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Salmonella – the ultimate insider. Salmonella virulence
factors that modulate intracellular survival
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Summary

Salmonella enterica serovar Typhimurium is a
common facultative intracellular pathogen that
causes food-borne gastroenteritis in millions of
people worldwide. Intracellular survival and repli-
cation are important virulence determinants and
the bacteria can be found in a variety of phagocytic
and non-phagocytic cells in vivo. Invasion of host
cells and intracellular survival are dependent on
two type III secretion systems, T3SS1 and T3SS2,
each of which translocates a distinct set of effector
proteins. However, other virulence factors includ-
ing ion transporters, superoxide dismutase, fla-
gella and fimbriae are also involved in accessing
and utilizing the intracellular niche.

Introduction

Salmonella enterica are members of the Enterobacteri-
aceae family of bacteria, a large group of Gram-negative,
facultative anaerobes many of which are a normal part
of the gut microbiota in the intestines of vertebrates.
Although there are well over 2000 serovars of S. enterica
only a handful are commonly associated with disease
in humans, which usually presents as a self-limiting gas-
troenteritis or the more severe enteric or typhoid fever.
S. enterica serovar Typhimurium (S. Typhimurium) is
one of the most frequent causes of food-borne gastroen-
teritis in humans, and is also an important pathogen
of food-producing animals including cattle, pigs and
chickens.

Salmonella are facultative intracellular bacteria that are
found within a variety of phagocytic and non-phagocytic
cells in vivo. Following intestinal colonization Salmonella
enter enterocytes, M cells and dendritic cells (DCs) in the
intestinal epithelium. Subsequently Salmonella that reach
the submucosa can be internalized by resident macro-
phages and rapidly disseminate through the blood stream
accumulating in mesenteric lymph nodes and, ultimately,
the spleen (Salcedo et al., 2001). Altogether the ability of
Salmonella to survive in a variety of host cells is vital to
its success as a pathogen. The large assortment of
bacterial and host factors that determine the outcome of
infection is summarized here, focusing primarily on
serovar Typhimurium.

Internalization into host cells

Internalization of Salmonella into host cells can occur via
at least two distinct processes (Fig. 1). Professional
phagocytes such as macrophages utilize phagocytic
uptake to efficiently recognize and internalize bacterial
pathogens. Salmonella can also actively invade both
phagocytic and non-phagocytic cells using a type III
secretion system (T3SS), T3SS1. Phagocytosis of Gram-
negative bacteria is a complex mechanism that involves
multiple receptors, some of which increase the efficiency
of uptake and others that activate different signalling path-
ways in the phagocyte. Pattern-recognition receptors rec-
ognize pathogen-associated molecular patterns, including
lipopolysaccharide (LPS) and flagellin, and binding to
ligand, either on the cell surface or inside the phagosome,
can affect phagosome maturation, signalling and gene
expression (reviewed in Kumar et al., 2009). Whereas
phagocytosis is an essential innate immune function that
has developed to sample a potentially vast array of differ-
ent pathogens, T3SS1-mediated invasion by Salmonella
is a highly specific process that depends on the tightly
regulated expression of a number of bacterial factors
(Takaya et al., 2005; Kage et al., 2008). In a remarkably
co-ordinated process a small group of effector proteins
(SipA, SipC, SopB/SigD, SopD, SopE2 and SptP) induce
dramatic rearrangement of the actin cytoskeleton result-
ing in massive localized membrane ruffles and rapid
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internalization of the bacteria (for review see McGhie
et al., 2009). In addition to phagocytosis and T3SS1-
mediated invasion, fimbriae and/or non-fimbrial adhesins
on the surface of Salmonella may also mediate attach-
ment and internalization via a T3SS1-independent
process (Guo et al., 2007).

The Salmonella-containing vacuole

Following internalization Salmonella survive and replicate
within a modified phagosome known as the Salmonella-
containing vacuole (SCV), which initially is marked by the
accumulation of early endosome markers. These ‘early’

