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ABSTRACT

The complete synthetic Mycoplasma genitalium
genome (�583 kb) has been assembled and cloned
as a circular plasmid in the yeast Saccharomyces
cerevisiae. Attempts to engineer the cloned
genome by standard genetic methods involving the
URA3/5-fluoroorotic acid (5-FOA) counter-selection
have shown a high background of 5-FOA resistant
clones derived from spontaneous deletions of the
bacterial genome maintained in yeast. Here, we
report a method that can seamlessly modify the
bacterial genome in yeast with high efficiency. This
method requires two sequential homologous
recombination events. First, the target region is
replaced with a mutagenesis cassette that
consists of a knock-out CORE (an18-bp I-SceI rec-
ognition site, the SCEI gene under the control of the
GAL1 promoter, and the URA3 marker) and a DNA
fragment homologous to the sequence upstream of
the target site. The replacement generates tandem
repeat sequences flanking the CORE. Second,
galactose induces the expression of I-SceI, which
generates a double-strand break (DSB) at the rec-
ognition site. This DSB promotes intra-molecular
homologous recombination between the repeat
sequences, and leads to an excision of the CORE.
As a result, a seamless modification is generated.
This method can be adapted for a variety of genomic
modifications and may provide an important tool to
modify and design natural or synthetic genomes
propagated in yeast.

INTRODUCTION

The yeast Saccharomyces cerevisiae has been developed as
a host capable of cloning large DNA fragments, as both
linear and circular yeast artificial chromosomes (YACs)

(1,2). Once cloned in yeast, YACs can be manipulated
using standard yeast genetic tools. Transfer of this
modified DNA back to host cells allows the functional
study of genes and their regulation (1–3). Recent
progress on the cloning of whole bacterial genomes in
yeast, and subsequent transplantation of such genomes
back into their original cellular environments (4), has
extended this application from the gene to the genome
level.

One common technique for DNA modification in yeast
is gene replacement with a counter-selectable marker that
can be subsequently removed. This usually involves two
homologous recombination events. First, a counter-
selectable marker is recombined into a target site.
Second, a DNA fragment containing the desired alteration
is recombined in place of the marker. The most frequently
used marker in this procedure is the URA3 gene, which
restores uracil prototrophy. Counter-selection for the
replacement of the URA3 maker is performed by treat-
ment with 5-fluoroorotic acid (5-FOA) (5). This method
is of particular importance for two reasons. First, it
restores uracil auxotrophy, which can then be used again
for a further round of modification. Second, it creates a
seamless modification. The basic URA3 replacement
method has been improved in a number of ways. One
improvement, the tandem repeat pop-out method, is
widely used for gene deletion and subsequent removal of
a counter-selectable marker to produce a seamless genome
modification (6–10). Another approach is to utilize the
formation of a double-strand break (DSB), generated by
the rare-cutting endonuclease enzyme I-SceI, near the
targeted locus to stimulate the efficiency of homologous
recombination repair (11). The methods described above
can be adapted for deletions, point mutations or gene
replacements.

We have previously demonstrated the assembly and
cloning of the synthetic Mycoplasma genitalium genome
as a circular YAC in yeast (12,13). This potentially
allows us to use yeast as a platform to directly engineer
or redesign synthetic bacterial genomes in vivo. At first, we
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attempted to engineer the synthetic M. genitalium genome
in yeast by the traditional two-step method of replacement
and a tandem repeat pop-out method to produce a point
mutation and a deletion, respectively. Unfortunately, we
were not able to isolate clones with the desired modifica-
tions in the M. genitalium genome due to a high back-
ground of nonspecific loss of the URA3 marker during
the course of manipulations. Therefore, we designed a
method to place both tandem repeat sequences and a
DSB near the target site to enhance the efficiency of
target-specific recombination. We have termed this the
TREC (tandem repeats coupled with endonuclease
cleavage) method, and find that it can be used to seamlessly
engineer bacterial genomes that are cloned in yeast.

