for
colistin, MIC 4 mg/L is considered resistant to colistin (http://www.eucast.org/clinical-breakpoints/).
These isolates comprise of S. Weltevreden, S. Typhimurium, S. Albany, and Salmonella spp. (Table 2).
The two former serovars originated from free range (n = 3), while the latter two were from semi-intensive
(n = 2) production systems. All but S. Typhimurium were MDR (Table 2).

2.2. Analysis of Risk Factors for MDR Salmonella

Simple logistic regression analysis of the risks factors associated with the development of MDR
Salmonella revealed that none of the factors investigated (including flock size, poultry production
system, and use of antibiotics) were not significantly associated (p > 0.05) with MDR Salmonella (Table 4).

http://www.eucast.org/clinical-breakpoints/
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Table 4. Risk factors associated with the occurrence of MDR Salmonella amongst village chickens from
the South-central Peninsular Malaysia.

Variables Frequency MDR (%) OR (95% CI) 1 p-Value

Flock size (number of birds)

<500 22 6 (27.3) 1.84 (0.32–15.52) 0.533

≥500 12 2 (16.7) Reference -

Poultry production system

Free-range 22 5 (22.7) 0.78 (0.14, 4.90) 0.779

Semi-intensive/Intensive 12 3 (25.0) Reference -

Use of antibiotics in the farm

Yes 20 6 (30.0) 1.96 (0.34–16.20) 0.478

No 14 2 (14.3) Reference
1 OR, Odds ratio, CI, Confidence interval.

3. Discussion

Food safety issues, such as the presence of residual chemicals and antibiotic resistance, have
resulted in an increased willingness among consumers to pay more for organically raised foods.
Many Malaysians consume raw village chicken eggs because they believe it is medicinal, nutritious,
safe, and antibiotic-free [6]. Salmonella isolates found in this study were susceptible to most of
the antibiotics tested. High sensitivity levels were demonstrated against gentamicin, ciprofloxacin,
cefotaxime, norfloxacin, and ceftiofur. This finding is consistent with similar studies that report a
minimum level of resistance against the aforementioned antibiotics from local commercial chickens and
chicken carcasses [23–26]. Complete susceptibility against cefotaxime, ciprofloxacin, and gentamicin
was also demonstrated by Salmonella isolates recovered from Spanish broiler flocks [27]. In the present
study, we found the highest levels of resistance were against tetracyclines (35.3%), streptomycin
(35.3%), sulfonamides (29.4%), and trimethoprim (20.6%). In contrast, these levels were much lower
than those reported against the same antibiotics (34–100%) for Salmonella isolates originating from
commercial chickens in Malaysia [24,26]. The highest levels of resistance manifested by the isolates
from the aforementioned studies were against tetracycline (100%), ampicillin (100%), clindamycin
(100%), and ciprofloxacin (83%). Moreover our Salmonella isolates were susceptible to ciprofloxacin in
contrast to that reported elsewhere as being between 30.8% and 96% [28–31].

Other studies around the world have shown the presence of antimicrobial resistant Salmonella
recovered from backyard or free-range chickens. In most of these studies, resistance was demonstrated
against ampicillins and tetracyclines [32–36]. Eight (23.5%) of the Salmonella isolates in this study
were resistant to three or more antimicrobial agents (MDR; Table 3). This is comparatively lower than
those reported in previous studies in commercial chickens in Malaysia, where a 100% and 75% of
Salmonella recovered from cloacal swabs and chicken carcasses/products [26] respectively exhibited
MDR [37]. In China, a similar level of MDR (26.3%) of Salmonella was also reported among free-range
chickens [35].

Elsewhere, in commercial poultry as well as in retail chicken meats, or other related products,
reports of the frequency of MDR Salmonella vary widely. For example, MDR Salmonella has been found
in 80% of chicken carcasses and other related products in Egypt [28], with a similar level found in retail
chicken meats in China [29]. Conversely, Spanish broiler flocks [27], as well as poultry houses [38] and
broiler chicken farms [39] in Brazil reported MDR Salmonella as lower than 20%. MDR has been well
documented among epidemiologically important serovars, such as S. Typhimurium, which can exhibit
resistance to up to 13 antibiotics [25], and S. Enteritidis, which can demonstrate resistance to up to
six antibiotics [24]. In our study, isolates of the aforementioned serotypes were not MDR (Table 3).
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In Iran, a similar study found that S. Typhimurium isolates recovered from backyard chickens exhibited
resistance against tetracycline, sulfamethoxazole, and trimethoprim [36].

