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INTRODUCTION

Activation of the immune system for cancer therapy 
has long been a goal in immunology and oncology [1, 2], 
and a recent breakthrough in cancer immunotherapy is 
the immunologic checkpoint blockade [3, 4]. One of the 
checkpoint receptors that have been most actively studied 
in the context of clinical cancer immunotherapy is PD-1 
(or CD279) [5, 6], which participates in a dominant 
immunosuppressive pathway. PD-1 has two cognate 
ligands: PD-L1 (CD274, B7-H1) and PD-L2 (CD273, B7-
DC) [7, 8]. Under normal conditions, binding of PD-1 to its 
ligands can deliver inhibitory signals to regulate the balance 
between T cell activation, tolerance and immunopathology 
[9]. However, tumor cells often overexpress PD-1 ligands 
to limit T cell activity and evade antitumor immune 
responses [10, 11]. Therefore, blocking the pathway 
of PD-1 and its ligands can significantly enhance T cell 
functions and thus eliminate cancers [12–14].

Compared with PD-L2, PD-L1 is expressed more 
widely, and blockade of PD-1/PD-L1 interaction is 
more frequently targeted by therapeutic agents [11, 15]. 
Initially, modulators blocking the PD-1/PD-L1 pathway 

are antibodies, such as Nivolumab, Pembrolizumab, 
MPDL3280A and MEDI4736 [16–21]. However, 
antibody drugs always have some issues including the 
high production cost, unexpected immunogenicity and 
bad tissue penetration [22]. Therefore, it is interesting 
to develop chemical or peptide-like molecules to block 
the PD-1/PD-L1 interaction, which hopefully provides 
alternative drug candidates to overcome the drawbacks 
of antibody-based immunotherapies. Several peptides 
and small organic compounds targeting PD-L1 have been 
reported [23, 24]. However, there is no successful report 
about low-molecular weight modulators targeting PD-1. 
Herein we wish to develop peptide inhibitors targeting 
human PD-1. 

Basing on a de novo peptide design method, 
we designed some peptide ligands of hPD-1 with the 
most potent peptide Ar5Y_4 showing a KD value of 
1.38 ± 0.39 μM that was comparable to the KD value of 
the cognate hPD-L1. Moreover, Ar5Y_4 can effectively 
inhibit the binding of hPD-L1 to hPD-1 validated by a 
SPR competitive binding assay and restore the function 
of suppressed Jurkat T cells. The peptide design method 
is motived by the well-known theory of hotspots [25– 28], 
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ABSTRACT
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which only requires a scaffold fragment library and some 
key anchor residues as its starting points and can be 
applied to design peptide ligands targeting any PPIs. The 
outline of the de novo peptide design method is illustrated 
in Figure 1. Peptides discovered in this paper can be 
utilized as the starting points for further leads optimization 
of hPD-1.

RESULTS

De novo design peptide ligands of hPD-1 

We developed a computational method to design 
peptide ligands of hPD-1 with residues Y56, R113, 
A121, D122 and Y123 of hPD-L1 (Protein Data Bank 
(PDB) [29] code: 4ZQK [30]) as key anchors. These five 
residues have a great impact on the binding of hPD-L1 to 
hPD-1. Scaffold fragment library is composed of 109,805 
helixes and 123,230 strand fragments, which is used for 
providing scaffold fragments to graft the selected key 
anchors. Limited by positions of the five anchors and 
structural features of scaffold fragments, 31 strands and 
56 helices were selected from the scaffold library to bear 
the combination of anchors A121, D122 and Y123 and 

the combination of anchors Y56 and R113, respectively, 
which formed 513 scaffold pairs. The 513 scaffold pairs 
were subsequently remodeled and refined into continuous 
peptides, and 4 peptides were selected and chemically 
synthesized for further biochemical validation finally. The 
detail information of these 4 selected peptides is shown 
in Table 1.

