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Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is a set of
clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although
the precise etiology is unknown, developments in high-throughput microbial genomic sequencing signif-
icantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD.
The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis
by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This
review aims to elaborate the current knowledge of perturbations of the microbiome–metabolome inter-
face in IBD with description of altered composition and metabolite profiles of gut microbiota. We empha-
sized and elaborated recent findings of several potentially protective metabolite classes in IBD, including
fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding
of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

IBD is known as a chronic nonspecific gastrointestinal inflam-
matory disease with unknown etiology, including CD and UC, and
both of them are marked by unpredictable clinical course with
alternating periods of exacerbation and remission[1,2]. There is
no absolute cure for IBD and existing treatments can offer only
temporary but not lasting relief to many people[3]. It is well known
that the development of IBD is associated with genetic predisposi-
tion and environmental factors. In particular, perturbations of gut
microbiota are proposed to play important roles in IBD pathogen-
esis[4], which has been illustrated by germ-free mice[5–7].

Many studies have reported the imbalance of intestinal
microorganisms in IBD. Profiling of intestinal microbial communi-
ties by high throughput sequencing showed substantial differences
in composition among CD, UC, and non-IBD control subjects. IBD
patients shared similar microbial patterns with lower microbial
diversity and overgrowth of facultative anaerobes such as Pro-
teobacteria phylum and relative reductions in obligate anaerobes
such as Firmicutes phylum, defined as dysbiosis[8,9].

Base on high-throughput analytical techniques and platforms
such as targeted and untargeted fecal metabolomics, differences
between the intestinal metabolite fingerprint of patients with
active IBD and healthy people are also described in human
cohorts[8–11]. Gut metabolic profiles are made up of those mole-
cules derived from bacterial metabolism of diet or directly from
microbiota[12]. Changes in many small molecules like short-
chain fatty acids (SCFAs), microbial tryptophan catabolites, and
bile acids have been identified in patients with IBD[13–15]. Those
microbial derived compounds act as signaling molecules, mediat-
ing the host-microbiota dialogue and regulating immune
homeostasis.

From established steroids and anti-inflammation agents to the
latest biological drugs, IBD patients are benefiting from a growing
number of treatments. However, there is no complete cure, these
treatments are sometimes accompanied by side effects. When all
medications eventually fail to obtain disease control effectively,
patients with IBD even have to undergo surgery, which can cause
a series of complications and also destabilizes the microbiome
[16], so it is needed to develop novel therapeutic approaches.
The intestinal microbiota and its derivative metabolites are being
expected to be the future targets for precision therapeutic for their
important roles in IBD. In this article, we selectively reviewed the
recent applications of metagenomics and metabolomics in IBD
studies. Then we summarized the potential protective bacterial
species and metabolites within the intestinal microenvironment
to IBD. Finally, we reviewed the novel therapeutic approaches to
provide the promising strategy to alleviate this inflammatory dis-
ease by targeting the gut microbiome–metabolome axis.
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2. Gut microbiome in IBD

Next-generation sequencing, including 16S rRNA sequencing
and the whole-metagenome shotgun sequencing (WMS), has con-
tributed to a fast development in understanding human gut micro-
bial communities. The 16S rRNA sequencing measurement process
includes isolation of total DNA from collected microbiome samples,
PCR amplification of selectively 16S gene regions in prokaryotes
and high-throughput sequencing of amplicons, followed by gene
annotation of sequence data to characterize microbial communi-
ties[17]. Species commonly are clustered into the same OTUs
(Operational Taxonomic Units) if they have greater than 97% iden-
tity in the 16S rRNA gene[18]. The gastrointestinal tract, especially
in the distal ileum and colon, is colonized by the largest number of
microbes. Over 99% of them are of bacterial origin, and greater
than 90% of all the phylotypes are Bacteroidetes and Firmicutes,
which dominate the distal gut microbiota[19]. Normally, microbial
diversity and abundance of individual’s fecal microbiota vary
widely with the change of intestinal niches, while at longer time
scales the gut microbiota generally keep quite stable[20,21]. The
homeostatic coexistence of commensal microbial communities
can be perturbed in the context of some diseases, including IBD,
in which the inflammation occurs in association with increased
bacterial exposure and the loss of local tolerance for microbial or
dietary antigens[4]. Based on 16S rRNA sequencing or WMS of bio-
logical samples, many studies have determined the significant dif-
ferences of gut microbiota composition between objects with and
without IBD. Collectively, these studies found reduced diversity
in fecal and mucosal microbes, shown of imbalance between ben-
eficial and aggressive bacteria[22–27]. Due to limitation of
sequencing region and the lack of taxonomic resolution, the taxo-
nomic assignment with 16S rRNA sequencing was only up to the
genus level but rarely species level. What’s more, 16S rRNA
sequence cannot offer functional information of specific genes to
better interpret the host–microbe interactions. As the cost of
sequencing falling, WMS sequencing is playing an increasingly
important part in characterizing microbial communities. WMS
sequencing extends the sequencing information to the entire
DNA content present in a microbiome sample and profiles the tax-
onomic composition and identifies functional potential of microbes
by detecting functional genes[28,29]. Several large human cohort
studies have utilized WMS sequencing to characterize the species
and strain-level differences in patients with IBD[8,24,30,31]. In
these studies, species from the Proteobacteria are generally
increased in IBD, including (adherent-invasive) Escherichia coli,
Enterobacteriaceae, Klebsiella, and Proteus spp., which have been
reported enhancing inflammatory response and the Proteus mir-
abilis can significantly aggravate the colitis of mice induced by dex-
tran sulfate sodium (DSS) [32–36]. Also, an enrichment of
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Fusobacteria was observed in IBD patients. Fusobacterium nuclea-
tum, Fusobacterium Varium and Fusobacterium spp., members of
Fusobacteria, have been demonstrated to be positively associated
with colitis[37–39]. In addition, the imbalanced gut microbiota in
IBD is almost always accompanied by a sustained decrease in Fae-
calibacterium and Roseburia genera[31]. Faecalibacterium prausnitzii,
the only representative member of genus Faecalibacterium, can
inhibit the formation and growth of biofilm of Candida albicans
by inducing the antimicrobial peptides (AMPs) production and
attenuate DSS-induced colitis[40]. The genus Roseburia, confirmed
as negatively associated with the IBD genetic risk score[41]. Rose-
buria intestinalis has shown to be able to ameliorate DSS- and
2,4,6-trinitro-benzene sulfonic acid (TNBS)-induced colitis by
inhibiting the immune response via different mechanisms[42–
44]. Overall, large cohort analyses based on metagenomics data
have provided a detailed characterization and substantial changes
in intestinal microbiota structure in IBD, which emphasized the
potency to dig the intestinal microbiome data as a modality to clas-
sify IBD patients. At the same time, these findings enable us to gain
a more profound comprehension of the role of microorganisms in
the pathogenesis of IBD as well. However, one of the most out-
standing problems still existing in both methods is the lack of
accurate resolution of strain-level variation. To better characterize
microbial communities in more accurate resolution, the metagen-
ome sequencing tools are continually improving. Recently, Lars
Snipen et al. revealed the Reduced Metagenome Sequencing
(RMS) is a good choice to full WMS sequencing when analyzing
microbial community at strain level[45]. In addition, to understand
the mechanism of species interaction, it is very important to image
the microbiota in situ and map its spatial distribution. Ravi U.
Sheth et al. used the method of metagenomic plot sampling by
sequencing (MaPS-seq) and revealed the heterogeneous microbial
distributions in the mouse intestine and showed the close associa-
tions between Bacteroidales taxa in intestinal compartments[46].
Hao Shi et al. combined fluorescence in situ hybridization (HiPR-
FISH) with super-resolution imaging and distinguished hundreds
of bacteria and obtained the spatial distribution map of microbiota
at single-cell resolution[47]. In conclusion, understanding the
functions and the relationship between specific strains with the
host can offer biotechnological promise in microbial therapeutic
discovery in the future. In order to gain a mechanistic insight into
how gut microbiota influence host health, we need to focus our
attention on microbial metabolome as well.
3. Gut metabolome in IBD

