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Abstract

Background

Historically, neural tube defects (NTDs) have predominated in female infants but the rea-

sons remain unclear. In South America, the pre- folic acid fortification (FAF) rates of NTDs

were around 18/10,000 births for females and 12/10,000 births for males, with an estimated

sex ratio (male/female) of 0.67. During the post- FAF period, unpublished routine reports

have indicated changes in the sex ratio for these defects while some descriptive reports are

controversial. To date and to our knowledge, however, no studies specifically focusing on

these changes to test this hypothesis directly have been undertaken. The aim of this study

was to analyze changes in the sex ratio of infants with NTDs after FAF in South American

countries.

Materials and methods

With a descriptive cross-sectional study design, 2,597 infants with isolated NTDs born

between 1990 and 2013 in 3 countries participating in the Latin American Collaborative

Study of Congenital Malformations (ECLAMC) network were included: (Chile N = 521 and

Argentina N = 1,619 [with FAF policies]; Venezuela N = 457 [without FAF policies; used as

control]; total births = 2,229,561). The differences-in-differences method and Poisson

regressions were used to evaluate the sex ratio shift from female to male before vs. after

FAF, and to assess whether these differences were related to the fortification.

Results and conclusions

In Chile and Argentina the prevalence of NTDs, particularly anencephaly and cervico-tho-

racic spina bifida, showed a greater reduction rate in females than in males after FAF, result-

ing in a change of the sex ratio of infants with NTDs. Some mechanisms possibly involved in

this differential reduction are proposed which might be useful to identify the pathogenesis of

NTDs as a whole and specifically of those susceptible to the protective effect of folic acid.

PLOS ONE | https://doi.org/10.1371/journal.pone.0193127 March 14, 2018 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Poletta FA, Rittler M, Saleme C, Campaña
H, Gili JA, Pawluk MS, et al. (2018) Neural tube

defects: Sex ratio changes after fortification with

folic acid. PLoS ONE 13(3): e0193127. https://doi.

org/10.1371/journal.pone.0193127

Editor: Cheryl S. Rosenfeld, University of Missouri

Columbia, UNITED STATES

Received: November 15, 2017

Accepted: February 4, 2018

Published: March 14, 2018

Copyright: © 2018 Poletta et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The research program was supported by

Agencia Nacional de Promoción Cientı́fica y

Tecnológica (ANPCyT-MINCyT), grant number

PICT-2016-0952 (PI: Lopez-Camelo JS) and PICT-

2016-3869 (PI: Poletta FA), Argentina; Consejo

Nacional de Investigaciones Cientı́ficas y Técnicas

(CONICET-MINCyT), Argentina. The funders had no

role in study design, data collection and analysis,

https://doi.org/10.1371/journal.pone.0193127
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193127&domain=pdf&date_stamp=2018-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193127&domain=pdf&date_stamp=2018-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193127&domain=pdf&date_stamp=2018-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193127&domain=pdf&date_stamp=2018-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193127&domain=pdf&date_stamp=2018-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193127&domain=pdf&date_stamp=2018-03-14
https://doi.org/10.1371/journal.pone.0193127
https://doi.org/10.1371/journal.pone.0193127
http://creativecommons.org/licenses/by/4.0/


Introduction

Neural tube defects (NTDs), including spina bifida, anencephaly and cephalocele, are severe

birth defects of the central nervous system that occur during embryonic development when

the neural tube fails to close completely. In South America before folic acid fortification, as

well as in other countries without fortification policies, the overall prevalence of NTDs varied

between 10 and 20 per 10,000 births [1], and showed a historical female sex predisposition for

the three malformations. The observed frequency in South America was 18/10,000 for females

and 12/10,000 for males [2], with an estimated sex ratio (SR = male/female) of 0.67, which

however differed among other studies. For the US NBDPS registry [3], it was closer to an equal

male/female relationship, while Lary and Paulozzi [4], Shaw et al. [5], and Rittler et al. [2]

found a greater female excess. Epigenetic phenomena [6], a relatively higher proportion of

males with associated NTDs and lost during early gestation [7], and/or differences in suscepti-

bility to environmental factors, based on the multifactorial theory [8], could explain the female

excess.