Fig. 1. Virulence factors involved in the intracellular survival of Salmonella. Salmonella can enter host cells by invasion (T3SS1-mediated) or
phagocytosis. In addition, a T3SS1-independent invasion* has been shown to occur in several cell types that may be mediated by fimbriae or
non-fimbrial adhesins. Following internalization Salmonella remain within a modified phagosome known as the SCV (Salmonella-containing
vacuole). Biogenesis of the SCV and its translocation to the MTOC (microtubule-organizing centre) involves interactions with the host cell
endocytic pathway and microtubules and is mediated by a variety of T3SS1 and T3SS2 effector proteins. Survival and replication within the
SCV are dependent on a number of factors including nutrient acquisition and avoidance of host antibacterial activities. **Listed are a number
of factors implicated but not necessarily proven to be required for intracellular survival. Yellow and blue lines indicate actin, associated with
invasion and the SCV, and microtubules, required for positioning of the SCV and Sif extension respectively.
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markers are then rapidly removed and within 60–90 min
post invasion (p.i.) SCVs become highly enriched in
markers of late endosomes and lysosomes particularly
lysosomal glycoproteins (Steele-Mortimer et al., 1999).
Concomitantly, the SCV moves from the cell periphery to
a juxtanuclear position at the microtubule-organizing
centre (MTOC) (Salcedo and Holden, 2003; Deiwick
et al., 2006). The onset of intracellular replication is
accompanied in some cell types by the appearance of Sifs
(Salmonella-induced filaments), a network of dynamic
membrane tubules that radiate from the SCV (Drecktrah
et al., 2008).

Salmonella virulence determinants affecting
intracellular survival

In addition to two T3SSs, Salmonella have a type I secre-
tion system and other factors such as fimbriae, flagella
and ion transporters that have important roles in estab-
lishing and maintaining the intracellular niche. Many viru-
lence factors are encoded on Salmonella Pathogenicity
Islands (SPI) on the chromosome. Most notably, T3SS1
and T3SS2 are encoded on SPI1 and SPI2 respectively.
Invasion and early post-invasion processes are modu-
lated by T3SS1, flagella, fimbriae and non-fimbrial adhes-
ins; subsequently the T3SS2 and factors involved in
nutrient acquisition and avoidance of antibacterial mecha-
nisms are induced. In reality the system is rather more
complex and there is considerable temporal overlap.

Type I secretion systems

BapA and SiiE are two huge surface-associated proteins
that have been implicated in invasion/adhesion and are
secreted via dedicated type I secretion systems BapBCD
and SiiCDF respectively (Latasa et al., 2005; Gerlach
et al., 2007). SiiE, which has multiple 90-amino-acid
repeats and a C-terminal secretion signal, is encoded on
SPI4, which is co-regulated with SPI1 (Morgan et al.,
2007; Main-Hester et al., 2008).

Fimbriae

Salmonella have 13 predicted fimbrial loci, many of which
are induced in vivo and are required for biofilm formation,
attachment to host cells and colonization but not intra-
cellular survival per se (Humphries et al., 2001). The type
1 fimbrial adhesin FimH mediates T3SS1-independent
uptake in murine DCs (Guo et al., 2007).

Flagella and flagellin

Flagellar-based motility can increase the invasiveness of
Salmonella (Schmitt et al., 2001), although this remains

somewhat controversial especially since flagellin mono-
mers are potent inducers of innate immunity (Franchi
et al., 2006; Miao et al., 2006). In Salmonella-infected
macrophages flagellin is translocated into the cytosol by
T3SS1 resulting in activation of the inflammasome and
caspase-1-mediated cell death (pyroptosis) (Ren et al.,
2006; Miao et al., 2007; Sun et al., 2007). In the intestinal
epithelium flagellin induces inflammation while inhibiting
apoptosis also via TLR5, but the flagellin must be trans-
located to the basolateral side of the epithelial cells, since
TLR5 is not expressed on the apical surface (Gewirtz
et al., 2001; Vijay-Kumar et al., 2006). Flagella are usually
downregulated inside the host, although inside macro-
phages it has been suggested they may be induced with
T3SS1 and used for escape (Sano et al., 2007).

T3SS1

At least 15 effectors can be translocated by T3SS1 into
the host cell (reviewed in McGhie et al., 2009). Four
of these, SopE/SopE2, SopB and SipA, cooperatively
induce the actin rearrangements required for invasion but
almost all of the others have been implicated in a variety
of post-invasion processes, including host cell survival,
SCV biogenesis and modulation of the inflammatory
response. Accumulating evidence suggests that many
effector proteins have multiple activities within host cells.
For example, the inositol phosphatase SopB is involved
in: invasion, Akt activation, fluid secretion and SCV
formation/biogenesis/positioning (Terebiznik et al., 2002;
Hernandez et al., 2004; Drecktrah et al., 2005; Knodler
et al., 2005; Mallo et al., 2008; Patel et al., 2009). Each of
these activities is presumably dependent on the genera-
tion of specific phosphoinositides where SopB is local-
ized, namely the plasma and SCV membranes. One
intriguing possibility is that intracellular localization of
SopB determines its specificity, since the subcellular
localization of SopB, and therefore presumably its activity,
is controlled by ubiquitination (Knodler et al., 2009; Patel
et al., 2009).