Although most of dietary intake is digested and absorbed in the
small intestine, some dietary components not digested by the
small intestine enter the colon and are converted into multifarious
free metabolites including gases and toxic molecules by different
microbial species known as fermentation[48]. Similar to the field
of metagenome, technologies for detecting small molecular com-
pounds greatly increase our knowledge of the metabolites in
human intestinal tract. As an emerging member of ‘-omics’ tech-
nologies following genomics, transcriptomics, and proteomics,
metabolomics allows us to characterize and quantify small-
molecular compounds (�1500 Da) in biological samples using
technologies like nuclear magnetic resonance (NMR) spectroscopy
or mass spectrometry (MS)[49,50]. NMR is usually used to detect
hydrogen-containing molecules in samples and gives a 1H NMR
spectrum. An advantage of it is that metabolites will not be dam-
aged before detection. Therefore, NMR is particularly useful for
detecting metabolite levels in biopsy samples[49]. MS is generally
coupled with liquid or gas chromatographic separation techniques,
known as liquid chromatography-mass spectrometry (LC-MS),
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ultraperformance liquid chromatography coupled to mass spec-
trometry (UPLC-MS) and gas chromatography-mass spectrometry
(GC–MS). Each of these methods has its own strengths and limita-
tions and can complement each other[51,52]. With the advances of
metabolic profiling platforms and mathematical integration
approaches, metabolomics has been applied extensively to under-
stand the host-microbe interactions through analyzing intestinal
microbiota metabolism and host-microbiota co-metabolisms[53].
Many studies have identified altered metabolite levels in stool,
gut mucosa or serum of patients with IBD relative to controls by
performing targeted or untargeted metabolomics (Table 1). Fur-
thermore, owing to the relationships between several metabolite
classes and intestinal inflammation, they have been the focus of
intense researches in vitro or vivo, which potentially aid in the con-
tainment or in modulating the severity of IBD through various
mechanisms.

3.1. Fatty acids

Triglycerides, commonly known as fats, are the second major
source of dietary energy in human. Fatty acids are the important
components of Triglycerides[54]. Both free and bound fatty acids
play key roles in cellular functions and metabolism[55]. According
to the carbon chain length, fatty acids can be divided into short-
chain (�6 carbons, SCFAs), medium-chain (7 � 12 carbons, MCFAs)
and long-chain fatty acids (more than 12 carbons, LCFAs)[56].
Among them, SCFAs are the major products, mainly derived from
bacterial fermentative reactions of indigestible dietary fibers in
intestines, including acetate, butyrate and propionate[57]. MCFAs
and LCFAs derive mainly from dietary triglycerides in some animal
fats and vegetable oils. Accumulating evidence suggest that the
level of SCFAs in IBD patient’s feces is decreased in varying degrees.
For example, Julian R. Marches et al. found that acetic acid and
butyric acid in feces of CD and UC patients were lower than those
in the healthy group by performing 1H NMR spectroscopy[58].
Another cohort study revealed reduced level of propionic acid
and acetic acid by carrying out GC–MS and low abundance of
butyrate-producing bacteria in UC patient’s feces [59]. Neverthe-
less, SCFAs have shown to play significant roles in the immune
response through host receptor signals. Recent study reported both
microbiota-derived and administration of butyrate could activate
G-protein receptor 41 and inhibit histone deacetylase (HDAC) to
promote the production of IL-22 in human and mice ILCs and
CD4+ T cells, and then suppressed intestinal inflammation[60].
Recently, another study by Li et al. revealed a new possible protec-
tive mechanism of SCFAs in TNFa-induced endothelial cells activa-
tion. This study showed that butyrate and propionate could inhibit
IL-8 secretion and increase IL-33 secretion, and then halt the
inflammatory responses in lesion sites[61]. Acetate, another SCFAs,
can induce the production of T-cell-dependent IgA and further reg-
ulate the localization of commensal bacteria to maintain mucosal
homeostasis[62]. Moreover, SCFAs can regulate the expression of
epithelial genes involved in energy metabolism, support epithelial
cell proliferation and enhance colonic epithelial barrier[63] and
impact intestinal bacterial communication[64]. In addition to
IBD, the possibility of SCFAs therapy for diversion colitis (DC) is
being explored[65]. DC was first reported in 1974 as a nonspecific
inflammation of diverted colon with fragile mucosa, aphthous
ulcer, edema, erythema, etc.[66]. More and more studies have
found that diversion colitis is associated with intestinal microbial
dysbiosis such as decreased Bifidobacterium species and increased
Proteobacteria[67,68]. The decrease of SCFAs and immune dysfunc-
tion such as increased IgA have also been confirmed to be closely
associated with the pathogenesis of DC[69,70]. Luceri et al. found
that the endoscopic score of DC patients treated with butyrate
was significantly lower than that of DC patients treated with saline



Table 1
Alteration of gut microbial metabolites in inflammatory bowel disease patients.

