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1  |  INTRODUC TION

Animals are associated with a diverse gut microbiome, which af-
fects the health, immunity, and metabolites of the host (Kinross 
et al., 2011). The gut microbiome composition may change with 
the development, diet, and surrounding environment of the host 
(Eckburg et al., 2005; Xu & Knight, 2015). Therefore, the gut mi-
crobiome may provide an important insight into the ecology of 
host animals and may be related to pathogens that can cause 
zoonotic diseases (Andersen-Ranberg et al., 2018). To date, the 

gut microbiome research has been primarily focused on humans 
or captive animals; however, the gut microbiome and its related 
functions in wild animals remain poorly understood (Davidson 
et al., 2020).

In mammals, the gut microbiome can be vertically transmitted 
from birth through parental care during the lactation phase and 
birth process by directly delivering maternal materials to offspring. 
Consequently, it has a significant impact on gut microbiome for-
mation in the early growth stage of the offspring (Chu et al., 2016; 
Wang et al., 2020). In a mouse model study, most microbiota genera 
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Abstract
In mammals, the gut microbiome is vertically transmitted during maternal lactation 
at birth. In this study, we investigated the gut microbiome and diets of muskox, a 
large herbivore inhabiting in the high Arctic. We compared the microbiota composi-
tion using bacterial 16S rRNA gene sequencing and diets using stable isotope analysis 
of muskox feces of six female adults and four calves on Ella Island, East Greenland. 
Firmicutes were the most abundant bacterial phylum in both the adults and calves, 
comprising 94.36% and 94.03%, respectively. Significant differences were observed 
in the relative abundance of the two Firmicutes families. The adults were primarily 
dominated by Ruminococcaceae (73.90%), and the calves were dominated by both 
Ruminococcaceae (56.25%) and Lachnospiraceae (24.00%). Stable isotope analysis of 
the feces in the study area revealed that both adults and calves had similar ranges of 
13C and 15N, likely derived from the dominant diet plants. Despite their similar diets, 
the different gut microbiome compositions in muskox adults and calves indicate that 
the gut microbiome of the calves may not be fully colonized to the extent of that of 
the adults.
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have been reported to be vertically transmitted over generations 
(Moeller et al., 2018). In addition to the vertical transmission, diet 
is a major factor that facilitates gut microbiome formation. The mi-
crobiota can also be indirectly affected by the diet acquisition of 
newborns in different food conditions provided by nursing moth-
ers (Frese et al., 2015). The composition of a starter diet can vary 
among families, and therefore, it can shape microbial structure and 
functions in digestion.

In this study, we investigated feces collected from female adults 
and calves of the muskox (Ovibos moschatus) during the summer 
in high Arctic environments. The muskox is a large herbivorous 
mammal that inhabits in the Arctic environment (Cuyler et al., 
2020). Diets are influenced by local plants and seasonal availabil-
ity. In Jameson Land, east Greenland, the dominant diets are wil-
lows (Salix spp.) in summer and graminoids (Carex and Eriophorum) 
in winter (Thing et al., 1987). In the Zachkenberg Valley, east 
Greenland, muskoxen were observed to forage in grasslands 
(dominated by graminoids (Cyperaceae, Juncaceae, and Poaceae), 
wideleaf polargrass (Arctagrostis latifolia), alpine foxtail (Alopecurus 
magellanicus) and cottongrass), fens and Salix snowbeds in sum-
mer while willows (Salix spp.), horsetail (Equisetum variegatum), and 
dwarf shrubs (Dryas spp.) (Kristensen et al., 2011; Schmidt et al., 
2018). Calves are typically born between April and May (Schmidt 
et al., 2020) and commence grazing one week after birth while re-
maining closely attached to their mothers. Calves wean completely 
after one year (Adamczewski et al., 1994). The gut microbiomes 
and diets of female adults and calves were compared via bacterial 
16S rRNA gene sequencing and stable isotope analysis. This study 
addressed the following questions: (a) whether muskoxen have 

different gut microbiomes with age (female adults vs. calves) and 
(b) whether the two age groups have similar diets.

