
PROCEEDINGS Open Access

Protein folding in HP model on hexagonal
lattices with diagonals
Dipan Lal Shaw1,2,3, ASM Shohidull Islam1,2, M Sohel Rahman1,2*, Masud Hasan2,4

From The Twelfth Asia Pacific Bioinformatics Conference (APBC 2014)
Shanghai, China. 17-19 January 2014

Abstract

Three dimensional structure prediction of a protein from its amino acid sequence, known as protein folding, is one
of the most studied computational problem in bioinformatics and computational biology. Since, this is a hard
problem, a number of simplified models have been proposed in literature to capture the essential properties of
this problem. In this paper we introduce the hexagonal lattices with diagonals to handle the protein folding
problem considering the well researched HP model. We give two approximation algorithms for protein folding on
this lattice. Our first algorithm is a 5

3-approximation algorithm, which is based on the strategy of partitioning the
entire protein sequence into two pieces. Our next algorithm is also based on partitioning approaches and
improves upon the first algorithm.

Introduction
Protein folding is one of the most studied computational
problems in bioinformatics. Many approximation solu-
tions for this problem are given in the literature by using
simplified, abstract models. There exist a variety of models
attempting to simplify the problem by abstracting only the
“essential physical properties” of real proteins. A lattice
model for folding amino acids is represented by connected
beads in two dimensional lattices or three dimensional
cubic lattices and considers a simplified energy function.
We can categorize the lattice models into two different
classes: Simplified Lattice Models (e.g. [1]) and Realistic
Lattice Models [2]. One of the widely used simplified
lattice model is the HP model which was first introduced
by Dill [1]. In HP model, there are only two types of
beads: H represents a hydrophobic or non-polar bead and
P represents a polar or hydrophilic one. The main force in
the folding process is the hydrophobic-hydrophobic force,
i.e., H-H contacts. For optimal embedding, our main goal
is to maximize the H-H contacts.
The protein folding problem in HP model is NP-hard

[3]. So a number of approximation algorithms have
been developed for the HP model on different lattice

structures. Hart and Istrail gave the first 4-approxima-
tion algorithm for the problem on the 2D square lattice
[4]. Later on, Newman [5] improved the approximation
ratio to 3 considering the conformation as a folded
loop. A 8

3-approximation algorithm for the problem on
the 3D square lattice was given by Hart and Istrail [4].
In [6], the authors introduced square lattice with diago-
nals and presented algorithms that give an approxima-
tion ratio of 26

15 for the two-dimensional and 8
5 for the

three-dimensional lattice. Later, Newman and Ruhl
improved this based on different geometric ideas; they
achieved an improved approximation ratio of 0.37501
[7]. To remove the parity problem of the square and
cubic lattices Agarwala et al. first proposed the triangu-
lar lattice [8]. There, they gave a 11

6 approximation algo-
rithm. For a more generalized version, namely, the 3D
FCC lattice, Agarwala et al. [8] gave an approximation
algorithm having an approximation ratio of 5

3. To allevi-
ate the problem of sharp turns, Jiang and Zhu intro-
duced the hexagonal lattice model and gave an
approximation algorithm having approximation ratio of
6 [9]. A linear time approximation algorithm for protein
folding in the HP side chain model on extended cubic
lattice having an approximation ratio of 0.84 was pre-
sented by Heun [10].

* Correspondence: msrahman@cse.buet.ac.bd
1AℓEDA Group, CSE, BUET, Bangladesh
Full list of author information is available at the end of the article

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

© 2014 Shaw et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:msrahman@cse.buet.ac.bd
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

A number of heuristic and meta-heuristic techniques
have also been applied to tackle the protein folding pro-
blem in the literature. A genetic algorithm for the protein
folding problem in HP model in 2D square lattice was
proposed in [11]. In [12,13], a hybrid genetic algorithm
was presented for HP model in 2D triangular lattice and
3D FCC lattice. The authors in [14] first proposed the
pull move set for rectangular lattices, which is used in the
HP model under a variety of local search methods. They
also showed the completeness and reversibility of the pull
move set for rectangular grid lattices. In [15], the authors
extended the idea of the pull move set in the local search
approach for finding an optimal embedding in 2D trian-
gular grid and the FCC lattice in 3D.
In this paper, we introduce the hexagonal lattices with