Publication Samples & Subjects Methods Major altered metabolites in IBD

Yang Z
et al.2021
[120]

Fecal sample from 32 UC, 23
controls

UPLC-MS/MS � SBAs(LCA, DCA, glycol-deoxycholic acid, glycol-lithocholic acid, tauro-lithocholic acid;
�PBAs(taurocholic acid, Cholic acid, taurochenodeoxycholic acid glycolchenodeoxycholic
acid"

Wang Y
et al.2021
[129]

Fecal sample from 29 CD,20
controls

UPLC-MS/MS � L-leucine, L-norleucine, methylmalonic acid, succinic acid"; SCFAs (acetic acid, butyric
acid, and propanol acid), BAs (deoxycholic acid, hyodeoxycholic acid, lithocholic acid) ;

Krzystek et al.
2020[95]

Large bowel tissues from 52 CD, 48
UC, 40 controls

LC-MS �Arginine, Dimethylarginine ;
�Citrulline, dimethylamine"

Bushman F
et al. 2020
[110]

Fecal samples from 28 IBD cases,
37 controls

UPLC-LC/MS �Secondary bile acids(Deoxycholate, Lithocholate) ;�Taurine, Primary bile acids
(Chenodeoxycholate, Cholate)
, Cadaverine, Kynurenine", Ceramide"

Diederen K
et al. 2020
[112]

Fecal samples from 43 CD,15
controls

1HNMR, HPLC �Arginine, Taurine, Glutamic acid ;
�Primary bile acids, Trimethylamine, Cadaverine "

Franzosa E
et al. 2019
[10]

Fecal samples from 68 CD,53 UC,
34 controls

Untargeted LC–
MS

�SCFAs (Butyrate, Propionate), LCFA(2-hydroxymyristic acid), MCFA(Aprylic acid)
SBAs (Lithocholate, Deoxycholate), Cholesterols, Phenylbenzodioxanes ;
�PBAs(Cholate, Chenodeoxycholate), Sphingolipids,
Cholesterylesters, Phosphatidylcholines, LCFAs (Arachidonic acid, Adrenic acid,
Docosapentaenoic acid and Eicosatrienoic acid) "

Scoville E et al.
2019[94]

Serum from 20 UC, 20 CD, and 20
non-IBD

HILIC/UPLC-
MS/MS

�Arginine, LCFAs, MCFAs, Glutamine, Leucine, Lysine, Valine, Citrate, Conitate, a-
ketoglutarate, Succinate, Fumarate, Malate ;

Lloyd et al.
2019[8]

Fecal samples LS-MS/MS �Butyrate, Propionate, Valerate/isovalerate, Indole-3-propionat, Secondary bile acids
(Lithocholate, Deoxycholate), Arachidonoyl carnitine ;
�Taurine, Free arachidonate, Uridine, Nicotinuric acid, Glycoche-nodeoxycholate "

Weng Y
et al.2019
[220]

Fecal sample from 107 UC,173
CD,42 controls

GC/MS, LC/MS � LCFAs(Arachidic acid, Oleic acid, Tridecanoic acid), MCFAs(Sebacic acid, Isocaproic acid),
Bile acids (Lithocholic acid, Chenodeoxycholate, Taurolithocholic acid);

Das P
et al.2019
[128]

Fecal sample from 25 IBD,14
controls

LC-MS � Deoxycholate, Lithocholate ;
� Cholate, Glycocholate, Taurocholate, Taurochenodeoxycholate"

Alghamdi A
et al. 2018
[110]

Fecal samples from 7 new-onset
CD cases,11 controls

LC-MS �Tyrosine, Ornithine isomer ;� Taurine, Arachidonic acid, Eicosatrienoic acid,
Docosatetraenoic acid, Kynurenine(Kyn)
, Aspartate, Glycine, Tryptophan, Carnosine, Allantoin, Citrulline, Serine, Threonine,
Ornithine, Creatine, Asparagine, Choline, Histidine, Phenylalanine, Alanine, Metanephrine "

Nikolaus S
et al. 2017
[87]

Serum samples from 291 IBD
cases,291 controls;

HPLC �Tryptophan(Trp), TDO2, Picolinic acid;
�Kyn/Trp ratio, IDO1, Anthranilic acid, Quinolinic acid "

Santoru M
et al. 2017
[9]

Fecal samples from 82 UC, 50 CD,
and 51 controls

1HNMR, GC–
MS, LC-QTOF-
MS

�Putrescine, Cadaverine, Alanine, Beta-alanine, Phenylacetic acid, 4-hydroxyphenylacetic
acid, Glyceric acid, Phenylethylamine "
�Nicotinic acid, Pantothenic acid, 3-methyladipic acid, 5b-coprostanol, 3-hydroxybutyric
acid, Hydrocinnamic acid ;

Kolho K et al.
2017[109]

Fecal and serum samples from 69
IBD cases, 29 controls

UPLC-MS/MS �L-Tryptophan, Kynurenic acid, Trimethylamine-N-oxide ;
�Taurine, Kynurenine, Glycocholic acid, L-isoleucine, Symmetric dimethylarginine, Serine,
Phosphoethanolamine, Proline, Hexanoylcarnitine"

Lamas B et al.
2016[88]

Fecal samples from 102 IBD
cases,37 controls

HPLC, LC-MS �Tryptophan, IAA, IAA/Trp ;
�Kyn, Kyn/trp"

Coburn L et al.
2016[93]

Colonic tissues and Serum from 38
controls and 137 UC patients.

