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Abstract

How can we analyze large graphs such as the Web, and social networks with hundreds of

billions of vertices and edges? Although many graph mining systems have been proposed

to perform various graph mining algorithms on such large graphs, they have difficulties in

processing Web-scale graphs due to massive communication and I/O costs caused by com-

munication between workers, and reading subgraphs repeatedly. In this paper, we propose

FlexGraph, a scalable distributed graph mining method reducing the costs by exploiting

properties of real-world graphs. FlexGraph significantly decreases the communication cost,

which is the main bottleneck of distributed systems, by exploiting different edge placement

policies based on types of vertices. Furthermore, we propose a flexible storage format to

reduce I/O costs when reading input graph repeatedly. Experiments show that FlexGraph

succeeds in processing up to 64× larger graphs than existing distributed memory-based

graph mining methods, and consistently outperforms previous disk-based graph mining

methods.

Introduction

How can we analyze enormous networks like the Web and social networks which have hun-

dreds of billions of vertices and edges? Graph mining algorithms such as shortest path compu-

tation, PageRank, connected component computation, and random walk with restart enable

many network analyses. Much effort has been devoted to developing scalable distributed

graph processing systems that provide simple primitives to represent such graph mining algo-

rithms [1–5]. Due to the simplicity of the primitives, the systems have been used in numerous

applications such as radius estimation [6, 7], spectral analysis [8, 9], pattern recognition [10],

recommender systems [11], community detection [12, 13], visualization [14, 15], and cluster-

ing [16].

Most of the distributed graph mining systems, however, have problems in handling a very

large graph because of massive communication and I/O costs. The massive communication

cost is the main factor impeding the scalability of distributed graph mining systems, which are

grouped into memory-based and disk-based ones. Memory-based systems including Pregel
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[4], PowerGraph [5], and GraphX [17] load input graph into distributed memory, and com-

municate through the memory directly. If the graph and the intermediate data for communi-

cation do not fit into the distributed memory, the systems will fail. Disk-based systems such as

Hama [18], and PEGASUS [1] increase their scalability by exploiting distributed file systems

like HDFS [19] along with local file system of each machine. However, these systems also can-

not handle very large graphs as they require a lot of communication through network and disk

I/Os, which are well-known causes of performance degradation. There have also been attempts

to reduce the communication cost to increase the scalability like UNICORN [20], Hybrid-

Graph [21], and Pregelix [22], but they focus only on the communication cost; they have other

performance bottlenecks like inefficient data structures for loading graph, and fail to process

enormous graphs. Thus, it is desired to shrink the I/O cost in designing a distributed graph

mining system.

In this paper, we propose FlexGraph, a new scalable graph processing method on distrib-

uted systems, utilizing real-world graph properties to reduce communication and I/O costs

dramatically. FlexGraph has two main ideas, flexible edge placement and storage format, to

reduce the communication cost and the I/O cost caused by inefficient data format. We observe

that a large portion of the communication cost is caused by high degree vertices. Our method

processes data from high degree vertices on the same machine so that a large amount of data

can be aggregated before communication. Furthermore, our method exploits a flexible storage

format which is an efficient storage format for partitioned subgraphs, to reduce I/O cost

caused by loading graphs in iterative computation. Thanks to the significantly reduced costs,

FlexGraph succeeds in processing billion-scale graphs, which all other state-of-the-art distrib-

uted systems fail to process. Our main contributions are as follows:

• Method. We propose FlexGraph, a new scalable distributed graph mining system, which

dramatically reduces the communication cost by specially handling high-degree vertices. We

apply an efficient storage format to further reduce the I/O cost caused by loading subgraphs

repeatedly.

• Cost analysis. We give theoretical analyses of the proposed method in terms of the commu-

nication cost.

• Performance. We empirically evaluate FlexGraph using both large real-world and synthetic

networks. We emphasize that only our system succeeds in processing ClueWeb12, the largest

public graph, which has 6 billion vertices and 71 billion edges.

The rest of the paper is organized as follows. We review existing large-scale graph process-

ing systems, discuss communication and I/O costs of distributed graph processing systems,

and introduce the GIM-V primitive. We then describe the proposed method FlexGraph in

detail. After showing experimental results, we conclude this paper. The symbols frequently

used in this paper are summarized in Table 1. The codes and datasets used in this paper are

publicly available at https://github.com/snudatalab/FlexGraph.

Background and related work

In this section, we first review representative graph processing systems, and show their limita-

tions on scalability. Then, we discuss communication and I/O costs of the distributed graph

mining systems according to graph partitioning schemes and storage formats. Finally, we

introduce the details of the GIM-V primitive focusing on the matrix-vector representation for

graph algorithms.

FlexGraph: Flexible partitioning and storage for scalable graph mining
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Large-scale graph processing systems

Large-scale graph processing systems perform various graph algorithms on directed graphs con-

taining many vertices and edges. The systems can be classified into three groups: single-machine

based systems, memory-based distributed systems, and disk-based distributed systems.

Single-machine graph mining systems [23–26] handle large graphs with external-memory

(i.e., disk) and optimize disk I/O cost to achieve high performance. Some single-machine sys-

tems [27–29] use specialized hardwares like NVMe SSDs or GPUs to improve performance.

However, all of these systems have limited scalability as they use only a single machine.

A typical approach to handle large-scale graphs is using memory on distributed workers.

Recently, several memory-based distributed graph processing systems have been proposed:

Pregel [4], PowerGraph [5], GraphX [17], Presto [30], PowerLyra [31], GraphFrames [32], and

GRAPE [33, 34]. Even though these distributed-memory systems achieve faster performance

than single-machine systems do, they cannot process graphs larger than the size of the distrib-

uted memory. As reported by Sahu et al [35], facing performance degradation or out-of-mem-

ory error is a common challenge of memory-based distributed systems.

To overcome this limitation, some graph processing systems provide out-of-core support

using disks of distributed workers. Pregelix [22] succeeds in processing graphs whose sizes

exceed the distributed-memory size by exploiting multiple join operations and out-of-core

support of Hyracks [36], a general data processing engine. However, in our experiments, Preg-

elix fails to process graphs with highly skewed degree distribution due to space overhead of

join index structures. HybridGraph [21] stores the input graph and the intermediate data on

disks for better scalability. However, the performance of these systems is degraded because of

two main reasons: they suffer from massive disk I/Os caused by an inefficient storage format

for the partitioned subgraphs in local file system, and they do not fully exploit memory space

in each worker. MapReduce-based systems have been also proposed as MapReduce [37] is a

scalable disk-based distributed processing framework. PEGASUS [1] and GBASE [38, 39] are

representative MapReduce-based graph mining libraries based on a generalized matrix-vector

Table 1. Table of symbols.