The level of MDR found in this study, although meaningfully lower than those reported in
commercial chickens locally and elsewhere, is worrying given that antibiotics are not routinely used in
the production of village chickens. However, recent reports of the discovery of antibiotic resistance
among animals in geographically remote locations where commercial antibiotics have not been
applied may help to explain our findings [40]. The practice of free-range farming, allowing birds to
roam freely, may result in their exposure to natural environmental hazards, such as untreated water
and soil, which have been well documented to harbor drug-resistant foodborne pathogens [41–44].
Recent reports suggest that wild birds and gulls, creatures not exposed to the selective pressure of
antibiotic use, have also been found to harbor MDR organisms in light of their continuous exposure
to the natural environment [45–48]. It is also possible that feeding village chicken table scraps,
which may contain resistant bacteria or materials, has additionally contributed to our observation
of the phenomena. We found isolated MDR Salmonella from the cloacal swabs, drinking water and
flies (Table 3). These findings further support the role of the environment in the dissemination and
recirculation of MDR Salmonella [49,50]. Shang et al. (2018) found a significantly higher isolation rate
of MDR Salmonella from litter samples compared to other samples in broiler farms, indicating the
significance of poultry litters in the in-door environmental transmission of MDR Salmonella [31].

Five (14.7%) of the Salmonella isolates were resistant to colistin, with MICs in the range of 4–16 mg/L
(Table 2). All of these isolates originated from free-range and semi-intensive production systems
where chickens spend much of their time free grazing. Since the first report of the plasmid-mediated
colistin resistance gene (mcr-1) from China in 2015, reports on resistance have emerged from more than
30 countries across several continents. These resistant isolates were recovered from several sources,
such as environmental samples, food-producing animals, ready-to-eat foods, fruits, and vegetables,
and humans [51–60]. Colistin resistance has been reported worldwide [58]; nevertheless, the burden of
colistin resistance is highest in Asian countries. For example, several reports have documented the
identification of MCR-1-producing E. coli isolates from samples of chickens and chicken meat, pigs and
piglets, cattle, calves, turkeys, and humans in Cambodia [61,62], South Korea and China [53,63,64],
Japan [65,66], Laos [67], Nepal [68], Pakistan [69,70], India [71], Thailand [67,72], and Vietnam [73,74].
In 2015, a study in Laos reported a possible clonal transmission of colistin-resistant E. coli between a
domesticated pig and a human [67]. Although the direction of the transmission cannot be ascertained,
the findings indicate that the fluidity of resistant agent transmission between species is of animal and
public health significance.

4. Materials and Methods

4.1. Source of the Isolates

The design of this study, sampling, and data collection, and the process of isolation and
identification have been described in our previous publication [75]. Briefly, isolates and data were
obtained from a cross sectional study involving 35 village chicken farms across 4 states in central and
Southern Peninsular Malaysia. Table 5 shows the distribution of Salmonella serotypes analyzed in this
study. All work was carried out at the Veterinary Public Health Laboratory, Faculty of Veterinary
Medicine, Universiti Putra Malaysia.
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Table 5. Distribution of Salmonella serovars isolated across different samples from village chicken flocks
in the South-central Peninsular Malaysia.