SPR-based binding studies on designed peptides 
and hPD-1 

The SPR based assay was used to measure the 
binding affinities of designed peptides and hPD-1. Firstly, 
we checked the binding affinity of hPD-L1 to hPD- 1 
aiming to confirm that the immobilized hPD-1 was 
functional. Our measurement showed that the binding 
of hPD-L1 to hPD-1 had a KD value of 1.15 ± 0.11 μM 
(Supplementary Figure S2), comparable to the previous 
reports [23]. Therefore, the immobilized hPD-1 could be 
used to measure the binding affinities of designed peptides 
and hPD-1. The SPR binding assay results of the four 
designed peptides are shown in Table 1 and Supplementary 
Figure S3. All the KD values of four peptides are no bigger 
than 5 μM and the most potent peptide Ar5Y_4 has a 

Figure 1: Schematic representation of workflow for de novo peptide design.
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KD value of 1.38 ± 0.39 μM, indicating that the de novo 
peptide design method is capable of designing peptide 
ligands of hPD-1 with detectable affinities.

Peptide Ar5Y_4 inhibits the binding of hPD-L1 
to hPD-1 

Among the four designed peptides, peptide Ar5Y_4 
has the highest binding affinity validated by the SPR direct 
binding assay, representing the most potent hPD-1 binding 
peptide. The in vitro activity of Ar5Y_4 was further 
confirmed by a SPR competitive binding assay. Pre-
incubated mixtures of hPD-1 and various concentrations 
of Ar5Y_4 were injected over the sensor chip on which 
the hPD-L1 was immobilized. As shown by the RU 
values in Figure 2, increasing concentrations of Ar5Y_4 
lead to decreasing SPR signals, indicating that Ar5Y_4 
could effectively inhibit the binding of hPD-L1 to hPD- 1. 
Therefore, peptide Ar5Y_4 is a promising inhibitor and 
can be utilized as the starting point for further leads 
optimization.

Effect of peptide Ar5Y_4 on IL-2 production of 
Jurkat T cells

Cytokine production is an important indicator 
for T-cell function evaluation. To investigate whether 
peptide Ar5Y_4 can restore the suppressed function of 
Jurkat T cells, we assessed the T cells production of IL-2 
by ELISA. Jurkat T cells can be stimulated and induce 
the expression of hPD- 1. Meanwhile, HCT116 cells 
can upregulate the expression of hPD-L1 after being 
stimulated by IFN-γ (Figure 3A). The activated Jurkat 
T cells production of IL-2 decreases significantly when 
Jurkat T cells are co- cultured with IFN-γ pretreated 
HCT116 cells (Figure 3B). HCT116 cells can suppress 
the function of Jurkat T cells attributing to the binding of 
hPD-L1 to hPD-L1. Figure 3B shows that the addition of 
250 μM peptide Ar5Y_4 restores 67% of the Jurkat T cells 
production of IL-2. Therefore, peptide Ar5Y_4 can restore 
the suppressed function of Jurkat T cells by blocking the 
interaction of hPD-1 and hPD-L1.

DISCUSSION

Peptides targeting PPIs show high binding affinity 
and specificity considering the interfacial features of PPIs 
[31, 32]. Taking advantage of a de novo peptide design 
method, we successfully designed peptide ligands of 
hPD- 1. All the four selected peptides show micromolar 
binding affinities, and the SPR competitive assay validates 
that the most potent peptide Ar5Y_4 could inhibit the 
binding of hPD-L1 to hPD-1. Furthermore, Ar5Y_4 
could restore the function of suppressed Jurkat T cells. To 
generate the putative binding mode of Ar5Y_4, a 50 ns 
MD simulation was conducted with the designed model 
of Ar5Y_4 in complex with hPD-1 as the initial structure 
(Figure 4A). 