Based on the evident reduction of NTDs after periconceptional folic acid fortification

(FAF) [9–12], three countries in South America have implemented national fortification poli-

cies: Chile in January 2000 [13], Argentina in December 2003 [14], and Brazil in July 2004

[15]. While Chile and Argentina have fortified wheat flour with 2.2 mg/kg to provide an esti-

mated average of 400 μg/day of folic acid as recommended by the Centre for Disease Control

[16]; Brazil has fortified wheat and corn flour at a lower dose (1.5mg/kg) [15, 17]. Thus, the

estimated average of daily ingested folic acid was 499 μg in Chile [13], 486 μg in Argentina [14,

18], and 264 μg in Brazil [15]. In previous studies we have shown the impact of these policies:

in Chile and Argentina the observed NTD prevalence declined to almost a half after folic acid

fortification [1, 12], while in Brazil such a strong reduction could not be as clearly observed,

showing more heterogeneous rates [1, 17].

During the post- FAF period, unpublished routine reports have indicated changes in the

sex ratio for these defects while some descriptive reports are controversial [19–20]. To date

and to our knowledge, however, no studies specifically focusing on these changes to test this

hypothesis directly have been undertaken.

The purpose of the present work was to analyze eventual changes in the SR of NTDs after

folic acid fortification in the two South American countries, Chile and Argentina, where a

clear effectiveness of fortification on the reduction of NTDs has been verified.

Materials and methods

By using a descriptive cross-sectional study, 2,597 live and stillborn infants with isolated

NTDs among 2,229,561 total births (TB) from 95 maternity hospitals of 3 South American

countries participating in the Latin American Collaborative Study of Congenital Malforma-

tions (ECLAMC)[21–22] between 1990 and 2013, were analyzed: (Chile N = 521, TB =

565,238; Argentina N = 1619, TB = 1,310,367; Venezuela N = 457, TB = 353,956). Venezuela,

where no fortification policy has been implemented, was used as control group.

ECLAMC is a program dedicated to the research of birth defects, through a network of

maternity hospitals where health professionals, mainly pediatricians, identify birth defects in

live and stillborn infants. Data on socioeconomic and demographic characteristics, previous

birth outcomes, and prenatal factors are obtained from medical records and by interviewing

the mothers of malformed infants and of healthy controls, before their discharge. Detailed

descriptions of the registry and methodology have been published previously [21–22]. Written

and signed informed consents were obtained for all subjects participating in the ECLAMC

program before data collection. Furthermore, ECLAMC pediatricians adequately explain the
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written informed consent content to the mother or legal guardian of the newborn. The study

protocol was approved by the Ethics Committee “Center for Medical Education and Clinical

Research (CEMIC)” (DHHS-IRB #1745, IORG #1315), and all written consent are available in

the ECLAMC coordination headquarters.

The NTD sample included the following anomalies: anencephaly, spina bifida total and

subtypes (cervico-thoracic or high, and lumbo-sacral or low), and cephalocele. Since termina-

tions of pregnancies are illegal in these countries, they were excluded.

Two approaches were used:

1. Comparison of the SR by NTD type, before vs. after FAF and between countries with vs.

without FAF; 2) comparison of the NTD reduction rates between females and males.

For the first approach, the secular trend of the SR was established to determine if changes

had occurred during the pre-FAF period; for this step, a linear regression model was used. The

independent variables included dummy variables to represent the time periods before FAF

and dummy hospitals as fixed effects to control heterogeneity among them.

To confirm whether the SR had changed after FAF, we used the differences-in-differences

(DID) method [23], a quasi-experimental technique used to measure the effect of a treatment

over a specific time period with treatment and control groups. Chile and Argentina were con-

sidered as treatment groups, Venezuela as control group.

The DID estimator was used representing the difference between the pre- and post-FAF

measures in the treatment (Chile and Argentina) and control (Venezuela) groups and the pre-

and post-FAF periods representing the difference between periods. Chile began fortifying in

2000; therefore, the NTD cases were grouped by dates of birth into two periods (before 2000

and after 2001). Similarly, Argentina began fortifying at the end of 2003, so the periods were

defined as before 2004 and after 2005. For Venezuela, without fortification, the periods were

defined with the same dates as those of the country to which it was being compared.