diagonals for protein folding. The motivation for introdu-
cing hexagonal lattice comes from the secondary struc-
ture of a protein as follows. The secondary structure of a
protein suggests that, in real protein folding, sharp turn
does not occur frequently. Hexagonal model alleviates
this sharp turn problem [9]. On the other hand, in the
square lattice HP model there is a serious shortcoming,
namely, the parity problem as follows. Due to a grid
structure in a square lattice, contact can be established
between two hydrophobic atoms only if they both are
either on even positions or on odd positions of the
sequence. To address this parity problem, we came up
with the idea of this new lattice model, i.e., hexagonal lat-
tice model with diagonals. In this model contacts may
exist through diagonals (see Figure 1). Notably, these
issues have also been partially alleviated in square lattice
with diagonals and triangular lattice. To this end, our
new model opens a new avenue for further research for
this long standing problem. We present two novel
approximation algorithms for protein folding on this lat-
tice. Our first algorithm is a 5

3-approximation algorithm
for k > 10 where k is the number of sequences of H’s in
the HP string. This algorithm is based on a strategy of
partitioning the entire protein sequence into two pieces.
Our second algorithm partitions the HP string into four
pieces and employs the idea of the first algorithm on the
two halves. This gives a better approximation ratio of 5

4
for k > 22. The latter result is applicable to HP strings
where all the sequences of H’s are of even length greater
than two. The expected approximation ratio of this algo-
rithm would be 5

4 for n > 260 when both odd and even
length sequences of H’s having length greater than two
are allowed. Here, n is the number of total H’s in the HP
string. We also present the idea of folding HP strings
with sequences of H having length less than two. Nota-
bly, in the literature the best approximation ratio for the
hexagonal lattice is 6, which is due to [9], and that for the
square lattice with diagonals is 25

16 [6]. Clearly, the

approximation ratio of our algorithm is better than the
above results.
The rest of the paper is organized as follows. In Sec-

tion ‘Preliminaries’, we introduce the hexagonal lattice
with diagonals and define some related notions. Section
‘Our Approaches’ describes our algorithms and relevant
results. We briefly conclude in Section ‘Conclusion.

Preliminaries
In this section, we present the required notions and
notations to describe the hexagonal lattice model with
diagonals.
Definition The two-dimensional hexagonal lattice

with diagonals is an infinite graph G = (V, E) in Eucli-
dian Space with vertex set V = ℝ2 and edge set
E = {(x, x’)|x, x’ ∈ ℝ2, |x - x’| ≤ 2}, where |.| denotes
the Euclidean norm. An edge e ≡ (x, x’) ∈ E is a non
diagonal edge iff |x - x’| = 1; otherwise it is a diagonal
edge.
We use the well known notion of neighbourhood or

adjacency of graph theory: two vertices are adjacent/
neighbour to each other if they are connected through an
edge. In this connection, the difference between the usual
hexagonal model and our propose model lies in the fact
that a vertex in the former has three neighbours, whereas
in the latter it has additional 9 neighbours, i.e., a total of
twelve neighbours (see Figure 1).

Figure 1 Hexagonal lattice with diagonal. In this figure,
hexagonal lattice with diagonal is illustrated.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 2 of 13

Although the lattice is defined as an infinite graph, we
will be concerned with only a finite sub-graph of it for
each conformation of a protein. The input to the pro-
tein folding problem is a finite string p over the alpha-
bet {P, H} where p = {P}*b1{P}

+b2{P}
+...{P}+bk{P}*. Here

bi ∈ {H}+ for 1 ≤ i ≤ k and let n =
∑k

i=1 |bi|. Here, H
denotes non-polar and P denotes polar amino acids
respectively. Often, in what follows, the input string in
our problem will be refer to as an HP string. An H-run
in an HP string denotes the consecutive H’s and a P-run
denotes consecutive P’s. So, the total number of H-runs
is k and total number of H is n. An H-run of even (odd)
length is said to be an even H-run (odd H-run). We will
now define the valid embeddings and conformation of a
protein into this lattice. An embedding is a self-avoiding
walk inside the grid.
Definition Let p = p1 ... pt be an HP string of length t and