2  |  MATERIAL S AND METHODS

2.1  |  Study site and fecal sample collection

The samples were collected during August 2019 from Ella Island 
(72°50′N, 25°00′W), which is located in East Greenland (Figure 1). 
Ella Island presents a dry environment, with low temperatures 
not exceeding 10℃, even during summer (Kottek et al., 2006). 
In east Greenland, the dominant vegetation comprises willows, 
grasses, and sedges, particularly dwarf shrubs (Arndal et al., 2009; 
Kristensen et al., 2011; Schmidt et al., 2018).

Ten muskox fresh fecal samples were collected, with six from muskox 
female adults and four from calves (four pairs of mother and calf and 
two females with no calf). Eight samples comprised four pairs of mother 
and calves. When the animals were observed, a pair of researchers had 
waited for defecation in a few hundred meters away. Because we did not 
mark the individuals, we could not make sure that all individuals were dif-
ferent from each other. Despite the lack of individual marking, the feces 
of the female adult and calf were distinguishable based on the defecat-
ing locations and the amount of feces. To avoid soil contamination, we 
used sterile gloves and spoons to collect the fecal materials that were not 
touched on the ground (Yang et al., 2016). All samples were kept in an 
ethanol solution (99%) until DNA extraction (September 2019). As can-
didate prey sources, the leaves, stems, and fruits of eight plant species 
were collected from the ground where the muskox foraged.

F I G U R E  1 (a) The location of the study site, Ella Island in East Greenland (72°50′N, 25°00′W); (b) muskox female adult and calf in August 
2019; (c) muskox fecal sample
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2.2  |  DNA extraction, amplification,  
and sequencing

Fecal DNA was individually extracted from subsamples at more than 
3 different regions of the original sample, using the QIAGEN QIAamp 
Fast Stool Mini Kit according to the manufacturer's instructions. 
DNA was amplified by targeting the V3-V4 region of the bacterial 16S 
rRNA gene using primers, 341F (5′-CCTAGGGGNGGCWGCAG-3′) 
and 805R (5′-GACTACHVGGGTATCTAATCC-3′) (Klindworth et al., 
2013), and amplification was performed using the following proto-
col: one denaturation step at 94°C for 3 min, five cycles of dena-
turation at 94°C for 15 s and extension at 65°C for 60 s, 20 cycles 
of denaturation at 94°C for 1 min, annealing at 55°C for 20 s and 
extension at 72°C for 30 s, and a final extension at 72°C for 5 min. 
Sequencing library construction and amplicon sequencing were per-
formed at Macrogen (Seoul, South Korea) using a 2 × 300 bp Illumina 
MiSeq sequencing system (Illumina, USA).

2.3  |  Bioinformatic analyses

The adapters and primers from the raw sequence reads were trimmed 
using Cutadapt v2.10 (Martin, 2011). The bioinformatics pipeline was 
run using DADA2 v1.16 (Callahan et al., 2016) to infer amplicon se-
quence variants (ASVs) with single-nucleotide resolution. For quality 
trimming, a more relaxed filtering option was applied to the reverse 
reads as maxEE = c (2, 5), and the low-quality sequence tails were re-
moved from the forward and reverse reads with truncLen = c (270, 210). 
Bacterial taxonomy was assigned to representative ASV sequences 
using the DADA2 implementation of the RDP-naive Bayesian classi-
fier based on the EzBiocloud database (Yoon et al., 2017). Sequences 
matched to the Eukaryota, Archaea, or Cyanobacteria were removed 
from the data set. Sequences are available in the NCBI Sequence Read 
Archive (SRA) database under the accession number PRJNA753257.

2.4  |  Stable isotope analysis

For stable isotope analysis, 1-mg muskox feces was homogenized. 
Each sample was freeze-dried and prepared using a stable isotope 
ratio mass spectrometer system (IsoPrime 100; Cheadle, UK) with a 
vario MICRO cube elemental analyzer (Elementar, Hanau, Germany). 
Purified CO2 and N2 were used as the sample analysis gas and the 
isotopic reference gases, respectively. The GC column resolves CO2 
from N2, and the reduction column filled with copper wires reduces 
N2. All results are reported with delta notation, in parts per thou-
sand (‰) relative to the PDB standard. Each plant sample was ana-
lyzed six times during this analysis.