Symbol Description

v Vector, or set of vertices

θ Degree threshold to divide low and high out-degree vertices

out(p) Set of out-neighbors of a vertex p
b Number of vector blocks or vertex partitions

ψ Vertex partitioning function: p! {1, . . ., b}

vi i-th element of v
v(i) Set of vector elements (p, vp) where ψ(p) = i

vðiÞs Set of vector elements (p, vp) 2 v(i) where |out(p)| < θ

vðiÞd Set of vector elements (p, vp) 2 v(i) where |out(p)|� θ

|v| Number of non-zero elements in v
M Matrix, or set of edges; each column and row represent a source and a destination vertex, respectively.

mi,j (i, j)-th element of M
M(i,j) Set of matrix elements (p, q, mp,q) where ψ(p) = i and ψ(q) = j

Mði;jÞs Set of matrix elements (p, q, mp,q) 2M(i,j) where |out(q)| < θ

Mði;jÞd
Set of matrix elements (p, q, mp,q) 2M(i,j) where |out(q)| � θ

|M| Number of non-zero elements in M (= number of edges in a graph)

� User-defined matrix-vector multiplication

https://doi.org/10.1371/journal.pone.0227032.t001
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multiplication. SGC [40] is another MapReduce-based system exploiting two join operations,

namely NE join and EN join. The MapReduce-based systems, however, still have limited

scalability because they need to shuffle the input graph repeatedly. UNICORN [20] avoids

massive data shuffling by exploiting HBase, a distributed database system on Hadoop, but it

reaches another performance bottleneck, intensive random accesses to HBase.

Costs of distributed graph processing systems

Many distributed graph processing systems we discussed in the previous section have similar

processing steps. The systems first partition the graph into multiple subgraphs to spread the

work across multiple workers. Then, a graph program implemented on message passing primi-

tives is executed in parallel. The message passing primitives are used to represent graph algo-

rithms as iterative message passing among vertices; each vertex has its own value which is

updated by aggregating the values from the incoming neighbors at each iteration. The major

performance bottlenecks of distributed graph processing systems are: (1) communication cost

between workers, and (2) I/O cost to read the partitioned subgraphs.

Communication cost between workers. The communication cost between workers

depends on the graph partitioning methods. We introduce two representative graph partition-

ing methods: vertex-cut and edge-cut, and analyze communication patterns and costs of them.

Fig 1 shows examples of communication patterns using edge-cut and vertex-cut given the

graph in Fig 2. Both methods assign each vertex to a worker using vertex partitioning function.

In general, random hash function is used for the vertex partitioning function to achieve small

graph loading time. In the example, both edge-cut and vertex-cut assign vertices v1, v2, and v4

to worker 1 and assign vertices v3, v5, and v6 to worker 2. Edge-cut and vertex-cut assign edges

differently. Edge-cut splits a graph into subgraphs along edges by assigning an edge to the

worker where the source vertex (or the destination vertex) of the edge is assigned. Thus, there

are two types of edge-cut: source edge-cut and destination edge-cut. Fig 1a and 1b show exam-

ples of edge-cut when edges get together on source vertices (source edge-cut) or on destination

vertices (destination edge-cut). On the other hand, vertex-cut splits a graph into subgraphs

along vertices by assigning an edge to any worker regardless of where the two end vertices of

the edge are assigned. In Fig 1c, for example, edge (v5, v6) is assigned to worker 1 although its

connected vertices v5 and v6 are in worker 2.

Regardless of the partitioning methods, if an edge is assigned to a worker but a vertex inci-

dent to the edge is assigned to a different worker, we make a replica (i.e., mirror) of the vertex

Fig 1. Examples of communication patterns according to graph partitioning methods: Edge-cut and vertex-cut. Workers exchange two types of

messages: one for duplicating the value of a vertex to its mirrors and the other for copying the partially aggregated value of a mirror to its master. The

sum of all exchanged messages is the communication cost. Note that the edge-cut methods also create the mirrors to aggregate duplication/aggregation

messages from/to the same vertex even the edge-cut methods cut edges instead of vertices.

https://doi.org/10.1371/journal.pone.0227032.g001
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in the worker. For example in Fig 1a, we make a replica of v5 in worker 1 since edge (v4, v5) is

in worker 1 but vertex v5 is in worker 2. We call a vertex that is not a mirror a master.

Graph processing systems have different communication patterns depending on the graph

partitioning method used. The next value of a vertex is computed by aggregating the messages

from the incoming neighbors of the vertex. A system using source edge-cut needs network

communication to compute the next value of a vertex because mirrors of the vertex in other

workers have to send the aggregated messages to the master of the vertex. In Fig 1a, the next

value of v2 is computed from v2’s incoming neighbors v1, v3, and v5, but the aggregated mes-

sages from v3 and v5 are in worker 2; thus, worker 1 receives the aggregated messages of v3 and

v5 from worker 2 as aggregationmessages. Similarly, a system using destination edge-cut also

requires network communication to compute the next value of a vertex because the value of

incoming neighbors should be copied from other workers. In Fig 1b, the next value of v4 is

computed from v4’s incoming neighbor v6 which is in worker 2; thus, worker 2 sends the value

of v6 to worker 1 as duplicationmessages.

Systems using vertex-cut use both types of messages, while systems using edge-cut use only

one type of messages. In Fig 1c, the next value of v2 is computed by transferring an aggregation

message from the mirror of v2. On the contrary, the next value of v4 is computed by transfer-

ring a duplication message of v6. The communication cost between workers is the sum of all

exchanged messages. The vertex partitioning function to distribute vertices into workers also

affects the communication cost because concentration of high-degree vertices incurs load bal-

ancing and network congestion issues. PowerLyra [31] proposes a new graph partitioning

scheme called hybrid-cut which applies edge-cut for low in-degree vertices, and vertex-cut for

high in-degree vertices, respectively, under similar intuition of our proposed method. Hybrid-

cut achieves lower number of mirrors than those of the other partitioning schemes. PowerLyra

focuses on replication factor which is the number of mirror vertices per master vertex. How-

ever the replication factor is not the same as the number of messages transferred between

workers. For example, in PowerLyra, a high in-degree vertex produces up to 4 times more

messages than a low in-degree vertex does. FlexGraph is designed to minimize the total num-

ber of messages between workers. Also, PowerLyra does not fully analyze the performance

tradeoff between edge-cut and vertex-cut in its design, and does not apply techniques for disk-

based systems such as block-wise operations, unlike our proposed FlexGraph.

Fig 2. Matrix-vector representation of a directed graph. The matrixM and the vector v correspond to the edge set and the vertex

set of the graph, respectively. An iteration of graph processing is represented as a matrix-vector multiplication with generalized

operations.

https://doi.org/10.1371/journal.pone.0227032.g002
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I/O cost to read subgraphs. If a graph processing system uses an external storage, there is

another I/O cost to read the partitioned graphs from the external storage. For example, systems

like HybridGraph, GraphD [41] and Pregelix store the partitioned subgraphs in local disks of

workers, and load the subgraphs in every iteration to avoid scalability issues such as out-of-

memory error. Reading the subgraphs from external storage causes massive disk I/Os. We

emphasize that the amount of disk I/Os caused by loading the subgraphs exceeds the commu-

nication cost between workers because the number of messages is less than the number of

edges in many graph mining algorithms. Therefore, efforts to reduce the size of partitioned

subgraphs is also valuable. Recently, researchers have proposed several data formats to store

graphs in distributed graph systems. GBASE [38] divides an adjacency matrix into multiple

sub-matrices, and applies typical compression algorithms like Gzip and Gap Elias’-γ encoding

to the sub-matrices. However, the block compression in GBASE requires additional expensive

preprocessing step such as SlashBurn [42, 43] to find homogeneous regions in the adjacency

matrix. Elgohary et al. [44] proposed CLA, a compressed matrix data format that groups col-

umns into column groups, and applies co-coding representation to each column group. How-

ever, CLA relies on high correlation between columns which is not reasonable for graph data.