In the predicted MD simulation model, almost 
all the key interactions between Ar5Y_4 and hPD-1 are 
conducted by the five anchor residues (W3, D4, Y5, R9 
and Y13) in Ar5Y_4 (Figure 4B): salt bridges (D4-K78 
and R9-E136), hydrogen bonds (W3-K78, W3-E84, Y5-
E136, R9-Y68 and R9-E136) and some hydrophobic 
packing (Y5-Y68, Y5-I126, Y5-I134, Y13-A132 and 
Y13-I134). To investigate whether anchor residues 
contribute to the binding affinity of Ar5Y_4 and hPD-1 
as the modeled structure suggested, experimental alanine 
mutations were performed by mutating these anchor 
residues to alanine, respectively. Table 2 shows the KD 
values of Ar5Y_4 mutants measured by the SPR binding 
assay (Supplementary Figure S4). The five Ar5Y_4 
mutants show reduced binding affinities to hPD-1, 
indicating that anchor residues in Ar5Y_4 do contribute 
significantly to the binding affinity.

It should be noted that the RU values of our SPR assay 
results are not very high and the curves are not very smooth. 
However, it does not mean that the SPR assay results are 
unreliable. Recently, in 2015, Chang et al. [23] designed 
some D-peptide antagonists of hPD-L1, and the RU values 
of their SPR assay results were not very high. The low RU 
values and rough SPR binding curves can be attributed to the 
unstable structures of designed peptides. Though we used a 
helix fragment to construct the designed peptide, the helical 
region may be too short to maintain the stable secondary 

Table 1: Amino acid sequence, molecular weight, purity and experimentally determined KD value 
of four selected peptides

Peptidea Sequenceb MW (g/mol)c Purity (%)d KD (μM)e

Ar5Y_1 FNWDYSWKSERLKEAYDL 2350.59 96.66 3.39 ± 0.85
Ar5Y_2 FNWDYSLEELREKAKYK 2219.50 95.80 3.14 ± 0.92
Ar5Y_3 TEKDYRHGNIRMKLAYDL 2223.56 96.71 3.13 ± 0.45
Ar5Y_4 GNWDYNSQRAQLYNQ 1856.94 98.24 1.38 ± 0.39

aAr5Y_1, Ar5Y_2, Ar5Y_3 and Ar5Y_4 are the four selected peptides designed with anchor residues Y56, R113, A121, D122 
and Y123. bAnchor residues are underlined, residues corresponding to anchor residue A121 are in bold. cCalculated by mass 
spectrometry (MS). dDetermined by HPLC. eKD value is shown as the mean ± SD from three independent experiments. 
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Table 2: Molecular weight, purity and experimentally determined KD value of the five Ar5Y_4 mutants
Mutant MW (g/mol)a Purity (%)b KD (μM)c

W3A 1741.81 97.56 8.08 ± 0.08
D4A 1812.93 95.18 18.94 ± 1.10
Y5A 1764.85 96.76 20.15 ± 0.98
R9A 1771.83 96.65 21.20 ± 1.56

Y13A 1765.85 98.91 10.23 ± 1.35
aCalculated by mass spectrometry (MS). bDetermined by HPLC. cKD value is shown as the mean ± SD from three independent 
experiments.

Figure 2: SPR competitive binding curves with increasing Ar5Y_4 concentrations (0 μM, 0.098 μM, 0.39 μM, 1.56 μM, 
6.25 μM) with hPD-L1 immobilized on the sensor chip for investigating the ability of Ar5Y_4 blocking the interaction 
of hPD-1 and hPD-L1. Pre-incubation of Ar5Y_4 with hPD-1 effectively inhibits the binding of hPD-L1 to hPD-1.

Figure 3: (A) Western blot analysis of the expression of hPD-L1 in HCT116 cells before and after being stimulated by human 
IFN-γ. (B) Effect of peptide Ar5Y_4 on IL-2 production of Jurkat T cells. The addition of IFN-γ pretreated HCT116 cells makes the Jurkat 
T cells production of IL-2 decrease significantly, while the addition of 250 μM peptide Ar5Y_4 could restore 67% of IL-2 production. 
Anti-PD-1 blocking antibody is used for reference. Results are the representative of three independent experiments. *P < 0.05; **P < 0.01; 
***P < 0.001, data is analyzed using Student’s t-test.
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structure, which had been validated by a circular dichroism 
spectra experiment (relevant data is not shown in this article). 