For two periods (before and after FAF) and two groups (Venezuela: control group and

Chile/Argentina: treatment group), Y11 and Y12 represented the SR change in the control

group before and after FAF, respectively, and Y21 and Y22 represented the SR change before

and after FAF in the treatment group.

The DID estimator was expressed as: (Y22–Y21)-(Y12-Y11).This estimator measured the SR

changes in the post-FAF period of the treatment group compared with the SR changes in the

control group. Under the alternative hypothesis, the sex ratio changes in the post-FAF period/

treatment group should be Y12-Y11 = 0, Y22>Y21 and DID>0. The Monte Carlo simulation

was used to calculate the standard error of the DID estimator.

For the second approach, we used a Poisson regression to assess the NTD prevalence reduc-

tion after FAF, with the following model:

LogðnÞ ¼ aþ a Sexþ bFA þ cSexFA þ
P

Hj;

where n is the number of NTD cases (male or female), Sex is a dummy variable representing

the female (sex = 1) and male (sex = 0) cases, FA is a dummy variable for pre-FAF (fa = 0) and

post-FAF (fa = 1) periods, SexFa is an interaction term, where c is a coefficient that assesses

NTD reduction rate differences between females and males, and H is the dummy variable for j

hospitals. Hospitals were included in the model as fixed effects to minimize biases by unob-

served variables that may differ among hospitals. The Huber method [24] was used to estimate

the standard errors controlling the intergroup correlations because the same hospitals were

included in the model for different years.

This sample size allowed us to detect a minimum change of 25% in the SR for an 80% of

power (β = 0.20) and a 5% of type I error (α<0.05).

Sex ratio changes after FAF
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An entire database including raw data of number of cases and total births tabulated by

country, year, hospital and sex; as well as a complete description of database structure and vari-

ables, are available as Supporting Information Files (S1 and S2, respectively).

Results

The number of cases by anomaly type, country, gender, and FAF period are shown in Table 1.

The total number of births with specified sex was 2,229,561 (98.6%), and the population SR

(M/F) of the 3 countries did not change during the whole study period (Chile: before FAF =

1.051, after FAF = 1.055, p = 0.1758; Argentina: before FAF = 1.041, after FAF = 1.049,

p = 0.192; and Venezuela = 1.061) (Fig 1).

In Chile and Argentina, the secular trend of the SR in NTD cases was not significant for the

pre- FAF period (b = 0.015, p = 0.728; and b = -0.021, p = 0.158; respectively), while in Venezu-

ela it remained stable across the entire period (b = 0.009, p = 0.594) (Fig 1). When compared

with Venezuela, a significant increase of the SR in NTD cases pre- vs. post- FAF was observed

in Chile (from 0.60 to 1.05) and Argentina (from 0.57 to 1.01) (Table 2).

For Chile, all NTD types showed statistically significant pre- vs. post-FAF differences; the

greatest post- FAF SR increase was observed for anencephaly, cervico-thoracic spina bifida

and cephalocele. Similar results were found for Argentina, with the exception of lumbo-sacral

spina bifida which showed no significant SR difference when compared with Venezuela.

Before FAF in Chile, the NTD prevalence for females was 1.74 times higher than for males.

This almost two-fold difference was also observed for anencephaly and spina bifida (total and

Table 1. Number of NTD cases by period (pre- and post- FAF) and sex of newborns.

Pre FAF Post FAF

Country Defect Male Female Male Female Total

CHL NTD total 125 207 97 92 521

Anencephaly 52 98 38 44 232

Spina bifida 58 87 43 38 226

Cervico-thoracic 14 37 2 2 55

Lumbo-sacral 44 50 41 36 171

Cephalocele 15 22 16 10 63

Total Births 115,127 109,478 174,955 165,678 565,238

ARG NTD total 489 855 138 137 1619

Anencephaly 183 437 58 51 729

Spina bifida 252 322 64 67 705

Cervico-thoracic 63 107 12 8 190

Lumbo-sacral 189 215 52 59 515

Cephalocele 54 96 16 19 185

Total Births 478,971 459,867 190,197 181,332 1,310,367

VEN NTD total 197 260 - - 457

Anencephaly 65 90 - - 155

Spina bifida 120 149 - - 269

Cervico-thoracic 44 55 - - 99

Lumbo-sacral 76 94 - - 170

Cephalocele 12 21 - - 33

Total Births 182,256 171,700 353,956

FAF: folic acid fortification; CHL: Chile; ARG: Argentina; VEN: Venezuela.