Liakos et al. [45, 46] proposed four compression techniques for storing out-edges of a vertex

into bit-vectors to exploit locality of references in real-world graphs. However, the approaches

using bit-vectors require a strong assumption that there are many out-edges connected to con-

secutive vertices from a vertex. This assumption is easily broken if the input graph is parti-

tioned without source edge-cut because the out-edges of a vertex can be placed in several

subgraphs. Furthermore, the source edge-cut causes massive communication cost; thus, the

effect of compression using bit-vectors is decreased.

GIM-V: Graph processing as matrix computation

GIM-V, a well-known graph mining primitive introduced in PEGASUS [1], represents graph

algorithms in the form of matrix-vector multiplication. GIM-V and its variations are widely

used in many graph mining systems [20, 38, 47, 48]. Fig 2 shows a matrix-vector representa-

tion of a directed graph. The matrix and the vector represent the edge set and the vertex set,

respectively. The value on i-th column and j-th row of the matrix corresponds to the weight of

edge (i, j) in the graph, and i-th value of the vector corresponds to the value of i-th vertex.

GIM-V requires a user to describe only three operations for a graph algorithm: combine2,

combineAll, and assign. Consider a matrixM of size n × n, and a vector v of size n,

wheremi,j is the (i, j)-th element ofM, and vi is the i-th element of v for i, j 2 {1, � � �, n}. Then,

the operations play the following roles:

• combine2(mi,j, vj): return the combined value xi,j from a matrix elementmi,j and a vector

element vj.

• combineAll({xi,1, � � �, xi,n}): reduce the input values to a single value ri.

• assign(vi, ri): compute the new i-th vector element v0i for the next iteration from the cur-

rent i-th vector element vi and the reduced value ri.

LetM� v be a user-defined generalized matrix-vector multiplication between the matrixM
and the vector v. The new i-th vector element v0i of the result vector v0 ofM� v is then:

v0i ¼ assignðvi;combineAllðfxi;jjxi;j ¼ combine2ðmi;j; vjÞ; j 2 f1; � � � ; nggÞÞ

GIM-V can be identified as a message passing based graph program primitive like Gather-

Apply-Scatter [5], and Signal-Collect [49]. These primitives have a similar structure: (1)

FlexGraph: Flexible partitioning and storage for scalable graph mining
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multiple functions to describe a graph program, and (2) an ordering to execute the functions.

We focus on GIM-V to describe our proposed method; however, the method is general enough

to run on other compatible primitives. Although there are incompatible primitives such as ver-

tex-centric [4] and partition-centric [50, 51] ones, most graph algorithms can be implemented

both on GIM-V compatible and incompatible primitives. More details about graph program

primitives are discussed in [52] and [53].

Proposed method

In this section, we propose FlexGraph, a fast and scalable distributed graph mining method by

reducing the communication and I/O costs in distributed graph computation. As we discussed

before, reducing the costs in a distributed graph mining method is critical for improving scal-

ability as well as speed of the method. We have the following main ideas to reduce the costs.

1. Flexible edge placement significantly shrinks the communication cost for transferring inter-

mediate data by dividing vertices into high-degree vertices and low-degree vertices, and

applying different edge placement methods to them.

2. Flexible storage format enables FlexGraph to reduce the I/O cost to read the partitioned sub-

graphs repeatedly.

We first introduce the key idea of the flexible edge placement with analysis of communica-

tion cost of graph computation. Then, we describe the storage format to reduce I/O cost for

reading the input graph. Lastly, we discuss implementation issues of FlexGraph.

Flexible edge placement

How can we efficiently reduce the communication cost among workers in graph processing?

We note that high out-degree vertices send massive aggregation messages which cause perfor-

mance degradation. As discussed in the previous section, the massive aggregation messages

can be replaced with a few duplication messages by changing graph partitioning methods. Our

proposed method, flexible edge placement, shrinks the number of aggregation messages by

splitting the vertex set into a high out-degree vertex set and a low out-degree vertex set, and

applying destination edge-cut and source edge-cut on the edges from the sets, respectively.

Fig 3 illustrates the effect of the flexible edge placement. In Fig 3a, high out-degree vertices

with source edge-cut cause massive aggregation messages because the worker who has a high

out-degree vertex (such as v1) creates a lot of mirrors (such as v2 and v4). Even if we use desti-

nation edge-cut as in Fig 3b, the number of messages does not decrease much because massive

duplication messages are required by a whole bunch of low out-degree vertices like v2, v3, v4,

and v5. Vertex-cut, as shown in Fig 3c, can reduce the number of messages by reducing the

number of mirrors with both types of messages. However, computing an optimal vertex-cut

for a given graph is extremely expensive. Our proposed FlexGraph takes the advantages of

both types of edge-cuts by using source edge-cut on low out-degree vertices to reduce duplica-

tion messages of massive low out-degree vertices and destination edge-cut on high out-degree

vertices to suppress aggregation messages from high out-degree vertices, respectively. By sup-

pressing the effects of high out-degree vertices, FlexGraph resolves load balancing and network

congestion problem incurred by concentration of high out-degree vertices due to poor vertex

partition function. For example in Fig 3d, edges from high out-degree vertices whose out-

degree is larger than 3 (such as v1 and v6) are distributed by destination edge-cut, while edges

from low out-degree vertices like v2� � �5 are located with the source vertices by source edge-cut.

As a result, the total number of messages decreases.
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We verify our intuition by analyzing the communication cost depending on edge-cuts. To

analyze dominant effects of communication patterns in graph processing, we consider the

worst-case scenario where all vertices are always active and randomly distributed among work-

ers. We also show that flexible edge placement works well in other scenarios in experiments

section. As shown in Figs 1a and 3a, source edge-cut uses only aggregation messages for all ver-

tices in graph. Lemma 1 states the communication cost of graph processing using only aggre-

gation messages.

Lemma 1. Graph processing using only aggregation messages has the following communica-
tion cost Ca per iteration:

Ca ¼ ðb � 1Þnð1 � e� E½dq �=bÞ ð1Þ

where n is the number of vertices, E½dq� is the average out-degree of the input graph, and b is the
number of vertex partitions.
Proof. The communication cost of graph processing using only aggregation messages is the

cost to transfer the intermediate results between workers via network. To transfer one of the

intermediate results, the cost |v(i,j)| is required where v(i,j) is the results of graph computation

on subgraphM(i,j) and v(j). Therefore,

Ca ¼
X

i6¼j

E½jvði;jÞj� ¼ bðb � 1ÞE½jvði;jÞj� ð2Þ

where b is the number of vertex partitions. For each vertex p 2 v(i), let Xp denote an event that

Fig 3. Effects of flexible edge placement. (a) If we use source edge-cut, a worker who has high out-degree vertex produces massive aggregation

messages because many mirrors of outgoing neighbors are in other workers. (b) Even if we use destination edge-cut, the number of messages does not

decrease much because there are many duplication messages from many mirrors of incoming neighbors in other workers. (c) Vertex-cut reduces the

number of messages by reducing the number of mirrors. However, computing the optimal vertex-cut is NP-hard [54, 55], and computing an

approximate solution requires shared data between workers, or massive pre-computation time [56]. (d) Our method exploits source edge-cut for low

out-degree vertices to reduce duplication messages from a large number of low out-degree vertices, and destination edge-cut for high out-degree

vertices to suppress aggregation messages caused by high out-degree vertices.