MATERIALS AND METHODS

Yeast strain and media

Saccharomyces cerevisiae yeast strain VL6-48N (MAT�
his3-D200 trp1-D1 ura3-D1 lys2 ade2-101 met14) housing
a 0.6Mb Mycoplasma genitalium whole genome YAC was
constructed previously (12). Yeast cells were grown in
standard rich medium containing glucose (YEPD) or
galactose (YEPG); or in synthetic minimal medium con-
taining dextrose (SD) or galactose (SG) (14). SD medium
supplemented with 5-fluoroorotic acid (5-FOA) was used
to select for loss of the URA3 marker (5).

Preparation of mutagenesis cassettes

Primers used for construction of all mutagenesis cassettes
are listed in Supplementary Table S1. They were synthe-
sized by Integrated DNA Technologies (Coralville, IA,
USA). Primers longer than 60 bp were purified by poly-
acrylamide gel electrophoresis. All polymerase chain
reactons (PCRs) were performed with Takara Ex Taq
DNA polymerase (Takara Bio Inc.) using the conditions
recommended by the manufacturer. The URA3 marker
(1066 bp) was amplified from the plasmid pRS306 (15);
the GAL1 promoter (450 bp) was amplified from the plas-
mid pYES2 (Invitrogen, Carlsbad, CA, USA); the 1184-bp
fragment containing the GAL1 promoter and the SCEI
gene was amplified from the plasmid pGSKU (11); and
the Cre recombinase gene (1032 bp) was amplified from
the plasmid pBS185 (16). Assembly of linear DNA frag-
ments were performed by a PCR-fusion technique (17). In
each case of PCR-based fusion, complementary ends
overlapped by 40 bp (Supplementary Table S1). To
generate each final mutagenesis cassette, a fusion product
was PCR-reamplified with chimeric primers, each contain-
ing 50 bp of homology to the target site (Supplementary
Table S1). The final constructs are illustrated in Figures
1A, 2A, 1S and 2S.

Transformation and PCR analysis

Lithium acetate integrative transformation was performed
according to a published method (18). Two to three
micrograms of integrative construct DNA and 25 mg of
carrier DNA (salmon testis DNA, Sigma) were used in
routine experiments. Isolation of total DNA from yeast

for PCR analysis was performed according to a published
protocol (8). Correct integration of each mutagenesis
cassette was verified by PCR using diagnostic primers
located upstream and downstream of the target site
(described in figure legends). Multiplex PCR (MPCR)
was used to confirm completeness of M. genitalium
genomes as described previously (13). The primer set (set
3) used for MPCR was designed to produce 10 amplicons
(ranging from 125 to 1025 bp in 0.1-kb increments)
distributed around the M. genitalium genome approxi-
mately every 60 kb (13).

RESULTS

Nonspecific deletions in a bacterial genome cloned in yeast

We attempted to correct a point mutation in the MG259
locus of a synthetic M. genitalium genome maintained in
yeast by the traditional method involving two homolo-
gous recombination procedures (Figure 1A). After the
first homologous recombination, the exact replacement
of a target region with the URA3 marker was confirmed
by PCR (data not shown). After the second round of
homologous recombination, however, we were not able
to identify the correct replacement of the URA3 marker
with the 328-bp DNA segment by PCR screening from 97
5-FOA resistant colonies (Figure 1B and Table 1). These
results suggest that the loss of the URA3 marker might be
due to unexpected deletions. The M. genitalium genome
propagated as a circular YAC in yeast does not have func-
tional complementation with its host, except histidine
prototrophy. Any deletions or rearrangements in the bac-
terial genome are likely neutral for the yeast viability.
Multiplex PCR was used to evaluate the integrity of the
M. genitalium genome in yeast. The primer set was
designed to produce 10 amplicons (ranging from 125 to
1025 bp in 0.1-kb increments) distributed around the
M. genitalium genome approximately every 60 kb. Total
DNA prepared from twenty-two 5-FOA-resistant colonies
did not produce all 10 amplicons (Figure 1C). Two
amplicons, 0.525 kb and 0.625 kb (separated from each
other by � 60 kb), were absent in all clones. The MG259
locus lies between these two amplicons. This result dem-
onstrates that some spontaneous deletions or
rearrangements occur in the M. genitalium genome
propagated in yeast. The loss of the URA3 marker could
result from homologous recombination among repetitive
sequences in the M. genitalium genome. As a result, the
cells with spontaneous deletions of the URA3 gene could
survive on 5-FOA medium. In this case, the probability of
nonspecific loss of the URA3 gene was higher than that of
the URA3 gene replacement by the incoming DNA
fragment (Figure 1D). In agreement with this hypothesis,
the frequency of nonspecific loss of the URA3 gene placed
in the MG259 locus was � 0.3% (data not shown).
We also tried to make a seamless deletion of a 450-bp