https://doi.org/10.1371/journal.pone.0193127.t001
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cervico-thoracic type), while lumbo-sacral spina bifida and cephalocele showed no significant

differences. After FAF, the NTD prevalence showed a significant reduction of 49% in males

and 70% in females (Table 3); the decline, which was slower in males than in females, could be

observed for all NTD types (Fig 2).

Fig 1. Sex ratio changes for NTD cases and total births in Chile, Argentina, and Venezuela (1990–2013). NTD: neural tube defect; FAF: folic acid fortification; M/F:

male/female; Sex ratio (male/female) for neural tube defect cases (full blue line), sex ratio for total births (dashed red line). Sex ratios estimated by multivariate regression

models adjusted by hospital.

https://doi.org/10.1371/journal.pone.0193127.g001

Table 2. Sex ratio (M/F) changes for types of NTDs between FAF periods.

Sex Ratio (M/F) Chile vs. Venezuela

Pre-FAF Post-FAF

Defect CHL VEN Diff CHL VEN Diff DID 95% CI Z P

NTD total 0.60 0.65 -0.05 1.05 0.89 0.16 0.21 0.06 0.36 2.61 0.004

Anencephaly 0.53 0.74 -0.21 0.86 0.69 0.18 0.39 0.16 0.61 3.39 0.001

Spina bifida 0.67 1.04 -0.38 1.13 0.59 0.54 0.91 0.69 1.14 7.92 0.001

Cervico-thoracic 0.38 1.03 -0.66 1.00 0.54 0.46 1.12 0.02 2.21 1.99 0.023

Lumbo-sacral 0.88 0.70 0.18 1.14 0.62 0.52 0.34 0.09 0.59 2.66 0.004

Cephalocele 0.68 0.58 0.10 1.60 0.56 1.04 0.95 0.28 1.60 2.80 0.002

Total Births 1.04 1.05 -0.01 1.06 1.06 0.00 0.01 -0.19 0.09 0.45 0.326

Sex Ratio (M/F) Argentina vs. Venezuela

Pre-FAF Post-FAF

Defect ARG VEN Diff ARG VEN Diff DID 95% CI Z P

NTD total 0.57 0.74 -0.16 1.01 0.81 0.20 0.36 0.22 0.50 4.95 0.001

Anencephaly 0.42 0.69 -0.27 1.14 0.87 0.27 0.55 0.21 0.87 3.25 0.001

Spina bifida 0.78 0.80 -0.02 0.96 0.81 0.15 0.17 0.07 0.33 2.04 0.020

Cervico-thoracic 0.59 0.86 -0.27 1.50 0.76 0.74 1.00 0.19 1.81 2.41 0.008

Lumbo-sacral 0.88 0.77 0.05 0.88 0.83 0.05 -0.06 -0.25 0.13 -0.60 0.274

Cephalocele 0.56 0.75 -0.19 1.19 0.46 0.73 0.91 0.52 1.30 4.64 0.001

Total Births 1.04 1.06 -0.01 1.06 1.06 0.00 0.01 -0.07 0.12 0.54 0.295

FAF: folic acid fortification; NTD: neural tube defect; Diff: difference between countries for the same period of time; DID: difference-in-difference analysis.

https://doi.org/10.1371/journal.pone.0193127.t002
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Similar results were observed in Argentina. Before FAF, the NTD prevalence was 1.82 times

higher in females than in males, with the greatest differences for anencephaly and cervico-tho-

racic spina bifida. After FAF, the NTD prevalence showed significant reductions of 29% in

males and 59% in females (Fig 2 and Table 3).

In Venezuela, the prevalence of the whole NTDs and of all its types showed no SR variation,

it was always higher in females than in males (Fig 2).