HPLC �Tissue L- Arginine ;
�Tissue L-citrulline "
�Serum L- Arginine:N

Bjerrum J et al.
2015[11]

Fecal samples from 48 UC,44 CD,
21 controls

1HNMR �Butyrate, Propionate ;
�Taurine, Isoleucine, Leucine, Lysine, Phenylalanine, Valine "

Lee T et al.
2016[221]

Fecal samples from 31 CD, 22 UC,
19 controls

High-resolution
MS

�Pentadecanoic acid, Stearic acid, Hexadecadienoic acid"

De Preter V
et al. 2015
[73]

Fecal samples from 83 CD,68 UC,
16 controls

GC–MS �MCFAs (Pentanoate, Hexanoate, Heptanoate, Octanoate, Nonanoate) ;

Jacobs J
et al.2016
[222]

Fecal sample from 26 CD,10 UC,54
controls

UPLC-MS � Stercobilin, Acetyl-glutamic acid, Boldione;
� Taurine, Tryptophan, Serinyl tryptophan, Omega-6 fatty acid (Adrenic acid), Bile acids
(Cholic acid, 7-ketodeoxycholic acid, Chenodeoxycholic acid sulfate, 3-sulfodeoxycholic
acid), Amino acid derivatives(Phenylethylamine, N-acetylcadaverine), "

Abbreviations: CD, Crohn’s disease; DCA, Deoxycholic acid; GC–MS, Chromatography-mass spectrometry; HILIC, Hydrophilic interaction liquid chromatography; HPLC, High-
performance liquid chromatography; IAA, Indole-3-acetic acid; IBD, Inflammatory bowel disease; IDO1, Indoleamine-2,3-dioxygenase 1; Kyn, Kynurenine; LCA, Lithocholic
acid; LCFAs, Long-chain fatty acids; LS-MS/MS, Liquid chromatography-triple quadrupole mass spectrometry; LC-MS, Liquid chromatography-mass spectrometry; LC-QTOF-
MS, Liquid chromatography in combination with quadrupole time-of-flight mass spectrometry; MCFAs, medium-chain fatty acids; NMR, Nuclear magnetic resonance
spectroscopy; PBAs, Primary bile acids; SBAs, Secondary bile acids; TDO2, Tryptophan-2,3-dioxygenase 2; Trp, Tryptophan; UC, Ulcerative colitis; UPLC-MS/MS, Ultra pressure
liquid chromatography tandem mass spectrometry; "indicates increase; ;indicates decrease.
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as placebo[71]. Another study conducted SCFAs treatment on 15
children with diversion proctocolitis and found that SCFAs could
improve the disease symptoms, endoscopic and histopathological
manifestations of children[72]. These provide evidence and explore
possibilities for SCFAs to treat intestinal inflammatory diseases,
including IBD.
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At the same time, metabolomic profiling of cross-sectional stool
samples from patients with CD and UC respectively showed that
LCFAs were significantly depleted relative to controls[10,73]. In
another study, plasma lipid and metabolic profiles were quantified
by UPLC-MS, the results revealed a decreased level of tetracosanoic
acid, which belongs to LCFAs[74]. Clinical studies have shown that
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higher n-3 / n-6 PUFA intake was negatively correlated with IBD
and LCFAs played a dual role in intestinal inflammation of IBD
[75]. The n-6 unsaturated fatty acids are considered to be pro-
inflammatory compounds, while n-3 unsaturated fatty acids have
anti-inflammatory properties[76]. Jiwei Wang et al. proved that
n-3PUFAs could improve the function of Paneth cells by activating
IL-22 / Stat3 pathway and protect the intestinal barrier[77].
Recently, ulien Pujo et al. found certain bacteria such as Holde-
manella biformis can produce high concentration of LCFA-3OH,
which alleviated DSS-induced colitis in mice[78]. A recent random-
ized controlled trial has proved in mice and humans that monoun-
saturated LCFAs can improve endothelial cell function and reduce
inflammatory factors such as TNF-a and IL-6 in plasma. Mean-
while, the intestinal microbial environment has changed. The
authors found a decreased Firmicutes and/ or Bacteroidetes ratio
in the monounsaturated LCFAs group, along with an increased
abundance of Akkermansia, which changed the microbiota environ-
ment of SCFAs production, leading to the induction of glucagon-
like peptide-1 secretion[79].

Besides, some case–control studies used GC–MS revealed the
reduced level of MCFAs (pentanoate, hexanoate, heptanoate and
octanoate etc.) in IBD patients[73,80]. MCFAs have previously been
shown to suppress inflammation and ameliorate experimental col-
itis in mice by activating the peroxisome proliferator activated
receptor (PPAR)-c[81]. Both capric acid and lauric acid have shown
the anti-inflammatory and anti-bacterial properties[82]. Lauric
acid, a compound containing 12 carbon atoms and mainly derived
from coconut oil, recently has proved attenuating liver inflamma-
tion induced by lipopolysaccharide through inhibiting TLR4/
MyD88 pathway[83]. These findings above indicate that lauric acid
may have a protective role against IBD.

Of note, even if people begin to stress the role of FAs in the
inflammatory regulation of intestinal diseases, clinical studies on
them pay more attention to the relationship between their intake
and inflammation, the specific pathway mechanism is still not fully
clear. Metabolomics may provide more relevant factors for this and
help develop the possibility of FAs in clinical treatment of IBD and
other intestinal diseases.
3.2. Amino acids and derivatives

3.2.1. Tryptophan
As one of the nine essential dietary amino acids, tryptophan is

the most complex aromatic amino acid. The absorption of dietary
tryptophan within mammalian hosts mainly has the following four
pathways: (a) the protein synthesis pathway; (b) the serotonin
pathway; (c) the kynurenine pathway and (d) the microbial meta-
bolic pathway[84,85]. Among them, accumulating evidence impli-
cates microbiota-derived tryptophan metabolites as crucial
mediators of host-microbial cross-talk through serving as ligands
of aryl hydrocarbon receptor or pregnane X receptor, two ligand-
dependent transcription factors residing in the cytoplasm[86]. In
many studies, targeted or untargeted metabolomics have been per-
formed to reveal that tryptophan metabolism was disrupted and
indoles and derivatives were significantly depleted in IBD patients
[10,87,88]. In turn, tryptophan and its metabolites administration
such as indole, indole-3-aldehyde, Indole-3-propionic acid and
indole-3-acetic acid can reverse colitis-associated microbial dys-
biosis, reduce colonic inflammation and protect the integrity of
intestinal epithelium[13,89–91]. Furthermore, dietary tryptophan
deficiency was correlated with the exacerbation of colitis, and
indole-3-carbinol treatment effectively reversed the alterations in
microbial composition induced by TNBS and selectively increased
the abundance of Roseburia, which is known as excellent butyrate
producer as described above[90]. These findings suggest that
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microbiota-derived tryptophan metabolites hold promise in mod-
ulating the homeostasis of host immune response.