The international reference materials of sucrose (ANU 
C12H22O11; NIST, Gaithersburg, MD, USA) for δ13C and ammonium 

sulfate ([NH4]2SO4; NIST) for δ15N were analyzed to calibrate the 
reference gases and the internal standard (acetanilide; Thermo 
Scientific). The analytical precision was based on 10 replicate mea-
surements of acetanilide and was within 0.12‰ and 0.20‰ for δ13C 
and δ15N, respectively.

2.5  |  Statistical analysis

To correct the differences in the number of reads, all samples were 
subsampled to the level of the smallest number of reads found in the 
samples. Bray–Curtis dissimilarities between all sample pairs were 
calculated using a Hellinger-transformed ASVs abundance matrix 
and visualized using nonmetric multidimensional scaling (NMDS). 
The permutational multivariate analysis of variance nonparametric 
test (PERMANOVA) was used to test for the differences in bacterial 
community structure between the two groups of the muskox using 
PRIMER 6 and PERMANOVA+ (Clarke & Tobutt, 2003).

The age group (fixed with two levels comprising adult and calf) was 
considered as a fixed component, and p-values were obtained using 
999 permutations. We used the three indices to estimate the bacterial 
diversity and compared the diversity values between the two groups of 
the muskox by age using the t-test and Fligner–Killeen test. Rarefaction 
curves and the stable isotope analysis results were generated using 
R packages (version 4.0.5, http://www.R-proje​ct.org). Bacterial abun-
dances were compared between the age groups (adults vs. calves), and 
the four pairs of adults and calves were additionally tested.

Bacterial functional abundances were inferred using PICRUSt2 
v.2.3.0b (Douglas et al., 2020), and the predicted microbial functions 
(KEGG orthologs) were visualized with a principal coordinates anal-
ysis (PCoA) plot.

3  |  RESULTS

We obtained a total of 335,970 high-quality bacterial 16S rRNA gene 
sequences from all muskox fecal samples, ranging from 19,222 to 
42,610 sequences per sample. The rarefaction curves showed that 
it almost attained the saturation plateau, indicating that the sample 
coverages were sufficiently large enough to estimate the ASV rich-
ness (Figure 2).

Adult bacterial diversity was not higher than those of calves in the 
Chao, Shannon, and Invsimpson indices, respectively (Chao index; 
adults  =  1543.9, calves  =  1348.7, Shannon index; adults  =  6.86, 
calves  =  6.48, Invsimpson; adults  =  752, calves  =  577.8, on aver-
age); the differences were not statistically significant (t-tests; Chao, 
p =  .56; Shannon, p =  .45; Invsimpson, p =  .43) (Figure 3). Instead, 
there were differences in the group variances of the three diver-
sity indices between adults and calves (Fligner–Killeen tests; Chao, 
p = .03; Shannon, p < .01; Invsimpson, p = .02; Figure 3).

The NMDS plot showed bacterial community differences be-
tween muskox adults and calves (PERMANOVA, pseudo-F = 1.69, 
p < .01) (Figure 4).

�
13C and �

15N =
(

Rsample∕Rstandard − 1
)

× 1000 (‱ )

http://www.R-project.org
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We attempted to identify bacterial ASVs, which were shared 
between different groups of the muskox. A total of 34.72% 
(66731/125489) of the total sequence reads were shared, and 7.33% 
(713/9719) of the total ASVs were shared between adults and calves 
(Figure 5). Ruminococcaceae (adults: 77.96%, calves: 60.64%) and 
Lachnospiraceae (adults: 8.79%, calves: 26.69%) were abundant in 
the shared ASVs.