region within the MG259 locus by the tandem repeat
pop-out approach (Supplementary Figure S1). Again, we
were not able to find the correct modification by PCR
screening (Table 1). Multiplex PCR showed that eight
out of nine 5-FOA resistant clones contained incomplete
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genomes (Table 1). Therefore, we concluded that these
methods were not efficient enough to engineer the M.
genitalium genome in yeast and that the 5-FOA-resistant
cells were likely derived from cells that nonspecifically lost
the URA3 marker during the course of manipulations.

Combination of TREC

DSBs have been introduced near the targeted-locus to
stimulate the efficiency of homologous recombination
repair in yeast and higher eukaryotic cells (11,19–22).

Therefore, we believed that the frequency of recombina-
tion between two tandem repeats should be enhanced by a
DSB near the target site. A new mutagenesis construct was
designed. It contains a CORE cassette (consisting of
the18-bp I-SceI recognition site, the GAL1 promoter, a
gene encoding the I-SceI endonuclease and the URA3
gene) and 378 bp of DNA homologous to the region
upstream of the target site. Two terminal sequences
homologous to the target site were added into the con-
struct by PCR (Supplementary Table S1). Replacement
of the 450-bp target region with this construct would
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Figure 1. A traditional method of genetic engineering the MG259 locus of a synthetic M. genitalium genome maintained in yeast. (A) The scheme of
repairing a point mutation through two homologous recombination procedures. First, a region of 146 bp with point mutation (asterisk) in the
MG259 locus of M. genitalium genome (M. gen genome) is replaced with the URA3 marker via 50-bp homologous sequences. Second, a 328-bp
DNA fragment replaces the URA3 marker. The loss of the URA3 marker is selected for by 5-FOA. Two PCR diagnosis primers (red arrows), Seq-F
(gttagtttaccaatccagtc) and Seq-R (aatgcttggatatcaatatc), are separated by 0.4 kb in MG259 locus, and the insertion of the 1.1-kb URA3 marker results
in the generation of a 1.3-kb PCR product when using these primers. (B) PCR analysis of 22 5-FOA resistant clones after the second round of
homologous recombination using primers Seq-F and Seq-R. C1, DNA purified from the yeast strain containing an M. genitalium genome with the
URA3 marker insertion in MG259 locus and C2, DNA purified from the yeast strain containing an M. genitalium genome before the insertion of
URA3 marker in MG259 locus. (C) Analysis of M. genitalium genome completeness by multiplex PCR. Ten pairs of primers should produce 10
amplicons (ranging from 0.125 to 1.25 kb in 0.1-kb increments) distributed around the M. genitalium genome approximately every 60 kb as shown in
control C1 DNA and C2 DNA. M, 100-bp DNA ladder and 1–22: DNA analyzed from 22 5-FOA resistant colonies. (D) Possibilities for URA3
marker loss from an M. genitalium cloned in yeast. A 583 kb of the M. genitalium genome was cloned as yeast artificial chromosome (YAC), carrying
a histidine marker (HIS3) and a centromere (CEN6), and the URA3 marker was inserted into the MG259 locus. 5-FOA resistant strains (5-FOA+)
could be derived either from the replacement of the URA3 marker with the wild type DNA fragment (R1) or from recombination between two
repetitive sequences (blue arrow) (R2). Size and locations of repeat sequences are schematic.
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produce two repeat sequences franking the CORE, and
homologous recombination between the repeat sequences
would result in a seamless deletion (Figure 2A).