In addition to SopB several other T3SS1 and T3SS2
effector proteins intersect with host cell ubiquitin path-
ways. The T3SS1 effector AvrA is a member of a family of
ubiquitin-like acetyltransferases/cysteine proteases pro-
duced by bacterial pathogens including the Yersinia effec-
tor YopJ. AvrA removes ubiquitin from two inhibitors of the
NF-kB pathway, IkBa and beta-catenin, thus inhibiting
the inflammatory response (Ye et al., 2007; Jones et al.,
2008), activating beta-catenin signalling (Sun et al., 2004)
and preventing apoptosis in intestinal epithelial cells
(Jones et al., 2008). SopA in contrast, another effector
that can contribute to invasion (Raffatellu et al., 2005), is
one of several bacterial effectors that have HECT-like E3
ubiquitin-ligase activity (Zhang et al., 2006).

Salmonella – the ultimate insider 1581

© Published 2009
This article is a US Government work and is in the public domain in the USA, Cellular Microbiology, 11, 1579–1586



Other T3SS1 effectors implicated in SCV/Sif biogenesis
are the tyrosine phosphatase SptP, which dephosphory-
lates the AAA+ ATPase VCP (Humphreys et al., 2009)
and is required for switching off ruffle formation following
invasion (Fu and Galan, 1999), and SipA which is impli-
cated in SCV morphology and juxtanuclear positioning
and has been shown to cooperate with the SPI2 effector
SifA (Brawn et al., 2007).

T3SS2

T3SS2 is required for systemic virulence in the mouse
and survival within macrophages (Hensel et al., 1998).
Although the roles of individual T3SS2 effectors remain ill
defined, several are involved in SCV positioning and the
formation of Sifs that extend from the surface of late SCVs
(� 6 h p.i.) in epithelial cells. SseF and SseG are required
for maintenance of the SCV at the MTOC and intracellular
replication (Kuhle and Hensel, 2002; Salcedo and Holden,
2003). SifA is essential for Sif formation, a process appar-
ently linked to SCV membrane integrity since mutants
lacking SifA are released into the cytosol (Beuzon et al.,
2002; Brumell et al., 2002). Two other T3SS2 effectors,
PipB2 and SseJ, cooperate with SifA via a process involv-
ing several mammalian proteins. PipB2 interacts with
kinesin light chain, a subunit of the kinesin-1 motor
complex that drives anterograde transport along micro-
tubules, recruiting it to the surface of the SCV (Henry
et al., 2006). This interaction drives the extension of Sif
tubules from the juxtanuclear SCV towards the periphery
of the host cell (Knodler and Steele-Mortimer, 2005).
Recent studies focusing on the interaction between SifA
and the mammalian protein SKIP have identified small
GTPases as potential targets. Thus SKIP interacts directly
with rab9, a GTPase involved in lysosome and late endo-
some function and positioning, and SifA may displace
rab9 from this complex (Barbero et al., 2002; Ganley
et al., 2004; Jackson et al., 2008). SifA can also bind
directly to rab7 and acts as an exchange factor (GEF) for
RhoA, a small GTPase that when activated can increase
membrane tubulation and, in the presence of SKIP and
the T3SS2 effector SseJ, promotes host membrane tubu-
lation (Harrison et al., 2004; Lossi et al., 2008; Ohlson
et al., 2008). In epithelial cells infected with mutants
lacking SseJ cholesterol accumulation is increased com-
pared with cells infected with wild-type bacteria, and this
is associated with a decrease in intracellular replication
(Ruiz-Albert et al., 2002; Nawabi et al., 2008). Intriguingly,
in cells with abnormally high levels of cholesterol, rab9 is
sequestered causing defects in membrane trafficking
(Ganley and Pfeffer, 2006), suggesting a possible link
exists between SseJ and rab9.