let G = (V, E) be a lattice. An embedding of p into G is a
mapping function f: {1, ..., t} ® V from the positions of the
string to the vertices of the lattice. It assigns adjacent posi-
tions in p to adjacent vertices in G, (f(i), f(i + 1)) ∈ E for all
1 ≤ i ≤ t - 1. The edges (f(i), f (i + 1)) ∈ E for 1 ≤ i ≤ t - 1
are called binding edges. An embedding of p into G is
called a conformation, if no two binding edges cross each
other (see Figure 2).
In an conformation, a vertex occupied by an H (P) will

often be referred to as an H-vertex (a P-vertex). Figure 3
shows an example of a conformation. Throughout the

paper, H-vertices are indicated by filled circle and P-ver-
tices are indicated by blank circles.
Definition Given a conformation j, an edge (x, x’) of

G is called a contact edge, if it is not a binding edge,
but there exist i, j ∈ {1, ..., t} such that f(i) = x, f(j) = x’,
and pi = pj = H. The vertices of the lattice which are
not occupied by an H or a P are called unused vertices.
A binding edge connecting an H with a P is called an
alternating edge. Loss edge is a non-binding edge inci-
dent to an H that is not a contact edge (see Figure 4).
Now, we define the neighbourhood of an edge in the

lattice.
Definition Let e = (x, y) be any edge in G. We define

the neighbourhood N(e) of e as the intersection of the
neighbour of its endpoints x and y.
Neighbourhood of an edge e = (x, y) is shown in Figure

5 for non-diagonal edges, and in Figure 6 for diagonal
edges. As can be seen from the figure for a non-diagonal
edge, the number of possible neighbours is 8 whereas for a
diagonal one, it is 4.

Our approaches
In this section, we present two approximation algorithms
for protein folding in a hexagonal lattice with diagonal.
We start with deducing two upper bounds on the number
of possible contacts for any H in the HP string.

An upper bound
We will deduce a bound based on a simple counting
argument: we will count the number of neighbours of a

Figure 2 Crossing between binding edges; this situation is
forbidden in a valid conformation. In this figure crossing
between binding edges is illustrated. Notice that, this situation is
forbidden in a valid conformation.

Figure 3 A conformation of the string PHPHPHPHPHPHPH on
the lattice. In this figure, a conformation on hexagonal lattice with
diagonal is illustrated.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 3 of 13

vertex in the lattice. We start with the following useful
lemmas.
Lemma 0.1 Let p be an HP string and G = (V, E) is a

hexagonal lattice with diagonals. If p has a conformation
in G, then any H in p can have at most ten contact
edges.
Proof: Every vertex in the lattice G has exactly twelve

neighbours comprising 3 non-diagonal neighbours and 9
diagonal neighbours (see Figure 1). In this conformation,
every H-vertex has exactly two binding edges. Hence 10
edges remain, which could potentially be contact edges.
And hence the result follows. □
Lemma 0.2 Let p be an input string for the problem

and j be a conformation of p. Let e = (x, y) be a loss
edge with respect to j. Then there are at most four alter-
nating edges in N (e).
Proof: If e is a non-diagonal edge, then the neighbour-

hood of e contains eight vertices (see Figure 5). If e is a
diagonal edge, then the neighbourhood of e contains
only four vertices (see Figure 6). Now, each of x and y
can be incident to at most two binding edges. So, there
are at most four binding edges in N (e). It follows
immediately that there can be at most four alternating
edges adjacent to e. □
Now we are ready to present the upper bound.
Lemma 0.3 For a given HP string p, the the total num-

ber of contacts in a conformation j is at most 10n − 1
2 k,

where k is the total number of H-runs and n is the total
number of H.
Proof : From Lemma 0.1, we know that the number

of contacts is at most 10n. In a confirmation one loss

edge incident to H means that it would lose one contact
edge. In what follows we will show that there will be at
least 1

2 k loss edges in j. Since every H-run is preceded
and followed by a total of two alternating edges, it is suf-
ficient to prove that, for each alternating edge in j for p,
we have 1

4 loss edge on average. From Lemma 0.2 we
know that, for every loss edge there will be at most four
alternating edges in its neighbourhood. Alternatively, we
can say that, for every four alternating edges there will be
at least one loss edge, assuming that the alternating edges
are in the neighbourhood of that loss edge. Clearly, if the
alternating edges are not within the neighbourhood
then the number of loss edges will increase. So, for
every alternating edge there will be at least 1

4 loss edge.
There are a total of 2k alternating edges. So, the total
number of loss edges will be, 1

4 × 2 × k = 1
2 k. Hence,

the result follows. □

Figure 5 Eight possible neighbours of the loss edge (x, y). This
figure aids in understanding the proof of Lemma 0.2.