3.2.2. Arginine
Arginine is classified as conditionally essential amino acid and

needs dietary requirement under several situations including early
development, infection, inflammation and metabolic dysfunctions
in kidney or intestine[92]. With no apparent difference in food
intake of the L-arginine, decreased L-arginine levels in colonic tis-
sue were observed in active UC and CD patients versus control sub-
jects. Moreover, tissue L-arginine was negatively correlated with
the disease activity index[93–95]. Arginase 1, one of arginase
isoenzymes utilizing arginine as substrate, recently has been con-
firmed higher expression levels in intestinal tissues from IBD
patients as well as DSS-induced colitis mouse model. The absence
of arginase 1 and nutritional L-arginine exacerbated the severity
colitis[96]. Besides, L-arginine supplementation significantly ele-
vated the abundance of anti-inflammatory intestinal microbiota
and reduced pro-inflammatory factor expression, which is partly
attributed to the accumulation of polyamines in fecal[97,98].

3.2.3. Polyamines
Polyamines are a class of bioactive chemicals derived from L-

arginine and other polyamine precursors. The main source of fecal
polyamines in colonic lumen is likely derived from intestinal
microorganisms which metabolize the polyamine precursors to
ornithine and feeds polyamine synthesis[99–101]. Polyamines
mainly include putrescine, spermine, spermidine and cadaverine
and the functions of them differ from each other. Among them,
spermidine exhibits critical functions in maintaining cellular
homeostasis. Dietary supplementation with spermidine amelio-
rated DSS and TNBS-induced colitis and improved gut barrier
integrity[102,103], as previously reported[104–106]. A recent
study also demonstrated that putrescine derived from bacterium
could increase the number of anti-inflammatory macrophages in
the colon. They found colonization of germ-free mice with the
wild-type, but not polyamine biosynthesis-deficient, E. coli acceler-
ated epithelial renewal and microbial polyamines can affect the
M1/M2 macrophage balance and play anti-inflammatory roles in
a DSS-induced colitis model[107]. While in a clinical study, meta-
bolomics and metagenomics approach have been used to analyze
fecal samples from IBD patients and healthy people. The GC–MS
analysis showed that the level of putrescine and cadaverine were
significantly higher in CD and UC patients[9], which indicated
putrescine and cadaverine may have adverse effects on IBD. In line
with this, an imaging-based, quantitative, high-throughput screen
was performed to identify the molecules which can disrupt intesti-
nal barrier through CaCo-2 and T84 cells culture. They observed
putrescine disrupted the epithelial tight junction in ex vivo and
in vivo and putrescine administration exacerbated colon inflam-
mation of mice. However, the addition of taurine blocked this
effect and alleviated intestinal inflammation[108].

3.2.4. Taurine
Taurine is a sulfur-containing amino acid produced by endoge-

nous oxidative cysteine metabolism. Besides, it can also be
obtained from dietary sources. In different cross-sectional or longi-
tudinal cohort studies about IBD, untargeted or targeted metabolo-
mic based on GC/LC-MS were used to analyze fecal metabolome.
Unlike several metabolites described above, serum or fecal taurine
levels were significantly increased in IBD patients[8,11,109–113].
Even so, multiple studies have shown the protective effect of tau-
rine on colitis[114–116], it can reduce colitis severity and inverse
the dysbiotic microbiota by activating NLRP6-IL-18-AMPs path-
way[117]. Another study shown elevated taurine in gut was
metabolized by microbiota into sulfide and inhibited the pathogen
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respiration[118]. Besides, high level of taurine in the gut also
enhanced tight junctions to increased intestinal epithelial integrity
and reduced leaky gut and inflammation[119].

Herein, we reviewed the recent knowledge of the role poten-
tially beneficial amino acids and derivatives, focusing on the inter-
play between bioactive compounds and host intestinal
inflammation. Despite the role of some amino acids in IBD patients
have been explored a lot, their functions may be controversial and
need further research.
3.3. Secondary bile acids

Bile acids (BAs) are converted from cholesterol in the liver cells.
When reaching the colon, primary bile acids (PBAs) are trans-
formed into secondary bile acids (SBAs) by specific bacteria spe-
cies. Previous works using MS-based metabolomics suggested
that bile acid metabolism is disordered in IBD, shown of elevated
PBAs and reduced SBAs. Recently, a case control study showed that
the concentrations of fecal SBAs, including deoxycholic acid (DCA),
lithocholic acid (LCA), were significantly reduced in UC patients,
which were shown to be positively correlated with Roseburia,
Clostridium IV, Butyricicoccus, and Faecalibacterium[120]. Henri
Duboc et al. found that SBAs in serum and feces of patients with
IBD were reduced, and sulfated LCA lost its anti-inflammatory
effect[121]. Compared to familial adenomatous polyposis pouches,
both LCA and DCA were strikingly reduced in UC group, and DCA
and LCA supplementation mitigated inflammation in DSS-
induced colitis [122]. In addition, a hydrolyzed protein diet
increased secondary bile acids, reduced disease scores, regulated
microbial dysbiosis, and relieved chronic enteropathy[123]. How-
ever, a study published in 2020 showed that exogenous supple-
mentation of ursodiol, a commercial formulation of
ursodeoxycholic acid (UDCA) approved by FDA, can alter the fecal
bile acid profile, but has little effect on the microbiota[124]. Those
results were consistent with previous studies[122,125–129].