At the phylum level, the muskox gut microbiome was dom-
inated by Firmicutes (on average, 94.36% and 94.03%) and 

Verrucomicrobia (1.77% and 3.31%, respectively) in both adults 
and calves. These two phyla accounted for 91.16% of the total 
sequences from all the samples. At the family level, we found 
that five families were dominant. These were Ruminococcaceae 
(73.90% and 56.25%), Lachnospiraceae (8.27% and 24.00%), 
Christensenellaceae (8.28% and 5.76%), Mogibacterium_f (0.65% 
and 2.86%), and Akkermansiaceae (1.72% and 3.30%) (Figure 6a,b). 
The relative abundance of the three microbial families differed sig-
nificantly between muskox adults and calves (Ruminococcaceae, 
p < .01; Lachnospiraceae, p < .01; Mogibacterium_f, p < .01; Mann–
Whitney tests; Figure 6a). Although the four pairs of adults and 
calves did not exhibit significant differences (paired Mann–Whitney 
tests; indicated by colored lines in Figure 6a), Ruminococcaceae 
and Christensenellaceae exhibited consistent increases, whereas 
Lachnospiraceae, Mogibacterium_f, and Akkermansiaceae exhibited 
consistent decreases in all pairs.

The microbial functional structure differed between muskox 
adults and calves (PERMANOVA, pseudo-F  =  3.63, p  =  .01) 
(Figure 7). Among the predicted functions at KEGG level 3, 54 func-
tions were significantly different between muskox adults and calves 
were provided in Figure 8. Transporters was the dominant pathway 
in both muskox adults and calves (5.97% vs. 6.39%, p  <  .05). The 
calves had higher purine metabolism (2.21% vs. 2.05%, p < .01) and 
peptidases function (1.94% vs. 1.75%, p < .01) while the adults had F I G U R E  2 Rarefaction curves of fecal bacterial communities 

between muskox adult and calf muskox groups

F I G U R E  3 Bacterial alpha diversity (3 indices; Chao, Shannon, and Invsimpson) in muskox adults (n = 6) and calves (n = 4) presented 
on box-whisker plots. No significant mean differences are detected between adults and calves (t-tests; Chao, p = .56; Shannon, p = .45; 
Invsimpson, p = .43)
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higher secretion system (1.67% vs. 1.47%, p < .05) and energy me-
tabolism function (1.19% vs. 0.92%, p < .01).

Stable isotopic niches for muskox adults (n = 6) and calves (n = 4) are 
presented in Figure 8. Muskox adults and calves had similar values in 
δ13C and δ15N (PERMANOVA, p = .413; adults, δ13C = –29.15 ± 0.13, 
δ15N = –0.26 ± 0.32; calves, δ13C = –29.15 ± 0.13, δ15N = 0.47 ± 0.4). 
Two groups of ellipses were overlapped in 47.6% of the area of adults 
and 48.1% of the area of calves.

4  |  DISCUSSION

The results showed that the microbiomes of muskox adults and 
calves have similar levels of alpha diversity at the phylum and fam-
ily levels, although the calves exhibited higher variance values. 
The adults and calves had different bacterial communities, and the 
calves exhibited a more diverse composition within the group com-
pared with the adults. The dietary analysis indicated that the adults 
and calves had common diets. The different bacterial communities 

between female adults and calves with similar diets, suggest that 
the gut microbiome in the calf group is still developing and not fully 
colonized despite their dietary similarities. After birth, calves re-
ceive the gut microbiome from mothers and begin to form their own 
independent gut microbiomes (Barko et al., 2018). Muskox calves 
graze from three to six weeks after birth and follow their mothers 
to select dietary plants (Church, 1969). During the study period, it 
was also observed that the females and calves foraged together. The 
diet analysis results confirmed that the adults and calves foraged on 
the same plants. When considering the breeding cycle (birth around 
March or April) (Adamczewski et al., 1994), the calves in this study 
are assumed to be three or four months old. Therefore, we show that 
the calf gut microbiome reaches the developing stage by August.