As stated above, using the combination of anchors 
Y56, R113, A121, D122 and Y123, we successfully 
designed hPD-1 binding peptides. But whether this 
combination is the optimal choice for designing peptide 
ligands of hPD-1? To investigate this question, we 
designed some additional peptides with three other 
combinations: (1) A121, D122 and Y123; (2) R113, 
A121, D122 and Y123; (3) R113, M115, A121, D122 
and Y123. In each scenario, two peptides were selected 
for chemical synthesis and subjected to the SPR binding 
assay (Supplementary Figure S5). Detail information of 
representative peptides is described in Table 3. 

In the case of using residues A121, D122 and 
Y123 as anchors, the representative design is Ar3_1 with 
a sequence of WDYD. Ar3_ref is the reference oligo-
peptide extracted from residues 121 to 124 of hPD-L1 
(sequence: ADYK). Interestingly, Ar3_1 binds to hPD- 1 
more tightly (KD = 22.35 ± 0.34 μM) than Ar3_ref 
(KD = 370.40 ± 2.92 μM), which can be attributed to 
the large aromatic side chain of tryptophan in Ar3_1 
that increases the binding affinity of Ar3_1 and hPD-
1 greatly. Ar4_1 and Ar4_2 are peptides designed with 
anchors R113, A121, D122 and Y123, from which the 
removal of anchor Y56 reduces the binding affinities a 
lot. According to the hotspot prediction results, residue 
M115 in hPD-L1 is also predicted as a hotspot, which 
we do not show in this article. Ar5M_1 and Ar5M_2 
are representative peptides designed with anchor 
residues R113, M115, A121, D122 and Y123. Though 

Ar5M_1 and Ar5M_2 share same anchors, their KD 
values are different greatly (21.60 ± 1.03 μM and 3.32 
± 0.67 μM, respectively). The residue behind residue 
M9 corresponding to anchor M115 in Ar5M_2 is a 
tyrosine (Y10), which can make Ar5M_2 be regarded 
as a peptide designed with anchor residues Y56, R113, 
A121, D122 and Y123. Thus, from this perspective, the 
combination of anchors R113, M115, A121, D122 and 
Y123 is inferior to that of Y56, R113, A121, D122 and 
Y123. Overall, comparing with three other combinations, 
the combination of Y56, R113, A121, D122 and Y123 is 
the optimal hotspots for hPD-1 binding peptides design. 
Anchor residues used in the peptide design method 
are the most important factor determining the binding 
affinity, providing key interaction of the designed peptide 
binding to receptor protein. 

In summary, using the de novo peptide design 
method, we designed some hPD-1 binding peptides with 
five identified residues Y56, R113, A121, D122 and 
Y123 derived from cognate ligand hPD-L1 as anchors. 
The computational peptide design method which only 
requires a scaffold fragment library and some key anchor 
residues as its starting points is practical and successful 
in designing hPD-1 binding peptides. The most potent 
peptide Ar5Y_4 shows an equivalent binding affinity 
of hPD-L1 and could inhibit the binding of hPD-L1 to 
hPD-1, providing a promising starting point for further 
optimization of hPD-1 peptide inhibitors. Moreover, the 
de novo peptide design method described here can be 
generally used to design peptide ligands targeting any PPIs 
guided by appropriate anchor residues.

Figure 4: MD simulation results of peptide Ar5Y_4 in complex with hPD-1. (A) Time-course of RMSDs of backbone atoms 
against the initial designed structure of Ar5Y_4 in complex with hPD-1. (B) Binding model of Ar5Y_4 with hPD-1 predicted by MD 
simulation. hPD-1 is represented by palegreen surface and residues in hPD-1 that are important for the interaction are shown as green lines; 
Peptide Ar5Y_4 is shown in cyan cartoon and all residues in Ar5Y_4 important for the interaction are depicted as yellow lines. Hydrogen 
bonds are depicted as red dashed lines.
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MATERIALS AND METHODS

Computational peptide design 

The computational de novo peptide design method 
can be divided into four stages: (i) key anchor residues 
identification and scaffold library construction; (ii) 
scaffold screening to identify scaffold fragments which 
the selected anchor residues can be transferred onto; 
(iii) sequence design and structure refinement, in which 
some protocols of Rosetta molecular modeling package 
[33, 34] are used to fulfill the work of peptide design and 
optimization, including Kinematic loop modeling [35, 36], 
Backrub [37] and Relax [38]; (iv) designs ranking and 
selection for experimental validation. 