As one of the receptors of SBAs, the activation of FXR in small
intestine has been proved to inhibit bacterial overgrowth and
translocation[122], and then ameliorate intestinal inflammation
[130]. Many studies have suggested that SBAs relieved inflamma-
tion and promoted colonic epithelial remission by downregulating
the secretion of pro-inflammatory factors and inhibiting intestinal
epithelial apoptosis[131,132]. Intriguingly, S. Mroz et al. found that
DCA inhibited colonic epithelial restitution in vivo[133]. As
reported by Lotta K Stenman et al., high-fat diet significantly ele-
vated fecal bile acid concentration and the decreased ratio of UDCA
to DCA promoted the intestinal permeability of mice [134]. In addi-
tion, compared with the control group, DCA-treated mice had more
inflammatory infiltrates of neutrophils in the lamina propria and
higher intestinal inflammation score[135]. So far, studies have
found that DCA has a dual function, there is still controversy about
the role of DCA in IBD. Although there have been many studies on
secondary bile acids, its role in IBD is still controversial, and further
researches are needed.
4. Computational approaches

MS-based metabolomics has good sensitivity and ability to
detect and quantify a large number of molecules produced by
human microbiota, which greatly help us to understand the micro-
bial community function in disease causality, yet the annotation of
the signals identified in the data remains challenging[136].
Besides, the chemical-microorganism relationships within intesti-
nal microenvironment are unclear, which is important for develop-
ing targeted therapies. To address this puzzle, James T. Morton
et al. recommended to use mmvec (microbe-metabolite vectors)
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neural network to learn the interactions between microbes and
metabolites. They not only confirmed the link between R. hominis
and multiple carnitines in samples of IBD patients, but found high
correlation of Klebsiella spp. with IBD status and several bile acids
[137]. In addition, a recent meta-analysis based on statistical and
machine learning found 97 metabolites could be robustly well-
predicted by analyzing human intestinal microbiome composition
with data processed from 1733 fecal samples from 10 independent
studies[12]. Meanwhile, Shuo Han and co-workers have con-
structed an integrated mass-spectrometry pipeline centered on
gut microbiome to provide the extended biochemical profiles of
individual strains[138].

Meanwhile, despite the advent of novel technologies including
high-throughput sequencing and targeted or untargeted metabolo-
mics enable us to better understand the composition and functions
of intestinal microbes, especially in IBD, they generate tremendous
complex datasets of ever-increasing size. Therefore, choosing the
appropriate computational approaches to analyze the datasets
and determine the association of metabolites and microorganisms
with disease is becoming a key discipline of this era, and a range of
novel standardized bioinformatics pipelines are being developed
and improved for raw data processing in microbiome research
[139–142]. In microbiome or metabolites sample clustering,
machine learning methods are used more and more frequently
compared with model-based methods. Among them, the weighted
UniFrac distance, the unweighted UniFrac(UU) distance, the Bray
Curtis(BC) dissimilarity metric, and the Aitchison distance are
commonly used to characterize the distance metric of different
samples and the incorporation of the UU metric and BC metric
may perform more well[143]. Meanwhile, various data visualiza-
tion tools are being developed for multi-omics data analysis, thus,
users do not need to grasp technical expertise, they only need to
upload raw data onto informatic software to get visualization
results[144]. In addition, many data computational approaches
are also being developed and used to interrogate multi-omics data,
which greatly increased our further insights into IBD pathogenesis.
In recent applications, two large studies integrated longitudinal
multi-omics data to profile the temporal variations of gut microbial
abundance or metabolite concentration in healthy controls and IBD
patients between consecutive time points[8,145]. Although the
‘omics’ technologies for integrating multi-omics datasets from
IBD patients or mice models are still at an early stage, develop-
ments in systems biology and machine learning can drive this pro-
gress and then facilitate the translation of basic research towards
clinical application[12]. Thus, identified microbial species and their
secreted molecules could serve as potential biomarkers and diag-
nostic tools to help rapidly discriminate patients with IBD from
individuals without IBD, and subsequently result in individualized
assessments and guide precision medicine. Overall, the develop-
ment of such tools applied to mine the links of gut microbiome-
metabolites will help modulate metabolites to alleviate IBD by
microbiome-based interventions and can also inform personalized
medicine.
5. Therapeutics targeting metabolites for IBD

Due to the lack of mechanistic insights into IBD and the limit of
existing treatment schemes, a challenge to the development of
novel biotherapeutics based on microbiome and metabolite mole-
cules is presented. The reduced diversity of the gut microbiota and
the changes of microbial metabolism in IBD patients compared to
healthy populations reveal the close relationships between micro-
biota and pathogenesis of IBD. While the properties of different
members of microbiota in host intestine remain to be defined, it
is possible that restoring the microbiota to its original state may



M. Li, L. Yang, C. Mu et al. Computational and Structural Biotechnology Journal 20 (2022) 2402–2414
be necessary to repair physiological functionality to our gut, which
requires the administration of depleted taxa in combination with
diminished metabolites. The proposed microbial therapies at pre-
sent for IBD are described briefly below.

5.1. Antibiotics

Antibiotics are one of the traditional drugs for the treatment of
IBD, which can control infection, reduce inflammation and allevi-
ate the disease process by reducing the microbial concentration
in the intestinal lumen and changing the composition of gut micro-
biota[146,147]. Different antibiotics have different effects due to
their characteristics. For example, metronidazole and ciprofloxacin
have the best effect on the treatment of CD complications such as
perianal fistula[148]. When IBD patients cannot use immunosup-
pressants immediately due to surgery or severe infection, the
application of antibiotics is more important[149]. A meta-analysis
which includes 15 randomized controlled trials showed that the
general clinical remission rates were higher in CD patients using
antibiotics than those in controls. However, the clinical remission
rate of patients only treated with ciprofloxacin was not signifi-
cantly different from that of the control group[150]. Another study
randomly added tobramycin to 84 patients with acute recurrence
of UC, and found that the clinical remission rate of patients using
tobramycin was significantly higher than that of patients who
didn’t used tobramycin[151]. At the same time, a large number
of clinical data show that the side effects of antibiotics in the treat-
ment of long-term recurrent IBD are obvious, such as patient intol-
erance, drug resistance, gastrointestinal dysfunction, peripheral
neuropathy, tenosynovitis, etc.[148,152].

With the development of omics technology, people have further
insights into gut microbiota and its metabolites. More and more
studies have shown that the effect of antibiotics on gut microbiota
and its metabolites is not absolutely beneficial, and this complex
effect may be closely related to the clinical outcome of IBD[153].
Nevertheless, another study on the effect of perinatal exposure to
antibiotics on intestinal flora of premature infants showed that
the application of b-lactam antibiotics could reduce the number
of Firmicutes and Actinomycetes in the intestinal tract of newborns,
along with the increased Proteobacteria. At the same time, SCFAs
decreased in the intestinal tract detected by Gas-
Chromatography Flame ionization / MS detection[154]. Current
studies have shown that probiotics and Fecal microbiota transplan-
tation (FMT) can restore the effects of antibiotics on intestinal
microbiota and their metabolites, such as the recovery of SCFAs
levels[155,156].