https://doi.org/10.1371/journal.pone.0227032.g003
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p’s computed value in v(i,j) is non-zero. Assuming the vertex partition function ψ evenly dis-

tributes vertices into the vertex partitions, the probability of the event Xp is given by

PðXpÞ ¼ 1 � Pðp has no in � edges inMði;jÞÞ ¼ 1 �
Y

q2vðjÞ

1 �
dq
n

� �

where dq is the out-degree of vertex q, and n is the number of vertices in graph. Considering dq
as a random variable whose value is from an out-degree distribution, we obtain

PðXpÞ ¼ 1 �
Y

q2vðjÞ

1 �
dq
n

� �

� 1 � 1 �
E½dq�
n

� �n=b

ð3Þ

Since we target billion-scale graphs, we approximate the probability by the following equation:

PðXpÞ ¼ 1 � 1 �
E½dq�
n

� �n=b

� 1 � lim
n!1

1 �
E½dq�
n

� �n=b

¼ 1 � e� E½dq �=b

The expected size of the intermediate results is the sum of non-zero probabilities of vertices in

the results. Therefore,

E½jvði;jÞj� ¼
X

p2vðiÞ

PðXpÞ ¼
X

p2vðiÞ

1 � e� E½dq �=b
� �

¼
n
b

1 � e� E½dq �=b
� �

ð4Þ

Combining Eqs (2) and (4), we obtain the claimed communication cost.

On the other hand, destination edge-cut uses only duplication messages for all vertices.

Lemma 2 states the communication cost of graph processing using only duplication messages.

Lemma 2. Graph processing using only duplication messages has the communication cost Cd
per iteration:

Cd ¼ ðb � 1Þn ð5Þ

where n is the number of vertices and b is the number of vertex partitions.
Proof. If we use only duplication messages, each worker should load all vertex partitions

except one from other workers. This causes (b − 1)n communication cost. Note that the graph

processing using only duplication messages assumes that an edge is assigned to the worker

that has the destination vertex of the edge, and the intermediate result can be consumed in the

same worker which creates the result.

Lemmas 1 and 2 state that the communication cost depends on the number of vertices, the

average out-degree of the input graph, and the number of vertex partitions. The lemmas indi-

cate that if the input graph has a small number of vertices and the average out-degree is huge,

graph processing using only duplication messages requires less communication cost than that

using aggregation messages. In the opposite case, using only aggregation messages results in

less communication cost than using only duplication messages.

From this observations, the flexible edge placement divides the vertex set v into multiple

partitions v(i) using a user-defined partitioning function ψ (i.e., ψ = a random hash function).

In other words, the master vertex of each vertex is assigned to a worker by the partitioning

function. Then, for each vertex partition v(i), the method further divides the partition into two

subsets: sparse vertex set vðiÞs and dense vertex set vðiÞd . The out-degree of all vertices in the sparse

vertex set is less than a given threshold θ, while the out-degree of all vertices in the dense vertex

set is greater than or equal to θ. After that, the edge setM is partitioned into multiple partitions

M(i,j) which contains the edges from the vertices in v(j) to the vertices v(i). Like the vertex
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partitions, each edge partitionM(i,j) is divided into two subsets: (1) the sparse edge setMði;jÞs

that contains the edges from vertices in the sparse vertex set vðjÞs , and (2) the dense edge set

Mði;jÞd that contains the edges from vertices in the dense vertex set vðjÞd . The edge sets are grouped

and assigned into a worker depending on the type of partitions. The sparse edge setMð:;jÞs is

grouped with other sparse edge sets which share the same source vertex set v(j), and assigned to

the worker which has v(j). The dense edge setMði;:Þd sharing the same destination vertex set v(i)

is grouped with, and assigned to the worker who has v(i). Therefore, only aggregation messages

are incurred to process the sparse edge setMð:;jÞs , while only duplication messages are incurred

to process the dense edge setMði;:Þd .

Then, how can we choose the out-degree threshold θ to classify the high out-degree vertices

and the low out-degree vertices? The communication cost significantly depends on θ. If we set

θ = 0, the method uses only duplication messages because there is no vertex in the sparse vertex

sets. On the other hand, if we set θ =1, the method uses only aggregation messages because

there is no vertex in the dense vertex sets. To find the best θ, we present the communication

cost Cflex of FlexGraph in Lemma 3; FlexGraph chooses θ that minimizes Cflex.
Lemma 3. Graph processing using the flexible edge placement has communication cost Cflex

per iteration:

Cflex ¼ ðb � 1Þnð1 � e� E½dqðyÞ��ð1� PoutðyÞÞ=b þ PoutðyÞÞ ð6Þ

where n is the number of vertices in the input graph, dq(θ) is the average out-degree of vertices
whose out-degree is less than θ, b is the number of vertex partitions, and Pout(θ) is the ratio of ver-
tices whose out-degree is greater than or equal to θ.

Proof. The communication cost Cflex of graph processing is the sum of the number Ca of

aggregation messages caused by the vertices in the sparse vertex sets, and the number Cd of

duplication messages caused by the vertices in the dense vertex sets. From Eq (3), we get:

PðXpÞ ¼ 1 � 1 �
E½dqðyÞ�

n

� �n�ð1� PoutðyÞÞ=b

by substituting the average out-degree dq(θ) in sparse vertex set for dq and the number n � (1 −
Pout(θ))/b of vertices in sparse vertex set for |v(j)| which is n/b in Eq (3). By applying similar

steps as in Lemma 1, we get:

Ca ¼ ðb � 1Þnð1 � e� E½dqðyÞ��ð1� PoutðyÞÞ=bÞ

as the communication cost caused by sparse vertex sets and sparse edge sets. To compute the

number Cd of duplication messages in the flexible edge placement, we need to compute the

number nd of vertices in dense vertex sets because only high out-degree vertices whose out-

degree is greater than or equal to θ produce duplication messages. Therefore, we get:

nd ¼ n � PoutðyÞ ð7Þ

where Pout(θ) is the ratio of vertices whose out-degree is greater than or equal to θ. Combining

Eqs (5) and (7), we obtain:

Cd ¼ ðb � 1Þn � PoutðyÞ

by substituting the number nd of vertices in dense vertex sets for n. By summing up the two

costs Ca and Cd, we get the claimed communication cost.

Although the exact communication cost of our method in Lemma 3 includes data-depen-

dent terms (dq(θ) and Pout(θ)) and thus is not directly comparable to those of other methods
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based on single type of messages, we experimentally show that the method achieves smaller

amount of communication cost than those of other methods if we choose proper out-degree

threshold θopt.
To choose the optimal out-degree threshold θopt which minimizes Cflex, FlexGraph com-

putes the costs for all possible threshold values using Lemma 3. The set of possible threshold

values consists of the out-degrees of vertices in the input graph, which are less than or equal to

the maximum out-degree dmax. Given the out-degree distribution of the input graph and an

out-degree threshold θ, the required data-dependent terms to compute Cflex are computed in

constant time. Even though we need additional time to compute the out-degree distribution,

the distribution can be approximated using power-law degree distribution in general. Thus,

finding the optimal out-degree threshold has O(dmax) time complexity. Note that dmax is less

than few thousands in most real-world graphs.