Table 3. Reduction in NTD rates (per 10,000 births) between pre- and post-FAF periods, by sex and country.

Pre-FAF Post-FAF Reduction (%)

Country Defect Male 95% CI Female 95% CI Male 95% CI Female 95% CI Male Female

CHL NTD total 10.85 9.03–12.93 18.90 16.42–21.67 5.54 4.49–6.76 5.55 4.47–6.81 48.9 70.6

Anencephaly 4.51 3.37–5.59 8.95 7.26–10.90 2.17 1.53–3.98 2.65 1.93–3.56 51.9 70.4

Spina bifida 5.03 3.82–6.51 7.95 6.36–9.80 2.45 1.77–3.31 2.29 1.62–3.15 51.3 71.2

Cervico-thoracic 1.22 0.66–2.04 3.38 2.38–4.65 0.11 0.00–0.41 0.12 0.00–0.44 91.0 96.4

Lumbo-sacral 3.82 2.78–5.13 4.57 3.39–6.02 2.34 1.68–3.18 2.17 1.52–3.00 38.7 52.5

Cephalocele 1.30 0.73–2.15 2.01 1.26–3.04 0.92 0.52–1.48 0.60 0.28–1.11 29.2 70.1

ARG NTD total 10.20 9.32–11.11 18.59 17.37–19.58 7.25 6.09–8.57 7.56 6.34–8.93 28.9 59.3

Anencephaly 3.82 3.29–4.42 9.50 8.43–10.57 3.04 2.32–3.94 2.81 2.09–3.70 20.4 70.4

Spina bifida 5.26 4.93–5,95 7.00 6.25–7.81 3.36 2.59–4.33 3.70 2.86–4.69 36.1 47.1

Cervico-thoracic 1.31 1.01–1.68 2.32 1.91–2.81 0.63 0.32–1.10 0.44 0.19–0.86 51.9 81.0

Lumbo-sacral 3.95 3.40–4.55 4.67 4.07–5.64 2.73 2.04–3.75 3.25 2.48–4.19 30.9 30.4

Cephalocele 1.13 0.85–1.47 2.09 1.69–2.55 0.84 0.48–1.37 1.04 0.63–1.63 25.7 50.2

VEN NTD total 10.81 9.35–12.42 15.14 13.35–17.10 - - - - - -

Anencephaly 3.57 2.75–4.54 5.24 4.21–6.44 - - - - - -

Spina bifida 6.58 5.46–7.87 8.68 7.34–10.18 - - - - - -

Cervico-thoracic 2.41 1.75–3.24 3.20 2.41–4.17 - - - - - -

Lumbo-sacral 4.17 3.28–5.21 5.47 4.42–6.70 - - - - - -

Cephalocele 0.66 0.34–1.15 1.22 0.76–1.87 - - - - - -

NTD: neural tube defect; FAF: folic acid fortification.

https://doi.org/10.1371/journal.pone.0193127.t003

Fig 2. Changes in NTD rates by sex in Chile, Argentina and Venezuela (1990–2013). NTD: neural tube defect; FAF: folic acid fortification; Neural tube defects rates

(per 10,000 births) for females (dashed orange line), and males (full blue line). Rates estimated by multivariate regression models adjusted by hospital.

https://doi.org/10.1371/journal.pone.0193127.g002
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Discussion

Sex-specific effects of folic acid on the prevalence of NTDs and changes in

their Sex Ratio

We found evidence that in the two countries where a folic acid fortification effect has been

demonstrated [1], the NTD prevalence reduction after fortification occurred at a higher rate in

females than in males, and that this difference was more evident for anencephaly and spina

bifida (total and cervico-thoracic type). Notably, these anomalies are, according to the litera-

ture, especially predominant in females.

Our results also showed that the relative increase in the number of males with NTD did not

depend on an overall shift of the SR after FAF, as the population SR did not change during the

whole pre- and post- fortification periods. Similarly, in a study performed on a Chinese popu-

lation Zheng et al. [25] showed that the proportion of male births did not rise after periconcep-

tional use of multivitamin supplements containing folic acid.

In 1999, a folic acid campaign for the prevention of NTD started in Nuevo León, Mexico.