Figure 4 (C, D) and (B, C) are alternating edges; (A, C), (C, F)
and (C, E) are loss edges. This figure aid to identify alternating
edges and loss edges in a confirmation.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 4 of 13

Algorithms and lower bounds
In this section, we present two novel approximation algo-
rithms for the problem. The idea of the first algorithm is
to arrange all H’s occurring in the input string along the
two chains. We arrange the H’s in the prefix of the string
up to the

⌊ n
2

⌋
-th H on the left chain and arrange the rest

of those on the right one (see Figure 7). Then we arrange
the P’s between H’s outside these two chains. The
arrangements of the P-runs along the side-arms of the
two chains are shown in Figure 7. The arrangement in
the left (right) chain can be further divided into four
regions, namely, the left region, the right region, the up
region and the down region (see Figure 8 and Figure 9).
Now we formally present our algorithm in the form of
Algorithm ChainArrangement.
Algorithm ChainArrangement
Input: An HP string p.

1. Set f =
⌊ n

2

⌋
.

2. Suppose F denotes the position in p after the f-th H.
Denote by pref F(p) the prefix of p up to position F and
by suff F(p) the suffix, that starts right after it. Now,

(a) Arrange the H’s in pref F(p) along the left
chain; intermediate P-runs are arranged in the
side-arms of the left chain (see Figure 7).
(b) Arrange the H’s in suff F(p) along the right
chain; intermediate P-runs are arranged in the
side-arms of the right chain (see Figure 7).

Approximation ratio for Algorithm ChainArrangement
Now we focus on deducing an approximation ratio for
Algorithm ChainArrangement. Suppose that m1 =

⌊ n
2

⌋
.

So, according to Algorithm ChainArrangement, the left
(right) chain will contain m1 (m1 or m1 + 1) H’s. We
need to consider two cases, namely, where m1 = 2x + 1
and m1 = 2x, with an integer x > 0. In what follows, we
will use vw-left chain (vw-right chain) to denote a parti-
cular region of the left (right) chain. So, vw could be
one of the 4 options, namely, lR (left region), rR (right
region), uR (up region) and dR (down region). We also
use jCA to refer to the conformation given by Algorithm
ChainArrangement.
case 1: m1 = 2x + 1
The analysis for this case will be easier to under-

stand with the help of Figure 8. Suppose n is even. In
jCA, every vertex in the lR-left chain has at least 5
contacts. There are a total of x - 2 such vertices (see
Figure 8 and Table 1). Every vertex in the rR-left
chain has at least 7 contacts. There are a total of x - 1
such vertices. The two vertices in the uR-left chain
each has at least 4 contacts. One vertex in the dR-left
chain has at least 4 contacts while the other has at
least 3 contacts.
So, the total number of contacts (C) of all the vertices

in the left chain, can be computed as follows:

C ≥ 5 × (x − 2) + 7 × (x − 1) + 4 × 3 + 3

⇒ C ≥ 5x − 10 + 7x − 7 + 15

⇒ C ≥ 12x − 2

⇒ C ≥ 12x + 6 − 8

⇒ C ≥ 6 (2x + 1) − 8

⇒ C ≥ 6m1 − 8

⇒ C ≥ 3n − 8

Since the right chain is symmetric to the left one, both
chains will have the same number of vertices if n = 2m1,
i.e., all the vertices of the right chain will also have at
least C contacts. So the total number of contacts will be
at least 2C or 6n - 16.
If n = 2m1 + 1 then let n1 = n - 1. This n1 vertices will

have at least 6n1 - 16 contacts. The remaining vertex
will have at least 2 contacts. So the total number of con-
tacts will be at least 6(n - 1) - 16 + 2 or 6n - 20.
case 2: m1 = 2x
The analysis of this case will be easy to understand

with the help of Figure 9. Let n is even. In jCA, every
vertex in the lR-left chain has at least 5 contacts. There
are a total of x - 2 such vertices (see Figure 9). Every
vertex in the rR-left chain has at least 7 contacts. There
are a total of x - 2 such vertices. The two vertices in the
uR-left chain each has at least 4 contacts. One vertex in
the dR-left chain has at least 5 contacts while the other
has at least 2 contacts.
So, the total number of contacts (C) of all the vertices

of the left chain can be computed as follows:

Figure 6 Four possible neighbours of edge (x, y) when edge is
diagonal. This figure aids in understanding the proof of Lemma 0.2.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 5 of 13

C ≥ 5 × (x − 2) + 7 × (x − 2) + 4 × 2 + 5 + 2

⇒ C ≥ 5x − 10 + 7x − 14 + 15

⇒ C ≥ 12x − 9

⇒ C ≥ 6m1 − 9

⇒ C ≥ 3n − 9

Since the right chain is symmetric to the left one, both
chains will have the same number of vertices if n = 2m1.
So all the vertices of the right chain will also have at
least C contacts. So the total number of contacts will be
at least 2C or 6n - 18.
If n = 2m1 + 1 and m1 = 2x then let n1 = n - 1. This

n1 vertices will have at least 6n1 - 18 contacts. The
remaining vertex will have at least 2 contacts. So the
total number of contacts will be at least 6(n - 1) -18 + 2
or 6n - 22.
So, combining the two cases, we get that the total num-

ber of contacts is at least 6n - 22. Now we need to take
the alternating edges into our consideration. For every
alternating edge we get two extra contacts for the two
vertices (each having one). So, for n H’s and k alternating

edges we get a total of at least 6n - 22 + 2k contacts.
Hence we get the following approximation ratio A1:

A1 =
10n − 1

2 k

(6n − 22 + 2k)
(1)

From Equation 1 it can be seen that for large n, A1

tends to reach 10
6 . So we compute the value of k so that

our approximation ratio is at most 10
6 as shown below.

10n− k
2

(6n−22+2k) ≤ 10
6

⇒ 10n − k
2 ≤ 10

6 × (6n − 22 + 2k)

⇒ 10n − k
2 ≤ 10n − 110

3 + 10k
3)

⇒ 10k
3 + k

2 ≥ 110
3

⇒ 23k
6 ≥ 110

3

⇒ k ≥ 220
3 ≈ 9.6

So, if the total number of H-runs is greater than 9,
then Algorithm ChainArrangement will achieve an
approximation ratio of 10

6 or 5
3.

Figure 7 Folding of HP string H2P6H4P2H3P3H5P5H3 by Algorithm ChainArrangement. This figure aids in understanding the folding by
Algorithm ChainArrangement.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 6 of 13

Note that, the value of k is dependent on n and the HP
string. We now deduce the expected value of k for a given
HP string. This problem can be mapped into the problem
of Integer Partitioning as defined below. Notably, similar
mapping has recently been utilized in [16] for deriving an
expected approximation ratio of another algorithm.
Problem 0.4 Given an integer Y , the problem of Inte-

ger Partitioning aims to provide all possible ways of writ-
ing Y , as a sum of positive integers.
Note that the ways that differ only in the order of their

summands are considered to be the same partition. A
summand in a partition is called a part. Now, if we con-
sider n as the input of Problem 0.4 (i.e., Y) then each
length of H-runs can be viewed as parts of the partition.
So if we can find the expected number of partitions we
could in turn get the expected value of k. Kessler and
Livingston [17] showed that to get an integer partition of
an integer Y , expected number of required parts is:

√
3Y
2π

× (log Y + 2γ − 2 log

√
π

6
),

where g is the famous Euler’s constant.
For our problem Y = n. If we denote E[P] as the

expected number of H-runs then,

E [P] =

√
6
π

× √
n × (

1
2

log n + γ − log

√
π

6
).

Now, as (1
2 log n + γ − log

√
π
6) ≤ (

√
2π
3 × 1

2 log n) for
n ≥ 5, we can say that

E [P] ≤ √
n × log n.