Three T3SS2 effectors interfere with host cell ubiquitin
pathways (Quezada et al., 2009). SspH 1 and SspH 2 are

members of a family of ubiquitin E3 ligases found in
pathogenic bacteria including Shigella and Yersinia (Miao
et al., 1999; Quezada et al., 2009). The function of these
two close homologues remains unknown, although SspH
2 colocalizes with actin around the SCV (Miao et al.,
2003) and it also has a targeting signal for localization at
tight junctions in polarized epithelial cells (Quezada et al.,
2009). SseL is a deubiquitinase that, like AvrA, can modu-
late NF-kB activation downstream of IkBa kinases
although whether it causes suppression or activation of
the pathway remains unclear (Coombes et al., 2007;
Rytkonen et al., 2007; Le Negrate et al., 2008).

Virulence plasmid

Two genes, spvB and spvC, encode the principal factors
for plasmid-mediated virulence of serovar Typhimurium
(Matsui et al., 2001). Both are translocated via the T3SS2
into host cells (Browne et al., 2008; Mazurkiewicz et al.,
2008). SpvB ADP-ribosylates actin, destabilizes the
cytoskeleton and is associated with host cell cytotoxicity
(Lesnick et al., 2001; Tezcan-Merdol et al., 2001; Kurita
et al., 2003; Browne et al., 2008). SpvC has phosphothreo-
nine lyase activity and can inactivate the mitogen-activated
protein kinases Erk1/2, JNK and p38 in mammalian cells
(Li et al., 2007; Mazurkiewicz et al., 2008).

Superoxide dismutase

Many host cells produce reactive oxygen species, largely
through the activity of the phagosome NADPH oxidase
(NOX2) that are required for killing of intracellular patho-
gens. To counteract this activity Salmonella uses a
superoxide dismutase, SodCI, to confer protection from
extracellular reactive oxygen species. SodCI is ‘tethered’
within the periplasm and protease resistance may be a
critical property that allows this enzyme to function in the
harsh environment of the phagosome (Krishnakumar
et al., 2007; Pacello et al., 2008).

Ion acquisition

In the eukaryotic host, iron availability is limited due to
the activity of iron-binding proteins such as transferrin
and Nramp1 (natural resistance-associated macrophage
protein one or Slc11A1), a divalent metal-proton sym-
porter found in macrophages, neutrophils and DCs (Nairz
et al., 2009). To overcome this limitation Salmonella
produce two siderophores, enterobactin and salmochelin,
in response to iron deprivation (for review, see Muller
et al., 2009). Salmochelin is a glucosylated derivative of
enterobactin and this modification may be important for
resistance to lipocalin-2, an antimicrobial protein that pre-
vents bacterial iron acquisition in the inflamed intestinal
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epithelium (Raffatellu et al., 2009). A recent study found
that SCVs in macrophages contain enough iron to affect
activity of metal-responsive promoters independently of
Nramp1 (Taylor et al., 2009); however, it is possible that
the requirement for iron transporters could change under
different conditions, for example when cells are treated
with IFN-g (Nairz et al., 2007; Nairz et al., 2008). Compari-
son of mutant Typhimurium strains lacking the iron trans-
porters encoded by feoB or sitABCD revealed that both
are required for survival in Nramp1(-/-) mice and replica-
tion in macrophages and that the Nramp1 homologue
MntH, which prefers Mn(II) over Fe(II), is also required for
optimal virulence (Janakiraman and Slauch, 2000; Boyer
et al., 2002; Zaharik et al., 2004).

Salmonella has three distinct systems for uptake of
Mg2+: CorA, MgtA and MgtB, each of which is essential
for virulence (Blanc-Potard and Groisman, 1997; Papp-
Wallace et al., 2008). In addition, MgtC, encoded on the
same operon as MgtB, while not a Mg2+ transporter is
required for intramacrophage survival and growth in
magnesium-depleted medium (Gunzel et al., 2006; Alix
and Blanc-Potard, 2008).

Two other metal ions implicated in intracellular survival
are K+ and Zn2+. The ZnuABC high-affinity Zn2+ uptake
system is required for growth of S. Typhimurium in low-
zinc conditions and intracellularly in some cultured cells
and ZnuABC mutants are defective for virulence in both
susceptible and resistant mouse strains (Ammendola
et al., 2007). The Trk system is a multiunit protein complex
that functions as a low-affinity K+ transporter and may
function in resistance to antimicrobial peptides (Parra-
Lopez et al., 1994).

Conclusions

In the last 20 years remarkable progress has been made
in our understanding of how Salmonella interact with
eukaryotic host cells. Nevertheless, many of the most
interesting questions remain unanswered. Development
of more sophisticated in vitro systems such as co-cultures
or 3D cultures that more closely recreate the in vivo envi-
ronment is one promising area.
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