Flexible storage format

Another major performance bottleneck is the I/O cost from reading the input graph repeat-

edly. In general, distributed graph processing systems partition a whole graph into subgraphs,

and store the partitioned subgraphs into main or external-memory space of workers. Then,

each worker reads the stored subgraphs from main or external-memory space at every itera-

tion. Therefore, reducing the I/O cost to load the edge sets from external-memory space is also

valuable to speed up the graph computation. Furthermore, some graph processing systems

including FlexGraph, Giraph, and Pregelix cache the subgraphs into main memory space of

workers if there is space in the main memory. If the size of the serialized subgraphs decreases,

more subgraphs can be cached in the main memory.

We propose a flexible storage format based on the following two observations. The first

observation is that the two widely used storage formats for graph processing, edge list and

adjacency list, have their own preferred scenarios. Edge list format stores an edge in a tuple

consisting of the source vertex and the destination vertex as illustrated in Fig 4b. On the other

hand, adjacency list format groups edges by their source vertex, and stores the grouped edges

with out-degree, as shown in Fig 4c. Note that our flexible storage format is designed for disk-

based and distributed graph processing systems; thus the id and the out-degree of each source

vertex should be stored for loading the partitioned subgraphs from external-memory space of

distributed workers. The edge list format is better than the adjacency list format when a vertex

Fig 4. The storage of subgraph in FlexGraph. The format consists of three parts: (a) the number of vertices with out-degree 1, (b) edges of vertices

with out-degree 1 in edge list format, and (c) edges of vertices with out-degree� 2 in adjacency list format.

https://doi.org/10.1371/journal.pone.0227032.g004
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with only one edge is stored because degree information is not stored. For storing a vertex

with many edges, the adjacency list format is better than the edge list format because the dupli-

cate source vertex ids are eliminated. Lemma 4 verifies that the storage formats have different

preferred scenarios.

Lemma 4. If a vertex has d> 2 outgoing edges, the size Se for storing the vertex and its outgo-
ing neighbors in edge list format is larger than the size Sa for that in adjacency list format.
Proof. In the edge list format, the size Se of a vertex is the sum of (1) the size of source vertex

id, and (2) the size of destination vertex id; thus Se = 2d � Sv where Sv is the size of vertex id in

bytes, and d is the number of edges. The size Sa of a vertex in adjacency list format is the sum

of (1) the size of source vertex id, (2) the size of the number of edges (degree), and (3) the size

of destination id list. Therefore, we get Sa = (d + 1)Sv + Sl where Sl is the size of the number of

edges in bytes. Comparing Se and Sa, we obtain:

Se > Sa , 2d � Sv > ðd þ 1ÞSv þ Sl , d > 1þ
Sl
Sv

In general, Sl = Sv because both vertex id and degree are represented by an integer; thus the

claim holds for all d> 2.

How many vertices have only one outgoing edge? Our second observation is that the sub-

graphs divided by FlexGraph still follow skewed degree distributions, regardless of whether the

edge sets are sparse or dense. In other words, many degree-one vertices and some high degree

vertices coexist in each subgraph. Fig 5 shows the degree distribution of Twitter graph and one

sampleM(i,j) of 256 partitioned edge sets. In sparse edge setMði;jÞs , more than 549K vertices

have only one outgoing edge, and 199K vertices have multiple edges. In dense edge setMði;jÞd ,

similarly, more than 55K vertices have only one outgoing edge, and 278K vertices have multi-

ple edges. Therefore, using single data format to store edge sets is inefficient.

Our flexible storage format stores a vertex and its outgoing edges as an edge list format if

the vertex has out-degree 1; otherwise, they are stored as an adjacency list format to minimize

the size of stored subgraphs. Fig 4 illustrates the storage scheme of flexible storage format. The

format has three parts: (a) the number of vertices with out-degree 1, (b) edges of vertices with

out-degree 1 in edge list format, and (c) edges of vertices with out-degree� 2 in adjacency list

format.

Implementation

In this section, we discuss implementation details of FlexGraph to perform GIM-V, a repre-

sentative graph mining primitive. As we discussed before, a message passing based graph

Fig 5. The degree distribution of whole edge set of Twitter graph and one of 256 partitioned edge sets. For all edge sets, there are many vertices with

various out-degrees, which implies either of the edge list or the adjacency list format does not efficiently store them.

https://doi.org/10.1371/journal.pone.0227032.g005
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processing can be implemented in an iterative generalized matrix-vector multiplicationM� v
given a matrixM that represents an edge set and a vector v that represents a vertex set. There-

fore, the graph partitioning process of flexible edge placement can be considered as matrix par-

titioning in matrix-vector multiplication. In terms of matrix partitioning, we define column

assignment and row assignment as grouping columns and rows, respectively, and assign each

group to a worker. Note that column assignment is identical to source edge-cut, and row

assignment is identical to destination edge-cut. Column assignment incurs no duplication

messages because the part of vector v required to process the columns in each worker is already

in the worker. On the other hand, row assignment incurs no aggregation messages because

intermediate result in each worker can be merged into the result vector immediately. Thus, the

flexible edge placement in terms of matrix-vector multiplication is the same as a combination

of column and row assignment.

Algorithm 1 Matrix Pre-partitioning in FlexGraph
Input: a sparse matrix M = {(i, j, mi,j) | 0 � i, j < n}, a vector v =
{vj | j 2 {0, � � �, n − 1}}, the number b of blocks, a vertex partition-
ing function ψ, a degree threshold θ
Output: a set fðMð:;qÞs ; vðqÞs Þ j q 2 f0; � � � ; b � 1gg of sparse matrices, a set

fðMðp;:Þd ; vðpÞd Þ j p 2 f0; � � � ; b � 1gg of dense matrices
1: for each vertex j 2 v do in parallel
2: q  ψ(j)
3: dj  |{m:,j | j 2 {0, � � �, n − 1}}| // out-degree of j
4: add vj to v(q)

5: add dj to d(q)

6: for each matrix element mi,j do in parallel
7: p  ψ(i)
8: q  ψ(j)
9: add mi,j to M(p,q)

10: for each triple (v(q), M(:,q), d(q)) do in parallel
11: for each vertex j 2 v(q) do
12: if dj < θ then
13: add vj to vðqÞs
14: else
15: add vj to vðqÞd
16: for each matrix block M(p,q) do
17: for each matrix element mi,j 2 M(p,q) do
18: if dj < θ then
19: add mi,j to Mðp;qÞs

20: else
21: add mi,j to Mðp;qÞd

22: Ms  fMð:;qÞs j q 2 f1; � � � ; bgg
23: Md  fM

ðp;:Þ
d j p 2 f1; � � � ; bgg

24: return Ms, Md
Algorithm 1 describes the matrix pre-partitioning of FlexGraph. Given an input vector v

and its corresponding matrixM, FlexGraph first computes the out-degree of each vertex, and

partitions the input vector v into b sub-vectors (lines 1-5). Then, the input matrixM is divided

into corresponding b2 sub-matrices (lines 6-9). After that, FlexGraph divides each sub-vector

v(q) into a sparse sub-vector vðqÞs and a dense sub-vector vðqÞd ; vðqÞs consists of vertices whose out-

degrees are smaller than a threshold θ, and vðqÞd consists of vertices whose out-degrees are

greater than or equal to θ (lines 11-15). Likewise, each sub-matrixM(p, q) is also divided into a

sparse sub-matrixMðp;qÞs where each source vertex is in vðqÞs , and a dense sub-matrixMðp;qÞd

where each source vertex is in vðqÞd (lines 16-21). Then, the sparse sub-matricesMð:;qÞs are
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grouped by column with index q, while the dense sub-matricesMðp;:Þd are grouped by row with

index p, respectively (lines 22-23).