So the expected value of k is less than or equal to√
n × log n which implies that

√
n × log n ≥ 220

3 or n ≥ 16.
The above findings are summarized in the form of the fol-
lowing theorems.
Theorem 0.5 For any given HP string, Algorithm Chai-

nArrangement gives a 5
3approximation ratio for k > 10,

where k is the total number of H-runs. □
Theorem 0.6 For any given HP string, Algorithm Chai-

nArrangement is expected to achieve an approximation
ratio of 5

3for n ≥ 16, where n is the total number of H. □

Figure 8 Showing different regions of the left chain and the right chain for m1 = 2x + 1. This figure aids in finding the approximation
ratio for Algorithm ChainArrangement.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 7 of 13

An improved algorithm
From Equation 1 we can see that a higher value of k will
give us a better approximation ratio. So, if there are
many short H-runs then we will get better results. This
interesting insight provides us with an idea of an
improved algorithm. However, as will be discussed later,
the better approximation ratio will be applicable only if
every H-run is of length greater than 2. For this improved
algorithm we introduce the notion of inner-left chains,

outer-left chains, inner-right chains and outer-right
chains as shown in Figure 10. Recall that, unlike the cur-
rent algorithm, there were only two chains in our pre-
vious algorithm. The arrangement in the outer-left
(outer-right) chain can be further divided into four
regions, namely, the left region, the right region, the up
region and the down region. The arrangement in the
inner-left (inner-right) chain can be further divided into
three regions, namely, the middle region, the up region
and the down region (see Figure 11). We apply the fol-
lowing procedures. We first put an H of an H-run in the
outer-left chain; the next two H’s of the H-run is placed
in the inner-left chain. Rest of the H’s of the H-run are
placed alternatively on the inner-left chain (inner-right
chain) and on the outer-left chain (outer-right chain) (see
Figure 10). At this point, a brief discussion on the differ-
ence between the arrangements done by the two algo-
rithm is in order. In Algorithm ChainArrangement, we
can place all P’s of an HP string in the side arms.

Figure 9 Showing different portion of left chain and right chain for m1 = 2x . This figure aids in finding the approximation ratio for
Algorithm ChainArrangement.

Table 1 Number of vertices in each region in left chain
jCA

Region m1 = 2x + 1 m1 = 2x

lR-left chain x - 2 x - 2

rR-left chain x - 1 x - 2

uR-left chain 2 2

dR-left chain 2 2

This table illustrates the number of vertices in each region in left chain jCA.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 8 of 13

However in the current algorithm we may have to
arrange some P’s of an HP string in the outer-left chain
or outer-right chain also (see Figure 10). The algorithm is
finally presented below.

Algorithm ImprovedChainArrangement
Input: An HP string p such that every H-run is of length
greater than two.

1. Set f =
⌊

n+k1
4

⌋
, where k1 denotes total number of

odd H-runs.
2. Suppose F denotes the position in p after the f-th
H. Denote by pref F(p) the prefix of p up to position
F and by suff F(p) the suffix, that starts right after it.
Now, place the H-runs of pref F(p) in the outer-left
chain and the inner-left chain as follows.

(a) First put an H of an H-run in the outer-left
chain; then put the next two H’s of it in the
inner-left chain.
(b) Arrange the rest of the H’s alternatively,
between the outer-left chain and the inner-left
chain.
(c) If the current H-run ends at the outer-left
chain, the P-run following it is placed in the
side-arms of the outer-left chain; otherwise, the
H-run ends at the inner-left chain (i.e., odd

H-runs), and hence the first P of the P-run follow-
ing it is placed at the outer-left chain. Finally the
rest of the P’s of the P-run are arranged in the
side-arms of the outer-left chain (see Figure 10).

And place the H-runs of suff F(p) in the outer-right
chain and the inner-right chain as follows.

(a) First put an H of an H-run in the outer-right
chain; then put the next two H’s of it in the
inner-right chain.
(b) Arrange the rest of the H’s alternatively,
between the outer-right chain and the inner-right
chain.
(c) If the current H-run ends at the outer-right
chain, the P-run following it is placed in the side-
arms of the outer-right chain; otherwise the H-run
ends at the inner-right chain (i.e. odd H-runs), and
hence the first P of the P-run following it is placed
at outer-right chain. Finally the rest of the P’s of
the P-run are arranged in the side-arms of outer-
right chain (see Figure 10).