Scaffold library construction and anchor 
residues identification

The peptide scaffold library is composed of helix 
and strand fragments. The reason that we use helices 
and strands which can form sheets with other strands to 
construct the designed peptides is that they are stable in 
structural relatively (Supplementary Table S1). All the 
scaffold fragments were extracted from 22,912 protein 
crystal structures in the PDB. The detail process of 
scaffold library preparation can be found in Supporting 
Information (Supplementary Figure S1). Anchor residues 
can be either identified by experimental approach like 
alanine-scanning mutagenesis [26] or computational 
prediction methods (Robetta [39], KFC2 [40], PredHS 
[41], HotPoint [42], MM/PB(GB)SA [43], FoldX [44] 
and so on). In this study, the crystal structure of hPD-1/
hPD-L1 complex (PDB code: 4ZQK) [30] was used as the 
input structure and three in silico hotspot prediction tools: 
Robetta, KFC2 and PredHS were used to determine the 
anchor residues that could be used for designing hPD- 1 
binding peptides. According to the predicted results, 

interfacial residues Y56, R113, A121, D122 and Y123 
in hPD-L1 were selected as key anchors (Supplementary 
Figure S6, Supplementary Table S2), which corresponded 
to the previous structural analysis [30]. 

Scaffold fragments screening and identification

Each scaffold fragment in the scaffold library was 
superposed onto the aforementioned anchor residues 
to minimize the root-mean-square deviation (RMSD) 
between the corresponding Cα and Cβ atoms of any 
scaffold fragment and anchor residues using the Cealign 
algorithm [45] in Pymol [46], and a scaffold fragment 
was kept only if the RMSD was smaller than 2.0 Å. Then 
original residues at the superposed positions of selected 
scaffold fragments were replaced by the corresponding 
anchor residues. During the process of residue mutations, 
we did a special treatment to anchor residue A121 
considering that its side-chain is a methyl group. Original 
residues in scaffold fragments which were superposed 
onto anchor residue A121 were kept in order to introduce 
extra interactional types except backbone hydrogen bond 
at this position observed in the structure of hPD-1/hPD-L1 
complex.

Potential scaffold fragment candidates that can 
be used to construct peptides were identified after the 
process of scaffold fragment alignment and anchor residue 
mutation. Influenced by structural features of scaffold 
fragments and relative positions of anchors Y56, R113, 
A121, D122 and Y123, a single scaffold fragment was 
unable to bear all the five selected anchors. Therefore, 
we used two scaffold fragments to bear them. For 
convenience, the two fragment combination is referred to 
as “scaffold pair” in the following part. It should be noted 
that not every retrieved scaffold pair can be used for the 
reason that they may have steric clashes with the receptor 
protein or each other. Therefore, it is necessary to conduct 
a steric clash filter to remove those steric incompatible 

Table 3: Peptides designed with additional anchor combinations
Peptidea Sequenceb MW (g/mol)c Purity (%)d KD (μM)e

Ar3_ref ADYK 495.54 95.17 370.40 ± 2.92
Ar3_1 WDYD 597.59 98.40 22.35 ± 0.34
Ar4_1 GIDYEERWK 1195.31 95.14 28.28 ± 0.91
Ar4_2 LDYDGRLSQ 1066.14 96.46 83.90 ± 1.90

Ar5M_1 LDYGDKREGQMAE 1511.64 98.81 21.60 ± 1.03
Ar5M_2 LDYVNRRKMYQ 1485.74 96.08 3.32 ± 0.67

Amino acid sequence, molecualr weight, purity and experimentally determined KD value are listed.
aAr3_1 is designed with anchor residues A121, D122 and Y123, and Ar3_ref is the reference extracted from residues 121 to 
124 of hPD-L1; Ar4_1 and Ar4_2 are peptides designed with anchor residues R113, A121, D122 and Y123; Ar5M_1 and 
Ar5M_2 are designed with anchor residues R113, M115, A121, D122 and Y123. bAnchor residues are underlined, residues 
corresponding to anchor residue A121 are in bold. cCalculated by mass spectrometry (MS). dDetermined by HPLC. eKD value 
is shown as the mean ± SD from three independent experiments. 
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scaffold pairs, on condition that the distance of any two 
heavy atoms from two different fragments is smaller than 
the sum of their van der Waals radii scaled by 0.75.