The dominant phylum in the fecal samples was Firmicutes. 
At the family level, Ruminococcaceae and Lachnospiraceae, 
which belong to the class Clostridia and phylum Firmicutes, 
were dominant, occupying more than 80% of the total abun-
dance. Ruminococcaceae and Lachnospiraceae were reported to 
encode carbohydrate-active enzymes for glycoside hydrolases 

F I G U R E  4 Nonmetric multidimensional 
scaling (NMDS) plot of muskox fecal 
bacterial communities using Bray–Curtis 
dissimilarity measures. All the points 
within each group are connected to the 
group centroid

F I G U R E  5 Venn diagram showing (a) the total sequence reads and (b) the number of unique and shared bacterial ASVs in adult and calf 
groups
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and carbohydrate esterases in herbivores (Wang et al., 2016). 
Ruminococcaceae is also known to affect the secondary metab-
olite synthesis and is involved in host immunity, such as antibi-
otic biosynthesis (Gosalbes et al., 2011) by producing short-chain 
fatty acids (SCFAs) for lipid metabolism and digestion (Morrison 
& Preston, 2016) and by detoxifying the plant secondary metabo-
lites (Kohl et al., 2014). Lachnospiraceae has been reported to pro-
duce SCFAs for metabolism (Hao et al., 2017; Vacca et al., 2020) 
and digest lactose by converting lactate into butyrate (Meehan 
& Beiko, 2014). In this study, adults had more Ruminococcaceae 
and fewer Lachnospriaceae than calves. Such differences could 
be related to the microbial functions for host digestion and me-
tabolism, depending on their need. We infer that the differences 
could result in differential needs for digestion between the adults 
and calves because calves were still relying on the milk during the 
sampling period.

The predicted microbial functions indicates that transporters 
and metabolisms were dominant. We found pathways to help the 
digestion of dietary fibers for carbohydrates (carbohydrate metabo-
lism, adults: 0.11%, calves: 0.13%) and lipids (fatty acid metabolism, 
adults: 0.41%, calves: 0.33%; glyoxylate and dicarboxylate metab-
olism, adults: 0.76%, calves: 0.65%; fatty acid biosynthesis, adults: 
0.60%, calves: 0.57%).

The microbial results presented here are consistent with those 
of previous studies on large herbivores. In the previous muskox 
studies, Firmicutes was the most dominant phylum (74–83%), and 
Ruminococcaceae and/or Lachnospiraceae were the most domi-
nant families (from Norway and northeast Greenland in Andersen-
Ranberg et al., 2018; from Norway in Salgado-Flores et al., 2016; 
from Canada in Bird et al., 2019). In Svalbard and Norwegian rein-
deers, the phylum Firmicutes and the families Ruminococcaceae and 
Lachnospiraceae were also abundant (Sundset et al., 2007; Zielińska 

F I G U R E  6 (a) Relative abundance 
of dominant bacteria family of the 
total number of ASVs in muskox adults 
and calves. Bar plot shows the relative 
abundance of adults (n = 6) and calves 
(n = 4), t-tests; asterisks indicate the 
significance of the statistical test of 
differences between adults and calves 
(asterisks *means p < .05, **means 
p < .01, ***means p < .001). Four different 
color dots and lines show the relative 
abundance of adults (n = 4) and calves 
(n = 4) with paired samples (Pair 1–4). (b) 
Distribution of bacterial families across all 
fecal samples from muskox individuals
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F I G U R E  7 (a) Principal coordinates 
analysis (PCoA) plot of PICRUSt2-
predicted functions of muskox fecal 
microbiota using Bray–Curtis dissimilarity 
measures (adults: MF1–6, n = 6, calves: 
MC1–4, n = 4). (b) PICRUSt2-predicted 
microbial functions with significant 
differences between the muskox adults 
and calves at level 3 KEGG functional 
categories
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et al., 2016). Based on previous studies and our PICRUSt2 results, we 
suggest that Ruminococcaceae and Lachnospiraceae could promote 
cellulose metabolism in herbivores.

From the stable isotope analysis, we found that adults and calves 
shared similar diets. In previous studies, Salix spp. was found to be 
the main food source of muskoxen, particularly during the summer 
(Gustine et al., 2014; Thing et al., 1987), demonstrating a relatively 
high digestibility for muskoxen (Staaland & Olesen, 1992).

The present findings may provide ecological information for un-
derstanding the host and microbial interactions and provide insights 
into the microbial functions for digestion in herbivores. In future stud-
ies, it will be interesting to analyze the detailed microbial functions 
related to their digestion and immune functions in adults and calves.
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