Following transformation of the mutagenesis construct
into yeast, the expression of I-SceI endonuclease was
induced by galactose. After a 2-day incubation, cells
were replica-plated onto SD-His+5-FOA plates. Cells
with galactose induction produced significantly more
colonies on SD-His+5-FOA medium than un-induced
cells (Figure 2B). 5-FOA-resistant cells derived from
both induced and un-induced cells were re-streaked, and
single colonies were then selected and analyzed.
Transformants with the correct deletion were identified
by PCR screening. DNA with precise removal of the
CORE cassette would result in the generation of a
0.55-kb PCR product. (Figure 2C left panel) suggests
that all 24 galactose-induced clones contain the correct
modification in the M. genitalium genome, while only
two PCR-positive clones isolated from un-induced cells
do (Figure 2C, right panel). Furthermore, the integrity
of the M. genitalium genomes was evaluated by multiplex
PCR. DNA from 10 galactose-induced clones produced
the complete set of 10 amplicons (left panel, Figure 2D).
DNA from un-induced clones did not generate the
complete set of 10 amplicons (Figure 2D, right panel).
Hence, results from both PCR analyses demonstrate that
the TREC method can perform a seamless deletion on a
bacterial genome cloned in yeast with high efficiency
(Table 1).

The Cre-loxP system has been demonstrated to produce
marker excision in yeast with high efficiency (23).
Therefore, we compared the efficiency of the TREC
method with that of the Cre-loxP system for gene
deletion in a M. genitalium genome cloned in yeast. The
Cre-loxP mutagenesis construct consists of the Cre gene
under the control of the GAL1 promoter, the URA3 gene,
and two mutant loxP sites flanked by the two terminal
sequences homologous to the target site (Supplementary
Figure S2). The mutant loxP sites prevent a reverse recom-
bination event (24). The same region deleted by TREC
was targeted by this construct. Following transforming,
Ura+ clones were grown on galactose medium to induce
the expression of Cre recombinase. In turn, this excises
most of mutagenesis cassette, including the URA3 gene,
but leaves a 34-bp mutant loxP element in the target site.

PCR analysis showed that 93% (28/30) of the 5-FOA
resistant clones contained the desired deletion. Multiplex
PCR indicated that 100% (4/4) of the correct deletion
clones contained the complete M. genitalium genome
(Table 1). In conclusion, we find that the efficiency of
the TREC method is comparable with that of the Cre-
loxP system in engineering an M. genitalium genome
cloned in yeast.

DISCUSSION

Several existing methods that adapt the URA3/5-FOA
counter-selection have been successfully demonstrated
for modification of yeast chromosomes (1–3). However,
the two methods that we have tried are not efficient
enough for engineering an M. genitalium genome
episomally maintained in yeast. The M. genitalium
genome seems to be relatively stable in yeast even
though the genome contains up to 4% of repetitive
sequences (25), but spontaneous deletions or rearrange-
ments still occurs at a low frequency �2% (data not
shown). This would potentially generate undesired
URA3-negative clones during the course of manipulations
and therefore complicate 5-FOA selection for site-specific
mutagenesis.
We have demonstrated that the TREC method is a very

efficient tool to produce seamless modifications in the M.
genitalium genome in yeast. It is a simple method that only
needs a single transformation and is adaptable to other
kinds of modifications (insertions, gene replacements or
point mutations). The high frequency of homologous
recombination of the TREC method is mainly attributable
to the fact that every cell, in principle, is engaging in repair
during the induction of the DSB and that the repair
substrates (repeat sequences and DSB) are in close prox-
imity. The performance of TREC is comparable with the
Cre/loxP system. However, since TREC does not leave a
scar, the TREC method offers a significant advantage over
the Cre/loxP system in genomic engineering. Recently, a
new method, called MIRAGE, was reported for
generating a seamless modification in the S. cerevisiae
yeast genome with high efficiency (26). This method is
based on the introduction of an inverted repeat near the
target site, flanked by two short tandem repeats. The
unstable inverted repeat greatly promotes an excision
between the two tandem repeats. However, the inverted
repeat sequences may lead to imprecise deletions due to
replication slippage (27,28). Furthermore, the MIRAGE
method requires a complicated knockout construct to be
generated, which may take more than a day to prepare. In
contrast, the TREC construct can be generated and trans-
formed into yeast on the same day.
A similar strategy has been developed for making

seamless modifications in Escherichia coli (29,30). It also
involves the introduction of both I-SceI induced DSB and
tandem repeat sequences near the target site and requires
the assistance of lambda red for homologous recombina-
tion. This method makes E. coli a powerful host for
molecular engineering. However, unlike the mega-base
pair cloning capacity of yeast, cloning foreign DNA