After two years fortification, a significant rate reduction occurred of overall NTD cases, as well

as of the proportion of affected females. Female cases who during 1999 represented 59% of all

NTDs, had declined to 37% in 2000, a reduction that was statistically significant for spina

bifida and anencephaly, leading to an almost equal distribution by gender in 2001 [19].

Kandasamy et al. [26] reported a decline in overall NTD defects, as well as an increase in

the proportion of male cases after preconceptional prescription of folic acid had started. Their

sample size was, however, small and included associated anomalies.

Contrarily, in a study on sex ratio and birth defects of 25,952 infants included in the US

National Birth Defects Prevention Study, Michalski et al. [3] reported a sex ratio close to one

for the whole NTDs, as well as for each of the studied subtypes. However, and as a possible

explanation for their results opposing those of others [2, 4–5], most of the affected infants were

born after food supplementation with folic acid had started.

Referring to a study carried out in Canada [27], Evans [28] reported additional data on the

sex distribution of 2,521 NTD cases before and after folic acid fortification. Before fortification

the proportion of female patients with anencephaly and with spina bifida differed significantly

from the expected proportion at birth, while after fortification the SR of both defects had

"normalized".

Why does folic acid show a greater protective effect in females than in

males?

We believe that the reason most probably relates to the still unanswered question of why are

females more often affected by NTDs than males. Many isolated birth defects predominate in

one sex over the other, and especially NTDs are among those with the highest SR difference

[2]. Although a number of possible causes have been mentioned, such as difference in growth

and development rates between male and female embryos, higher prenatal mortality rates in

males, epigenetic phenomena and X chromosome inactivation, this issue still remains

unsolved.

Furthermore, folic acid is involved in a great number of cell functions [29], hindering the

identification of a specific pathway responsible for its differential effect on males and females.

Here we propose some interpretations, based on three theories mentioned as possible

causes for the relative female excess in NTDs.

First, in a study on the sex ratio in infants with NTDs, Källén et al. [7] observed a less

marked female excess for associated NTDs, and a predominance of males with NTDs lost

Sex ratio changes after FAF
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during early gestation. Both observations would explain the relative predominance of females

with isolated NTDs. The greater effect of folic acid on isolated (predominantly female) NTD

cases [1] would therefore lead to a relative increase of associated (predominantly male) NTD

cases. This theory, however, does not apply to our work which did not include associated NTD

cases.

A second hypothesis that could explain the excess of females with NTD refers to the mecha-

nism of X chromosome inactivation [6] through methylation in female embryos, leading to a

reduction in the amount of available methyl groups necessary for other functions, including

neural tube closure. Since folic acid is involved in the production of the universal methyl

donor S-adenosyl-methionine, folate fortification would lead to an increase in the amount of

available methyl groups, favouring neural tube closure, preferentially in female embryos.

A similar female excess for NTDs has been observed in mice [6] and here the mentioned

mechanism through methylation could also be involved. Okano et al. [30] have shown that the

gene Dnmt3b, responsible for de novo methylation of DNA in mouse embryos, is strongly

expressed in elevating cranial neural folds, and its null mutation leads to exencephaly. It has

already been shown that folic acid is involved in gene transcription. On the one hand by modi-

fying the chromatin structure of certain genes, and on the other it activates folate receptor

alpha which, acting as a transcription factor, regulates the expression of a number of genes cru-

cial for embryo development. In mice, disruption of both folate receptor 1 (FOLR1) alleles

coding for folate receptor alpha (FRα) resulted in a number of malformations and embryonic

death at the time of NT closure [31].

Furthermore, Strandgaard et al. [32] have observed FRα expression in mouse and human

ovarian follicles, as well as a high and specific presence of FRα in developing ovaries. They also

observed the presence of maternally contributed FRα in the 2-cell stage embryo, and FRα anti-

bodies have been identified in women with recurrent NTD pregnancies [33–35]. The authors

concluded that although zygotic FRα is required to foster embryonic development, maternally

contributed FRα protein is necessary to sustain it [32].