Algorithm 2 Iterative Multiplication in FlexGraph

Input: a set fðMð:;qÞs ; vðqÞs Þ j q 2 f0; � � � ; b � 1gg of sparse regions, a set

fðMðq;:Þd ; vðqÞd Þ j q 2 f0; � � � ; b � 1gg of dense regions
Output: a result vector v0 = {v0(q) | q 2 {0, � � �, b − 1}}
1: repeat
2: for each (Mð:;qÞs ; vðqÞs ;M

ðq;:Þ
d ; vðqÞd ) do in parallel

3: for each sub-matrix Mðp;qÞs 2 Mð:;qÞs do
4: vðp;qÞs  combineAllbðcombine2bðMðp;qÞs ; vðqÞs ÞÞ
5: if p 6¼ q then
6: wp  the worker that has vðpÞs and vðpÞd
7: send vðp;qÞs to the worker wp
8: send request for vðpÞd to the worker wp
9: rðqÞ  vðq;qÞs

10: for each received vector vðq;pÞs do
11: send vðqÞd to the worker that sent vðq;pÞs

12: rðqÞ  combineAllbðrðqÞ [ vðq;pÞs Þ

13: for each sub-region Mðq;pÞd 2 Mðq;:Þd do
14: load the received dense vector vðpÞd
15: vðq;pÞd  combine2bðM

ðq;pÞ
d ; vðpÞd Þ

16: rðqÞ  combineAllbðrðqÞ [ v
ðq;pÞ
d Þ

17: v0ðqÞ  assignbðv
ðqÞ
s [ v

ðqÞ
d ; rðqÞÞ

18: until convergence

After the pre-partitioning step, the group of sparse sub-matricesMð:;qÞs and the group of

dense sub-matricesMðq;:Þd are assigned to a worker. The sparse sub-vector vðqÞs and the dense

sub-vector vðqÞd are also assigned to the worker. Algorithm 2 describes the iterative multiplica-

tion on the partitioned sub-matrices and sub-vectors. Each worker first multiplies all assigned

sparse matrix-vector pairs ðMð:;qÞs ; vðqÞs Þ, and sends the results to other workers (lines 4 and 7).

Then, each worker sends a request for the dense vector vðpÞd to other worker (line 8). Note that

the requests for vector values are aggregated into single dense vector request, and the request is

sent once to all workers, while PowerGraph and PowerLyra sends massive number of requests.

The intermediate result vðp;qÞs is stored in memory space or external-memory space of the

worker that has vðpÞs . Since each worker has the sparse sub-vector vðqÞs for all corresponding

sparse sub-matrices, there is no communication cost to duplicate the sub-vector. After that,

each worker sends the requested dense vector vðqÞd , and reduces the intermediate result vðq;pÞs

into r(q) (lines 10-12). Then, the dense matrix-vector pairsMðq;:Þd ; vðpÞd are multiplied (lines 13-

16). The multiplication result of each dense matrix-vector pair is combined into r(q) immedi-

ately. Finally, the result vector v0(q) is computed by applying assign operation on reduced

vector r(q) (line 17). FlexGraph repeats this task until convergence. Note that combineAllb
and combine2b are block operations for combineAll and combine2, respectively;

combine2b(M(i,j), v(j)) applies combine2(mp,q, vq) for allmp,q 2M(i,j) and vq 2 v(j), and

combineAllb(X(i,j)) reduces each row values in X(i,j) into a single value by applying the

combineAll operation.

To process a graph whose size exceeds the main memory space of distributed workers, we

consider the number of workers, the size of vector, and the main memory space of workers to

determine the number b of blocks. b is set to the numberW of workers to maximize the paral-

lelism if jvj=M <W, otherwise b is set to Oðjvj=MÞ to fit a sub-vector into the main memory

of size M. Note that this proper setting for bmakes FlexGraph scale to the graph whose size
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exceeds the main memory size. Based on this setting, each worker requires O(|v|/b) of the

main memory size; a sub-multiplication should retain sub-vectors vðqÞs and vðqÞd which are sub-

sets of a vector v(q) whose expected size is O(|v|/b). The sub-matrixMðp;qÞs orMðp;qÞd is stored in

the main memory or external memory of a worker. The output size of each sub-multiplication

is the size of vector v(p) which is O(|v|/b).

Experiments

We perform experiments to answer the following questions:

Q1. How much does FlexGraph improve the performance and scalability compared to the

existing systems?

Q2. Does FlexGraph work well on real-world graphs?

Q3. How much does the threshold θ affect the performance and the amount of I/O in

FlexGraph?

Q4. How much does the flexible storage format affect the performance and the amount of I/O

in FlexGraph?

Q5. How much does the vertex partitioning function affect the performance?

Experimental setting

We implemented FlexGraph on Hadoop, the de-facto standard distributed data processing

framework. We use the optimal out-degree threshold θopt for each graph, as reported in

Table 2. We compare FlexGraph to existing graph processing systems: HybridGraph, Pregelix,

GraphX, PowerLyra, Giraph, and Graph/H. HybridGraph is a disk-based graph processing

system which properly switches two communication schemes: push and pull. We find the best

parameters of HybridGraph from an evaluation script provided by the authors. Pregelix is a

disk-based graph processing system which exploits database techniques to achieve the high

scalability. We use all of their optimization techniques such as B-tree indexing and optimal

join planning. GraphX is a graph processing system based on Spark, a general data processing

system. We set the number of partitions to achieve the highest scalability for each dataset, and

use 2D grid partitioning method. Giraph is a representative in-memory graph processing sys-

tem which uses source edge-cut. We use the configuration in [59] such as ByteArrayEdges

storage format to achieve highest scalability. PowerLyra is the state of the art in-memory graph

processing system implemented in C++. We use 100 as the in-degree threshold as recom-

mended by the authors. Graph/H is an implementation of PowerLyra partitioning scheme

(hybrid-cut) in GraphX. We use the same configuration as in PowerLyra. Note that Power-

Graph, a well-known graph processing system using vertex-cut, is excluded from the

experiment because PowerLyra is based on and outperforms PowerGraph. PEGASUS, a

Table 2. The summary of graphs.

Graph Vertices Edges θopt Source

ClueWeb12 (CW12) 6,231,126,594 71,746,553,402 74 Lemur Project

ClueWeb09 (CW09) 1,684,876,525 7,939,647,897 77 Lemur Project

YahooWeb (YW) 720,242,173 6,636,600,779 71 Yahoo!

Twitter (TW) 41,652,230 1,468,365,182 65 Kwak et al. [57]

RMAT-k (RM-k) 2k 2k+5 69-72 Jeon et al. [58]

https://doi.org/10.1371/journal.pone.0227032.t002
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MapReduce-based graph processing system using GIM-V primitive, is also excluded from the

experiment because PEGASUS shows incomparable performance. As we discussed before,

PEGASUS shuffles the whole input graph for every iteration causing extremely massive com-

munication cost.