Sequence design and structure refinement

For the matched scaffold pair, there was a backbone 
discontinuity between them. To make the scaffold pair 
be a continuous peptide, we used a backbone building 
strategy that performed oligo-peptide segment insertion 
and Kinematic loop modeling [35, 36] step. The newly 
built connecting segment was further optimized through 
sequence design and structure minimization with the 
Backrub [37] module. The detail of this implementation 
can be found in Supporting Information.

Designs ranking and selection

The resulting peptides in complex with hPD-1 were 
refined using Rosetta’s Relax [38] module and scored 
using InterfaceAnalyzer module of Rosetta. According 
to the interface sores calculated by the InterfaceAnalyzer 
module, better designed peptides were selected and 
subjected to visual inspections aiming to filter designs 
with no regular secondary structures or anchor residues’ 
side-chain orientations deviating greatly from the initial 
defined positions. Of the remaining designed peptides, 
some contained hydrophobic residues in positions that 
were primarily solvent-exposed. In most cases, these 
residues were replaced by performing fixed backbone 
design, allowing only polar amino acids.

Molecular dynamics (MD) simulation 

The designed model of peptide Ar5Y_4 in complex 
with hPD-1 served as the initial structure for MD simulation 
using AMBER14 [47]. The complex was solvated by TIP3P 
explicit waters [48] and counter ions were added to the 
cubic boxes. The system was minimized by steepest descent 
method for the first 40,000 steps, and conjugate gradient 
algorithm for another 20,000 steps. After minimization, the 
system was gradually heated from 0 to 300 K in 50 ps at 
constant volume and equilibrated at 300 K for another 50 
ps, followed by 4 ns equilibration in the NPT ensemble. 
Finally, a 50 ns MD simulation without any restriction was 
performed at constant pressure, and the coordinates of atoms 
were saved every 1 ps. During the simulation, the SHAKE 
algorithm [49] was applied to constraint all bonds involving 
hydrogen atoms, and a time step of 2 fs was adopted. The 
Langevin thermostat [50] was used to control temperature 
and the Particle Mesh Ewald (PME) method [51] was 
applied to treat the long-range electrostatic interactions. 
The cutoff of distances for the long-range electrostatic 
and van der Waals energy terms was set to 10.0 Å. Upon 
completion, the output trajectory was visually inspected, 
along with the root-mean-square deviations (RMSDs) 
trace of the complex. The corresponding coordinate sets 

of the MD trajectory from the last 1 ns were averaged and 
minimized as the final MD predicted complex model.

Protein expression and purification 

The DNA sequence coding the extracellular 
region of hPD-1 (amino acids 34–150) was cloned 
into the pET28a vector between NCoI and NdeI sites. 
Recombinant hPD-1 was expressed in E.coli BL21 
(DE3) cells. Cells were cultured in TB medium at 
37°C until an optical density at 600 nm of 0.5–0.6 was 
reached, and then induced with 0.5 mM isopropyl β-D-
1-thiogalactopyranoside at 37°C for 5 hours. The cells 
were pelleted at 4000 rpm for 30 minutes, and the pellets 
were suspended and lysed in the lysis buffer (50 mM Tris-
HCl, pH 8.0, 50 mM NaCl, 1 mM DTT, 0.5 mM EDTA, 
5% glycerol, 0.5% Triton X-100). Inclusion bodies were 
recovered by centrifugation (12,000 rpm for 30 minutes), 
and washed 3 times with 20 mM Tris-HCl, pH 8.0, 2 M 
urea, 2.5% Triton X-100. The inclusion bodies were 
finally solubilized in 20 mM Tris-HCl pH 8.0, 8 M urea. 
The solubilized hPD-1 was refolded by rapid dilution 
into 50 mM Tris-HCl, pH 8.0, 500 mM L-Arg, 24 mM 
NaCl, 1 mM KCl, 1 mM EDTA under magnetic stirring 
for 24 h. The refolding mixture was then concentrated 
and purified by a HiTrap SP FF cation exchange column 
(GE Healthcare) and a Superdex 75 gel filtration column 
(GE Healthcare). The purity of the refolded hPD-1 was 
evaluated by SDS-PAGE.