These findings, indicating a maternal factor in the etiology of NTDs, may explain the higher

frequency of female connecting relatives in families with more than one NTD affected individ-

uals [36]. Deak et al. [36] observed a highest proportion of affected among third degree rela-

tives, or mother’s sister’s children than among proband’s siblings. They hypothesize about a

genetic model including a single dominant gene with reduced penetrance, where the child’s

sex, genomic imprinting patterns, methylation status, and folate supplementation could mod-

ulate the segregation of NTD in these families [36].

The third theory refers to the multifactorial etiology of NTDs [2, 7, 37] involving both

genetic and environmental factors. According to the multiple threshold model [8], NTDs,

being more prevalent in females, suggest a double threshold where males, possibly with a

greater genetic load than females, are less liable to environmental factors. Evans [28] consid-

ered that the proportionately greater reduction of affected females after folic acid fortification

could, among other possible explanations, be due to their greater liability to environmental

factors.

On the other hand, NTDs are often lumped into and analyzed as one single category,

despite their demonstrated etiological heterogeneity [29, 37]. It can be expected that their het-

erogeneous nature will reflect in a number of characteristics, including different SRs according

to the anatomical site of the defect. Data from the literature, as well as our own have not only

shown that anencephaly and cervico-thoracic spina bifida have a stronger female predomi-

nance than lower defects, but even that the latter could be more frequent in males [38–40].

Nevertheless, a certain homogeneity seems to exist among some subtypes, as suggested by the
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greater female predominance in anencephaly and cervico-thoracic spina bifida, as well as by

their similarly stronger response to folic acid fortification.

To date and to our knowledge this is the first study on the differential effect of folic acid on

males and females, using a specifically developed methodology.

We propose that folic acid exerts its protective effect through at least two different mecha-

nisms; because if the mechanism were the same for males and females, the NTD reduction

after fortification would probably be similar for both.

One mechanism, acting in females, has a stronger effect, and could perhaps be related to

the epigenetic X-inactivation theory. Another or more than one and possibly weaker mecha-

nism may act in both males and females through any of the many other pathways where folic

acid is involved. The markedly steeper reduction for females than for males shown in Fig 2

could reflect this differential effect, while the final plateau, at an equal level for both sexes,

might represent a remaining group of NTD cases, no longer susceptible to folic acid. It has

been estimated that about one third of NTDs may be folic acid resistant [37], which approxi-

mately corresponds to the final rate at the plateau level.

Strengths and weaknesses

This study was developed in the framework of the ECLAMC program, based on a large sample

size, standardized forms, and criteria that allowed the comparison between time periods

within and between countries. Interviews were conducted by a qualified and experienced team

from a large South American hospital-based network. Descriptions of congenital anomalies

were reviewed by expert geneticists who established criteria for inclusion and exclusion of

cases. Biases in the definition of sex for each case were not expected because of the high obser-

vational value of this variable.

Nevertheless, and despite the sample size, we were only able to detect sex ratio changes of at

least 25%. Biases in exposure to folic acid were also expected. The information was acquired

through an ecological design where ecological fallacies, such as uncertainty regarding the

doses used at an individual level, cannot be ruled out. Therefore, we defined two periods, with

and without fortification, and incorporated a country without national policies of folic acid

fortification as control.

Conclusions

Up to date and to our knowledge, the sex-specific effect of folic acid on the prevalence of

NTDs has not been explored.

Our results indicate that the prevalence of NTDs, mainly anencephaly and cervico-thoracic

spina bifida, showed a greater reduction and at a faster rate in females than in males after folic

acid fortification, reinforcing the concept of etiological heterogeneity of NTDs.

Furthermore, some of the proposed sex-related mechanisms involved in the prevalence

reduction of NTDs might be useful to identify the pathogenesis of these defects as a whole and

especially in cases susceptible to the protective effect of folic acid.

Supporting information

S1 Database. Entire database including raw data to replicate all analyses. Number of cases

and total births are tabulated by country, year, hospital and sex; and sorted by: "country + year

+ hospital + sex". (File name: S1_Database.txt; text file delimited by tab; 13 variables; 1,546 reg-

istries).
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S2 Database. Supporting information file. Supporting information file (S2_Database_Supp-

File.pdf) with a complete description of database structure and variables.

(PDF)
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