We use real and synthetic graphs summarized in Table 2. Twitter is a who-follows-whom

social network crawled in 2010. YahooWeb, ClueWeb09 and ClueWeb12 are page-level hyper-

link networks on the WWW. RMAT [60] is a widely used graph generation model that

matches the characteristic of real-world networks. We generate RMAT graphs with parameters

a = 0.57, b = 0.19, c = 0.19, and d = 0.05 using TegViz [58], a distributed graph generator.

We run our experiments on a cluster of 17 machines; one is a master and the others are for

workers. Each machine is equipped with an Intel E3-1240v5 CPU (quad-core, 3.5GHz), 32GB

of RAM, and 4 hard disk drives. A machine that is not the master runs 4 workers, and each

worker is equipped with 1 CPU core and 6GB of RAM. All the machines are connected via 1

Gigabit Ethernet. Hadoop 2.7.3, Spark 2.2.0 and MPICH 3.0.4 are installed on the cluster.

Scalability of FlexGraph

We evaluate the scalability of FlexGraph for processing large-scale graphs under two scenarios.

We first vary the size of RMAT graphs while fixing the number of machines. Next, we vary the

number of machines while fixing the size of graphs. We note that although we use PageRank

algorithm for the experiments, we obtain similar conclusions for connected components and

single-source shortest path as well.

Varying the size of graph. Fig 6 shows the running time of FlexGraph and competitors

(HybridGraph, Pregelix, GraphX, PowerLyra, Giraph, and Graph/H) on RMAT graphs with

varying numbers of edges. We report preprocessing time in Fig 6a, and average running time

per iteration in Fig 6b. The x-axis is the number of edges and the y-axis is the preprocessing

time and the running time in seconds. We emphasize that only FlexGraph succeeds in process-

ing RMAT-32 graph with more than 67 billion edges. The memory-based systems fail on

graphs (RMAT-28) with more than 4.1 billion edges due to out of memory error. Among the

disk-based systems, FlexGraph outperforms HybridGraph, Pregelix by 3.7 and 1.54 times on

average, respectively. Additionally, the disk-based competitors fail on graphs with more than

34 billion edges.

The detailed analysis of the results are as follows. Giraph assumes that a vertex, all of its out-

going edges, and all messages sent to and received from other workers fit into the main

Fig 6. Data scalability of various systems on RMAT graphs. Our proposed FlexGraph is the only system that

succeeds on graphs with more than 235� 34 billion edges.

https://doi.org/10.1371/journal.pone.0227032.g006
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memory of a worker. However, this assumption can be easily broken by the power-law degree

distribution of real-world graphs; a vertex can have tremendous outgoing edges exceeding the

size of main memory, and causes massive number of messages. GraphX uses a vertex-cut parti-

tioning method and copies vertices to multiple machines containing edges incident to the ver-

tices. The edges and the copied vertices are stored in the main memory of each worker, and

incur the out of memory error. Even though PowerLyra reduces the number of copied vertices

with its hybrid-cut, the size of intermediate data still exceeds the main memory size of each

worker. Thanks to the hybrid-cut from PowerLyra, Graph/H shows better performance than

GraphX does. However, Graph/H has the same limitation of GraphX, its underlying graph

processing framework. We emphasize that there is a large performance gap between Graph/H

and PowerLyra, even though they use the same hybrid-cut partitioning scheme. We presume

that the main reason of PowerLyra’s performance gain is from its implementation language

C++ which does not require time for serialization and deserialization, unlike Java used in

Graph/H. HybridGraph requires duplication of all edges to switch communication mecha-

nism, and is tied strictly with range vertex partitioning to exploit graph locality. But copying

all edges twice requires massive processing time as input graph size grows. Furthermore, the

range partitioning causes extremely unbalanced edge distribution among machines on graphs

with skewed degree distributions. Pregelix constructs an additional B-tree based data index for

joining vertices and messages from other vertices. The index resides in the main memory of a

worker, however, the index size can exceed the size of main memory if a vertex has numerous

incoming edges.

We measure the peak main memory usage of a worker and the number of messages

between workers to verify the underlying reasons of scalability and performance difference,

when running PageRank algorithm on RMAT-24 graph. Fig 7a and 7b are box-and-whisker

plots showing the peak memory usage for each worker, and the number of messages between

workers, respectively. Thanks to the flexible edge placement and the flexible storage format,

FlexGraph achieves the lowest memory usage, the smallest number of messages, and almost

uniform memory usage distribution. The systems based on vertex-cut and hybrid-cut, such as

GraphX, PowerLyra, and Graph/H also achieve almost uniform memory usage distribution.

However, these systems use more memory than FlexGraph does because FlexGraph com-

presses partitioned subgraphs using the flexible storage format, even though each worker

Fig 7. Workload distribution of various systems. (a) FlexGraph achieves the lowest memory usage and almost

uniform memory usage distribution. (b) Thanks to the flexible edge placement, FlexGraph shows the smallest number

of message exchanges between workers.

https://doi.org/10.1371/journal.pone.0227032.g007
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holds the subgraphs in main memory. Comparing Graph/H with PowerLyra, we observe that

the difference of number of messages is negligible; thus the main performance difference may

come from the language difference, Java and C++. The systems using source edge-cut such as

HybridGraph, Pregelix, and Giraph show poor distribution of memory usage due to skewed

degree distributions of real world graph. Especially, the largest memory usage of a worker in

Giraph is 2.8 times larger than its smallest memory usage. Note that HybridGraph shows

highly skewed distribution of number of messages because HybridGraph uses range partition-

ing. On the other hand, HybridGraph does not use much memory since it stores the interme-

diate data including messages from other workers in disk.

Varying the number of machines. We evaluate machine scalability of FlexGraph and

competitors by running the PageRank algorithm on RMAT-24 with varying numbers of

machines. Fig 8 shows the running time of FlexGraph and competitors varying the number of

machines from 2 to 16 in log-log scale. Giraph shows the steepest slope because its running

time on 2 machines is extremely slow due to pause time from massive garbage collection.

PowerLyra achieves the highest performance compared to other methods, but shows limited

scalability (slope = -0.58). Pregelix, GraphX, and Graph/H show poor scalability (slope =

-0.56) on 16 machines because of waiting time for network operations in join stage. FlexGraph

and HybridGraph scale up better (slope = -0.79) than other methods by avoiding the blocking

time for I/Os via overlapping computation with I/O operations, and optimized data transfer.

Even though both FlexGraph and HybridGraph achieve similar machine scalability, we

emphasize that FlexGraph consistently outperforms HybridGraph in all experiments.

Experiments on real-world graphs

We test three graph algorithms, PageRank, single-source shortest path (SSSP), and connected

components (CC), to evaluate the overall performance of FlexGraph on four real-world graphs

in Table 2. For PageRank, the number of iterations is set to 10; for SSSP and CC, iterations end

Fig 8. Machine scalability of various systems. FlexGraph and HybridGraph show better machine scalability (slope =

-0.79) than Pregelix, GraphX, Graph/H (slope = -0.56), and PowerLyra (slope = -0.58).

https://doi.org/10.1371/journal.pone.0227032.g008
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on convergence. The vertex with the highest out-degree in each graph is set to the source ver-

tex for SSSP.