Serovars Isolated Sources Number (%)
Total n = 34

Salmonella Weltevreden Cloacal swabs, feed, water 7 (20.6)
Salmonella Typhimurium Cloacal swabs, feeds 6 (17.6)

Salmonella Agona Cloacal swabs 6 (17.6)
Salmonella Enteritidis Cloacal swabs, water, feeds 3 (8.8)

Salmonella Albany Water, feeds 3 (8.8)
Salmonella Molade Cloacal swabs, flies 2 (5.9)

Salmonella Corvallis Cloacal swabs 2 (5.9)
Salmonella Schleissheim Flies 1 (2.9)

Salmonella spp. Cloacal swabs, water 4 (11.8)

4.2. Antimicrobial Susceptibility Testing

Antibiotic sensitivity testing of the isolates against 15 antibiotics was performed using the agar disc
diffusion method [76] using antibiotic discs; ampicillin (10 µg), nalidixic acid (30 µg), chloramphenicol
(30 µg), ciprofloxacin (5 µg), gentamicin (10 µg), nitrofurantoin (300 µg), trimethoprim (5 µg),
tetracycline (30 µg), kanamycin (30 µg), amoxicillin–clavulanate (20/10 µg), cefotaxime (30 µg),
norfloxacin (10 µg), sulfonamides (300 µg), streptomycin (10 µg), and ceftiofur (30 µg). For colistin,
the minimum inhibition concentration were determined by broth microdilution, using the MIC-Strip
Colistin (MERLIN Diagnostika GmbH, Bornheim, Germany), in accordance with the international
standard reference method (ISO 20776-1), and as recommended by the EUCAST subcommittee [77].
Test procedures were performed according to the manufacturer’s instructions, and interpretative MIC
breakpoints were based on the EUCAST criteria (http://www.eucast.org/clinical-breakpoints/).

Antibiotics were selected based upon the recommendations of the World Health Organization
(WHO) and World Organization for Animal Health for the use of antimicrobials in both human and
food-producing animals. Colistin was recently added to the list of critically important antibiotics used
in food-producing animals [2,78].

The diameter of the zone of inhibition (mm) were interpreted according to the criteria of the The
Clinical and Laboratory Standards Institute (CLSI) [76]. Strains were subsequently evaluated according
to the CLSI breakpoints as susceptible, intermediate, or resistant. Digital Vernier calipers were used
to measure the diameter of the zones of inhibition. S. Typhimurium (ATCC 29213) and S. Enteritidis
(ATCC 25922) were used as reference strains for antibiotic disc control. A resistant isolate was defined
as an isolate resistant to one or more of the agents tested, whereas isolates resistant to three or more
classes of antimicrobials were classified as multidrug resistant (MDR) [79]. The multiple antibiotic
resistance (MAR) index was defined as the proportion formed by the number of antibiotic types to
which a particular isolate displayed resistance, to the total number of antibiotics to which the isolate
had been evaluated for susceptibility [80,81]. MAR is a good tool for assessing health risk, and is used
to determine whether an isolate originates from a region of high or low antibiotic usage [81]. An MAR
index of >0.2 reflects a bacteria from a high risk source of contamination where several antibiotics or
growth promoters are used, whereas <0.2 represent those from a low risk source or source with less
antibiotic use [80,81].

MAR index = a/b, where “a” is the number of antibiotics to which the isolates were resistant,
and “b” is the total number of antibiotics to which the isolate was exposed [80,81].

4.3. Data Analysis

Data generated from the study was subjected to descriptive analysis using MS Excel (version 2011)
to obtain percentages and proportions. SPSS (version 22.0, IBM, Armonk, NY: IBM Corp.) was used for
all analyses. Chi-square, Fisher’s exact test, or simple logistic regression was used for the univariable
exploratory analysis to identify risk factors associated with the outcome variable. The outcome variable
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was the presence or absence of multidrug resistant isolates (Salmonella isolates manifesting resistance
to ≥3 classes of antimicrobial agents). The statistical significance level was set at α = 0.05.

5. Conclusions

The present study found that the level of resistance to antibiotics among isolates recovered from
local village chickens was much lower than those found in commercial chickens and their products.
Therefore, village chickens could be an alternative to those consumers seeking to reduce exposure to
antibiotic resistant pathogens via the food chain. The findings also highlight the presence of MDR
isolates, including those resistant to colistin, despite minimal antibiotic usage in free-range chicken
production systems. We conclude that prolonged exposure to the natural environment plays a critical
role in the transmission of resistance. Nevertheless, the role of the environment in the perpetuation
and transmission of agents of resistance requires further study in light of emerging global trends in
free-range food animal production.
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