Surface plasmon resonance analysis 

Peptides were synthesized via the Fmoc protected 
amino acid solid-phase synthesis method [52], and the 
purities were bigger than 95%. The binding affinities 
between hPD-1 and designed peptides or hPD-L1 (Sino 
Biological Inc. #10084-H08H-200) were assayed using 
a surface plasmon resonance based biosensor instrument 
(Biacore T200, GE Healthcare, Sweden). The purified 
active hPD-1 was diluted in 10 mM sodium acetate buffer 
(pH 4.5) to the final concentration of 50 μg/ml. The 
diluted hPD-1 was immobilized on a CM5 sensor chip 
by amino coupling reagent kit, and the immobilization 
level was 5000 response unit (RU). Binding experiments 
were performed in PBS-P buffer (8 mM Na2HPO4, 2 mM 
KH2PO4, 137 mM NaCl, 2.7 mM KCl, 0.005% surfactant 
P20, pH 7.4) at 25°C with a flow rate of 30 μl/min. To 
determine the binding affinities of designed peptides 
(or hPD-L1) and hPD-1, gradient concentrations of 
peptides or hPD-L1 were injected into the channel for 
90 s, followed by disassociation for 120 s. RU values 
were collected and all the experimental data was globally 
analyzed by a steady-state model within Biacore T200 
Evaluation software, version 2.0.

A competitive SPR binding study was performed 
to test whether the designed peptide could inhibit the 
hPD-1/hPD-L1 interaction. The purchase hPD-L1 with 
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a concentration of 50 μg/ml was immobilized on a CM5 
sensor chip, and the immobilization level was 3780 RU. 
1 μm hPD-1 was incubated for 30 min with various 
concentrations of the designed peptide in PBS-P buffer 
(8 mM Na2HPO4, 2 mM KH2PO4, 137 mM NaCl, 2.7 mM 
KCl, 0.005% surfactant P20, pH 7.4). The mixtures with 
various concentrations of the designed peptide were then 
injected over the chip under the same condition that was 
used for the SPR direct binding study.

Cell lines 

Human colon carcinoma cell lines HCT116 and 
human Jurkat T cells were purchased from The American 
Type Culture Collection (ATCC) and used for in vitro 
experiments. They were cultured in RPMI-1640 medium 
containing 10% fetal bovine serum (FBS) and grown in 
5% CO2 at 37°C.

Cell stimulation 

HCT116 cells were grown to about 80% confluence 
and stimulated with 500 U/ml recombinant human IFN-γ 
(Novoprotein Scientific Inc. #C014) for 48 hours. The 
expression of hPD-L1 in HCT116 cells was detected by 
Western Blot before and after being stimulated. Jurkat T 
cells were stimulated with 200 ng/ml PHA and 10 ng/ml 
PMA. 

Detection of IL-2 production in Jurkat T cells 

HCT116 cells and Jurkat T cells were co-cultured in 
the presence or absence of additives (10 μg/ml anti-PD-1 
mAb (eBioscience #16–9989) or 250 μM peptide Ar5Y_4) 
in complete RPMI-1640 medium for 24 hours. Jurkat T 
cells alone were used as the reference. Supernatants 
were harvested and assessed for IL-2 by ELISA (Thermo 
scientific #EH2IL2).

Abbreviations

hPD-1, human programmed death 1; hPD-L1, 
human programmed death ligand 1; hPD-L2, human 
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