At present, the effect of antibiotics combined with other emerg-
ing therapies is also gradually confirmed. A new study reviewed 28
studies in the database that treated IBD with FMT, 5 of which used
antibiotics in advance. The results showed that pooled response
rate of antibiotic pretreated group was significantly higher than
that of untreated group, and antibiotic pretreatment improved
the disease remission rate as well[157]. In general, the therapeutic
effects and side effects of antibiotics on IBD and the effects of
antibiotics on intestinal flora and its metabolites are also complex,
which needs more clinical studies to explore it.

5.2. Dietary therapeutics

Given the diversity of molecules encoded within or produced by
the microbiome, the interest in mining bioactive compounds and
extracting drugs from microbiota is growing. The associations of
the microbial metabolites with intestinal inflammation and IBD
enable several metabolite classes to be the focus of microbial ther-
apy research. As described above, SCFAs are the main players in the
interplay between diet, microbiota, and health. Acetate, propi-
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onate, and butyrate have been proved to increase the intestinal
barrier integrity and downregulate of inflammatory mediators,
mainly by the HDAC inhibition mechanism, and are therefore of
the potential to become therapeutic drugs for IBD[158]. However,
although oral administration of SCFAs is able to get higher concen-
trations into the intestine, it is pharmacologically challenging. In a
related study, treatment of primary monolayer intestinal epithelial
cells of UC patients with sodium butyrate did not protect
inflammation-induced barrier dysfunction[159], which revealed
that local induction or supplementation with bioactive metabolites
in therapy of IBD exists limitations to some extent. Besides, the
optimal dose and indication are unknown. In the face of this
dilemma, food may be helpful to solve this challenge. Intake of
high-fiber diet can increase the level of SCFAs and improve intesti-
nal dysbiosis and then increased quality of life in patient with
ulcerative colitis[160]. Moreover, oral polyphenol ameliorated the
colonic inflammation and enhanced colon barrier integrity by
modulating intestinal microbial composition and increasing buty-
rate production[161,162]. A recent study found novel diets con-
taining increased levels of tryptophan, pectin and resistant starch
helped improve active ulcerative colitis and achieved higher clini-
cal remission and mucosal healing compared with single donor
fecal transplantation[163]. Taken together, studies on dietary ther-
apeutics targeting microbe-derived products are still in the early
stages, and different patients may have different responses to the
same nutrient, even so, it may be one of the most fruitful ways
to develop an effective IBD therapeutic.
5.3. Probiotics

The recognition of the circulatory causal relationship between
biological disorders and diseases urges people to look for compre-
hensive treatments that can deal with both host processes and
microbiota. Probiotics intervention is one of the treatment tools
[164]. Administration of probiotic cocktail can improve microbiota
dysbiosis and relieve the intestinal inflammation both in in human
and animal models[165]. Mechanistically, probiotic enhanced the
activity of a microbial enzyme in feces, resulting in increased
release of taurine[119]. Alternatively, the commensal bacteria with
beneficial metabolites production in healthy people intestine are
the promising candidates for next-generation probiotics, such as
F. prausnitzii, Akkermansia muciniphila and Bacteroides fragilis
[166]. F. prausnitzii has been proved to efficiently improve intesti-
nal inflammation in animal models[167,168], and its anti-
inflammatory effects in intestinal epithelial cells were in part
mediated by producing butyrate or anti-inflammatory protein
[168,169]. A. muciniphila is also a common resident of the human
intestine, a clinical study with administration of A. muciniphila
demonstrated its protective role against metabolic syndrome,
showing the feasibility to administer A.muciniphila to humans
[170]. Many recent studies also revealed A. muciniphila protected
against animal models colitis[171,172], one of the possible mecha-
nisms is to increase the production of SCFAs[173]. However, the
effect of A. muciniphila on IBD is still controversial and needs to
be further confirmed in more human clinical trials[174]. In addi-
tion, gene recombination technologies are used to design the engi-
neered probiotic bacteria such as E. coli Nissle 1917 (ECN), which
can produce antimicrobial peptides and biological chemicals to
modulate microenvironments of colon and further treat colitis
[175–177]. Rationally designed engineered probiotics contribute
to improving chronic immune-mediated colitis by acting as carri-
ers of effector molecules[178]. In the future, probiotics targeting
changes in specific microbial metabolites associated with a partic-
ular IBD phenotype may open the door to more personalized and
personalized treatments.
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5.4. Prebiotics/Synbiotics

Prebiotics, the energy and material basis of microecology, was
defined as ‘‘a substrate that is selectively utilized by host microor-
ganisms conferring a health benefit” by a panel of experts[179].
The prebiotics have been proved to be effective for IBD[180].
Specifically, studies showed that inulin, germinated barley food-
stuff, and oat bran can enhance production of beneficial metabo-
lites in IBD patients[181–183]. Among them, inulin can alleviate
IBD by amending gut microbiota function, regulating gut micro-
biota, and increasing fecal SCFAs[184,185]. Pectin relieved IBD
through its side chain. It can inhibit pro-inflammatory cytokines
and immunoglobulin production, and preserve gut flora diversity
and then promote therapeutic effect of FMT[186–188]. Moreover,
psyllium could modulate intestinal permeability and colitis sever-
ity to ameliorate colitis[189].

Likewise, some prebiotic foods also have potential therapeutic
effect to IBD. For example, vaccinium macrocarpon can signifi-
cantly increase the a-diversity of fecal microbial structure and
beneficial bacteria abundance and then suppressed colonic inflam-
mation in DSS-treated mice[190]. Recently, Goji berry and its func-
tional constituents proved to have prebiotic effects, which can
prevent gut microbiota dysbiosis associated with IBD[191]. In
addition, the bioactive constituent of green tea, epigallocatechin-
3-gallate, can ameliorate experimental colitis by increasing the
SCFAs-producing bacteria and enrich butyrate production[161].
Furthermore, diet patterns can also be used to improve IBD, such
as the Mediterranean diet (MD), the special carbohydrate diet
(SCD), and the low fermentable oligosaccharide, disaccharide,
monosaccharide, and polyol (FODMAP) diet[192]. FODMAP is a
group of short-chain fermentable carbohydrates. Although dietary
carbohydrates contained in FODMAP have prebiotic effects and
promote the growth of beneficial bacteria[193], FODMAP diet can
exacerbate functional gastrointestinal symptoms in IBD patients
[194]. A study found that the low FODMAP diet group significantly
improved gut symptoms and health-related quality of life in quies-
cent IBD patients, compared with control group[195]. Recently, a
randomized trial indicated that both SCD and MD diet ameliorated
disease activity index, pain, fatigue, and social isolation, comparing
the efficacy of SCD and MD diet on Crohn’s patients with mild to
moderate symptoms[196].