Fig 9 shows the results. FlexGraph is the only method that succeeds in processing Clue-

Web12. PowerLyra is faster than FlexGraph for the smallest graph TW in PageRank and

SSSP computations, and is comparable to FlexGraph in CC computation. As discussed in

scalability experiments, our conjecture is that this fast running time comes from PowerLyra’s

implementation language C++ which allows faster execution than Java which all other meth-

ods use. However, PowerLyra fails in processing web-scale graphs (YW, CW09, and CW12)

because the size of intermediate data for edges, vertices, and states of masters and mirrors

exceeds the size of aggregated memory of all machines, causing out of memory error. As in

scalability experiments, there is a large performance gap between PowerLyra and Graph/H

which use the same partitioning scheme. Giraph, another memory-based method, also fails

in processing the web-scale graphs because of memory pressure from skewed degree distribu-

tion which is common in real-world graphs. GraphX processes YahooWeb graph thanks to

disk utilization of Spark, the underlying method of GraphX, but fails in processing Clue-

Web09 graph suffering from increased memory pressure caused by massive number of RDD

partitions. Note that GraphX loads all intermediate data for a subgraph including messages,

copied vertex states, and additional data structure for vertex indexing, incurring the large

number of RDD partitions, while FlexGraph streams intermediate data as messages. Even if

we increase the number of subgraphs to reduce the memory pressure, the size of each RDD

partition does not decrease because the number of copied vertices increases. HybridGraph

fails in processing the ClueWeb09 graph due to I/O inefficiency from accessing all vertices

and edges, even though SSSP and CC need to process only a portion of vertices in each

iteration.

Effect of threshold θ
To test the effect of the threshold θ, we run the PageRank algorithm of FlexGraph for 30 itera-

tions on Twitter graph varying θ. Fig 10 presents the running time and the amount of I/O. In

general, FlexGraph with θ =1 shows better performance than FlexGraph with θ = 0 does

because real-world graphs are extremely sparse. FlexGraph achieves the fastest running time

with θ = 72, showing 42% decreased amount of I/O compared to θ =1, from 154GB to 89GB.

Fig 9. Running times of various algorithms on real-world graphs. FlexGraph is the only method which succeeds in processing ClueWeb12 graph for

all graph computations.

https://doi.org/10.1371/journal.pone.0227032.g009
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Effects of flexible storage format

We evaluate the size of subgraphs and the running time of PageRank algorithm for 10 itera-

tions varying data formats: (1) edge list, (2) adjacency list, and (3) flexible storage format. We

use a synthetic graph and three real-world graphs. YahooWeb (YW) and ClueWeb09 (CW09)

are sparse real-world graphs whose density |M|/|v|2 is smaller than 10−7, while Twitter (TW)

and RMAT-28 (RM28) are dense graphs whose density is larger than 10−7. As discussed before,

the edge list format is appropriate for a sparse graph which has many vertices with out degree

1, while the adjacency list format is appropriate for a dense graph. Fig 11 verifies the relation

between the graph density and the efficiency of each graph storage format. For sparse graphs

(YW and CW09), the edge list format shows a smaller size than the adjacency list format does.

For dense graphs, the adjacency list format shows a smaller size than the edge list format does.

Our proposed flexible storage format shows the smallest data size for all graphs, and reduces

the size of graphs up to 38% compared to the adjacency list format.

Interestingly, for running time comparison, graph computation with adjacency list is faster

than that with edge list for all graphs, although the size of subgraphs in edge list is smaller than

that in adjacency list for YahooWeb and ClueWeb09. The underlying reason is that adjacency

list format improves cache hit ratio to access source vertex information because subgraphs in

adjacency list format are sorted according to their source vertices. In large-scale graph process-

ing, cache hit ratio is one of important factors for performance [61, 62]. Flexible storage format

achieves the shortest running time by taking the best of the both formats.

Effects of vertex partitioning functions

As reported by Khayyat et al. [63], vertex partitioning functions significantly affect the running

time of graph processing. To show the effect of vertex partitioning functions on FlexGraph

and competitors, we evaluate the running time of PageRank for 10 iterations on YahooWeb

with two popular partitioning functions: (1) hash partitioning and (2) range partitioning.

Methods that fail to process YahooWeb are omitted. In the hash partitioning, each vertex is

assigned to a worker by a random hash function; thus degree distribution of each partition is

similar to that of other partition. In the range partitioning, each vertex partition is a sequential

Fig 10. Effect of threshold θ on the running time and the amount of I/O. FlexGraph shows the fastest running time

when θ = 72 with 42% reduced amount of I/O compared to when θ =1.

https://doi.org/10.1371/journal.pone.0227032.g010
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range of vertex ids, and assigned to a worker. Massive high-degree vertices can be assigned to a

worker if they have consecutive vertex ids, and cause performance bottleneck due to poor load

balancing. HybridGraph is also omitted since its implementation supports only range parti-

tioning to exploit graph locality, though it succeeds in processing YahooWeb. Fig 12 shows the

Fig 11. Effects of different edge storage formats on various graphs. (a) Relative size of graphs stored in different storage formats. (b) Running time of

FlexGraph using different storage formats. The flexible storage format shows the smallest data size, and contributes to the fastest running time of graph

processing by reducing I/O cost.

https://doi.org/10.1371/journal.pone.0227032.g011

Fig 12. Running times of PageRank on YahooWeb graph with varying vertex partitioning functions. Our

proposed FlexGraph is the only method that is robust to vertex partitioning functions.

https://doi.org/10.1371/journal.pone.0227032.g012
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effect of vertex partitioning functions. Note that our proposed FlexGraph is the only method

that is robust to vertex partitioning functions thanks to the destination edge-cut for edges

from high out-degree vertices which reduces the effect of concentration of high out-degree

vertices. Pregelix with range partitioning suffers from unbalanced computation due to skewed

degree distribution [64]. On GraphX, similarly, range partitioning results in worse perfor-

mance than hash partitioning, but for a different reason; GraphX requires a larger number of

partitions for range partitioning than for hash partitioning to avoid out of memory error,

which is occurred by high degree vertices congregated on a worker. The large number of parti-

tions increases network I/Os. Nonetheless, the performance gap of range partitioning and

hash partitioning on GraphX is relatively smaller than that on Pregelix thanks to 2D block par-

titioning of GraphX. Graph/H, which uses hybrid-cut on GraphX system, shows smaller time

difference than Pregelix and GraphX do. However, the time difference of Graph/H is larger

than that of FlexGraph because Graph/H with range partitioning also requires a large number

of partitions, similarly to GraphX.

Conclusion

We propose FlexGraph, a scalable graph mining method on distributed systems. FlexGraph

reduces communication and I/O costs in distributed graph computation by two ideas: (1) flexible

edge placement, and (2) flexible storage format. The flexible edge placement suppresses the num-

ber of messages between workers by exploiting different edge placement policies based on types

of vertices. The flexible storage format reduces the size of partitioned subgraphs which is impor-

tant in disk-based graph mining systems. FlexGraph shows up to 64× larger scalability than exist-

ing distributed memory based methods, and consistently outperforms existing disk-based ones.
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