Table 1. Efficiency of several DNA modification methods for

engineering M. genitalium genomes in yeast

Method Fraction of
clones with the
correct modificationa

Fraction of
clones with a
complete genomeb

Traditional sequence
replacement

0/97 0/22

Tandem repeat pop-out 0/38 1/9
Tandem repeat endonuclease

cleavage (TREC)
28/28 10/10

Cre/loxP recombinase 28/30 4/4

aEstimated by diagnostic PCR.
bEstimated by multiplex PCR assay.
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Figure 2. Seamless deletion using the TREC method. (A) The outline of the TREC method. Through homologous recombination, a 450-bp region
located at the MG259 locus is replaced with a mutagenesis cassette that consists of a knock-out CORE (an18-bp I-SceI recognition site, the SCEI gene
under the control of a GAL1 promoter, and the URA3 marker) and a DNA fragment (shown in white arrow) identical to a region upstream of the
target site. The replacement generates tandem repeat sequences flanking the CORE. Galactose induces the expression of I-SceI, which generates a
double-strand break (DSB) at the I-SceI site near the target locus. The DSB promotes an intra-molecular homologous recombination (dash line)
between the repeat sequences, leading to an excision of the CORE. (B) Replica-plating steps used for selection of M. genitalium genome modification.
URA3 positive transformants were grown on SD-HIS-URA medium, followed by replica plating to either galactose or glucose plates. After a 2-day
incubation, cells were replica-plated onto SD-HIS containing 5-FOA. 5-FOA-resistant cells were re-streaked out to produce single colonies for PCR
analyses. (C) PCR analysis using the diagnosis primers, Seq-F and M2-det1(aagtaactagcaatttgttg), for excision of the mutagenesis cassette. DNA was
prepared from 24 colonies replica-plated from either galactose or glucose plate, respectively. DNA with a precise deletion would give rise to a 0.55-kb
PCR product, compared to a 1-kb PCR product from un-modified DNA. (D) Analysis of the integrity of the M. genitalium genome. Ten DNA samples
from galactose-induced and -uninduced 5-FOA resistant clones in (C) were further analyzed by multiplex PCR using the same primer sets described in
Figure 1C. M, 100-bp DNA ladder. C, DNA purified from Ura+ transformants before galactose induction and 5-FOA selection.
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>300 kb in E. coli is not very common, which limits its
application.

Delivering an engineered YAC back to its original cell
can determine the function and regulation of genes and
gene clusters (1–3). Seamless modification is a favorable
means of engineering a YAC, since additional sequences
remaining in engineered site could potentially cause unex-
pected consequences. In addition, chromosomes of many
higher eukaryotic cells contain a high fraction of repetitive
sequences. The method described here should be beneficial
for modifying their gene(s) cloned in yeast. Furthermore,
we have also applied TREC method to easily generate a
variety of genomic modifications, including gene insertion,
deletion and mutation correction, in both the synthetic
M. genitalium genome and a Mycoplasma mycoides
(M. mycoides) genome (�1Mb) cloned in yeast
(unpublished data). One of these engineered clones,
YCpMmyc1.1-DtypeIIIres, is a seamless deletion of a
Type III restriction enzyme gene. The genome purified
from this clone has been transplanted into a
Mycoplasma capricolum to produce an M. mycoides cell
with the desired genome modification (4). Together, since
the yeast S. cerevisiae has been successfully demonstrated
as a host for the assembly of the synthetic M. genitalium
genome, TREC becomes an important tool in yeast to
engineer synthetic genomes, which could be used to
produce synthetic cells.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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