In addition, synbiotics have been defined as ‘‘a mixture compris-
ing livemicroorganisms and substrate(s) selectively utilized by host
microorganisms that confers a health benefit on the host” in 2019
[197]. Currently, a systematic review suggested that synbiotics
could maintain IBD remission, reduce IBD disease activity index
and prevent IBD recurrence[180]. Among them, the subgroup analy-
sis showed that synbiotics may be more effective in inducing or
maintaining IBD as compared to probiotic or prebiotics.

Despite the fact that prebiotic, synbiotics and prebiotic diet
therapy are promising approaches for IBD treatment and mainte-
nance, we also require more high-quality clinical research to fur-
ther explore mechanisms by which they mitigate IBD.

5.5. Fecal microbiota transplantation

FMT can be delivered through the upper and lower gastroin-
testinal route. Examples include via capsules taken orally, naso-
duodenal tube, colonoscopy, enema, etc.[198]. A randomized
clinical trial showed that FMT given by oral capsules was similar
to delivery by colonoscopy in the therapeutic effect[199]. Although
colonoscopy delivery is more inconvenient, costly and invasive
compared with oral capsules, it has great advantages in identifying
alternative diagnoses. In turn, FMT delivery by oral capsules may
decrease patient discomfort, reduce cost and wait time. Currently,
FMT has been known as an established bacteriotherapy for recur-
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rent Clostridioides difficile infection (CDI) and it is also used to treat
CDI in patients with IBD[200–203]. Meanwhile, several small
scales, though not universal, cohort studies observed the effect of
FMT on inflammatory bowel disease symptoms[39,204–206].
Active UC patients received microbiota transplantation of blended
homogenized stool from healthy donors obtained elevated micro-
bial diversity, increased abundance of Roseburia inulivorans and
Eubacterium hallii and higher levels of SCFAs and secondary bile
acids[207]. Although some studies demonstrated promising results
for FMT in inducing remission in IBD patients, it clearly poses com-
plex challenges to clinicians, and its long-term effect remains
unknown. Moreover, patients using FMT for active IBD are more
prone to develop side effects compared to CDI treated with FMT.
All UC patients in one clinical study developed fever and a tran-
sient elevation in C-reactive protein after FMT[208]. In addition,
blood cultures were positive for the multidrug-sensitive E. coli
strain in a 61-year-old CD patient twenty-four hours after FMT
[209]. Meanwhile, fever was observed in CD patients[209,210].
Though FMT treatment sometimes ameliorated clinical remission
rate in UC patients, of 26 included studies, 23 precisely reported
serious adverse events and 17 of them occurred in patients with
IBD[198]. In general, FMT is a controversial treatment for IBD and
is therefore still regarded as an experimental therapy.
5.6. Micro-nano conveying technology

Whether it is FMT or diet therapy, the current research is lim-
ited. There is not enough evidence to support the effectiveness
and safety of these methods for IBD patients[211]. In order to avoid
long-term immunosuppression, people need to find safer and more
effective microbial targeted therapy strategy[157]. In addition to
the treatment of antibiotics, diet therapy, probiotics and FMT men-
tioned above, many recent studies have shown that some nanopar-
ticles can alter intestinal flora and metabolism in IBD patients. This
may provide us with a new direction worth exploring for the devel-
opment of IBD. Recently, a newly published editorial discussed the
possibility of micro-nano conveying technology for the treatment
of IBD associated with microbial disorders[212]. Among them,
miRNA-loaded lipid NPs were proved to be able to bind to specific
microorganisms and enter the bacteria to play a targeted role, such
as achieveing a targeted downregulation of Lactobacillus rhamnosus
GG SpaC gene[213]. Inorganic Ag NPs have been shown to target
Fusoceaebacteria in the gut of IBD patients to achieve anti-
inflammatory effects. In addition, micro- and nano-particles can
target intestinal flora and affect its metabolites such as SCFAs,
which are closely related[214–216]. In addition to targeting the
regulation of intestinal microbiota and its metabolites, micro-
nano technology can also repair intestinal mucosal injury and
repair intestinal barrier. For example, hyaluronic acid-bilirubin
nanoparticles have been proved to regulate intestinal flora, repair
intestinal barrier, and play a strong anti-inflammatory role in acute
colitis[217]. These are consistent with the pathogenesis of IBD, and
the characteristics of targeted delivery make this treatment safer
and more effective. With the gradual expansion of mass spectrom-
etry data in microbial metabolism group, it may be possible to con-
duct metabolomics determination for IBD patients and a
personalized treatment plan for them is customized by nanotech-
nology in the future. The new world of IBD treatment may be
opened by targeting intestinal microorganisms and repairing
intestinal barrier.
6. Summary and outlook

Increasing observational data in population-based researches
have revealed the alterations in gut microbial structure and meta-
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bolic profiles in IBD patients. The advances of metagenomic
sequencing and metabolomic analyses drive the identification
and validation of disease-relevant microbiota and metabolites. As
the output of host–microbiota co-metabolism, metabolites act as
key regulators in the pathogenesis of IBD, and may hold promise
for the treatment to this disease. Many fundamental questions
nonetheless remain to be answered. Larger multinational cohorts
of IBD patients and the channels for the detection of microbial
members and microbial metabolites are needed. Moreover, owing
to the composition and metabolism of microbiota changed dynam-
ically on different temporal and spatial scales, more prospective
longitudinal studies and new techniques are needed to explore
high-resolution temporal and spatial profiling of microbiome and
metabolite markers, such as sequential fluorescent in situ
hybridization[218]. Furthermore, given the significant individual
phenotypic differences in intestinal microbiota, even in the identi-
cal bacterial strains[219], it is crucial to further study the function
of single strain and the mechanism of interaction between individ-
ual microbiota and the host. Ultimately, more metabolite-centered
in ex vivo testing and in vivo clinical and transformational studies
should be conducted to validate identified metabolic pathways and
explore the dose effects as well as pharmacological features of
metabolites.
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