Approximation ratio for Algorithm
ImprovedChainArrangement
In this section, we deduce the approximation ratio for
Algorithm ImprovedChainArrangement. We present our

Figure 10 Folding of HP string H4P4H6PH5P2H4P2H4P4H12 by the Algorith ImprovedChainArrangement. This figure aids in understanding
the folding by Algorithm ImprovedChainArrangement.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 9 of 13

analysis in two separate cases. In Case 1, we only have
even H-runs in HP strings. In Case 2 we may also have
odd H-runs in HP strings. In what follows, we will
use vw-outer-left chain (vw-outer-right chain) to denote
a particular region of the outer-left (outer-right) chain. So,
vw could be one of the 4 options, namely, lR (left region),
rR (right region), uR (up region) and dR (down region).
We also use vw-inner-left chain (vw-inner-right chain) to
denote a particular region of the inner-left (inner-right)
chain. So, vw could be one of the 3 options, namely, mR
(middle region), uR (up region) and dR (down region).
Furthermore we use jICA to refer to the conformation
given by Algorithm ImprovedChainArrangement.
HP string contains only even H-runs
Suppose that all the H-runs are of even length. Let n =
4m2 and m2 = 2x + 1, where x > 0 is an integer. In
jICA every vertex in the mR-inner-left chain has at
least 10 contacts (see Figure 11 and Table 2). There
are a total of 2x - 3 such vertices. One vertex in the
uR-inner-left chain and one vertex in the dR-inner-left
chain has at least 4 contacts each. The other vertices in

the uR-inner-left chain and dR-inner-left chain has at
least 7 contacts each.
So, the total number of contacts of all the vertices of

the inner-left chain, C1 can be computed as follows:

C1 ≥ 10 × (2x − 3) + 2 × 4 + 2 × 7

⇒ C1 ≥ 20x − 8

⇒ C1 ≥ 20x + 10 − 18

⇒ C1 ≥ 10 (2x + 1) − 18

⇒ C1 ≥ 10m2 − 18

Since the inner-left chain and the inner-right chain are
symmetric to each other, all the vertices of the inner-
right chain will also have at least C1 contacts. So the
total number of contacts in the inner-left chain and the
inner-right chain will be at least 2C1 or 20m2 - 36.
Now, let us consider the outer-left chain and outer-

right chain. Every vertex in the lR-outer-left chain has at
least 5 contacts (see Figure 11 and Table 2). There are a
total of x - 1 such vertices. Every vertex in the rR-outer-
left chain has at least 7 contacts. There are a total of x - 2
such vertices. One vertex in the uR-outer-left chain and
one vertex in the dR-outer-left chain has at least 4 con-
tacts each. Each of the other vertices in the uR-outer-left
chain and dR-outer-left chain has at least 5 contacts.
So, the total number of contacts of all the vertices of

outer-left chain, C2 can be computed as follows:

C2 ≥ 5 × (x − 1) + 7 × (x − 2) + 2 × 4 + 2 × 5

⇒ C2 ≥ 5x − 5 + 7x − 14 + 18

⇒ C2 ≥ 12x − 1

⇒ C2 ≥ 12x + 6 − 7

⇒ C2 ≥ 6 (2x + 1) − 7

⇒ C2 ≥ 6m2 − 7

Since the outer-left chain and the outer-right chain
are symmetric to each other, all the vertices of the
outer-right chain will also have at least C2 contacts. So
total number of contacts in the outer-left chain and the
outer-right chain will be at least 2C2 or 12m2 - 14. So,
the number of total contacts will be at least 20m2 - 36 +
12m2 - 14 = 32m2 - 50 = 8n - 50.

Figure 11 Showing diiferent region of Inner-left-chain and
Outer-left-chain. This figure aids in finding the approximation ratio
for Algorithm ImprovedChainArrangement.

Table 2 Number of vertices in each region in inner-left
chain and outer-left chain jICA

Region Outer-left chain Inner-left chain

Left region x - 1 N/A

Right region x - 2 N/A

Middle region N/A 2x - 3

Up region 2 2

Down region 2 2

This table illustrates the number of vertices in each region in inner-left chain
and outer-left chain jICA.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 10 of 13

So far we have assumed n = 4m2 and m2 = 2x + 1.
Now we consider the case where n = 4m2 and m2 = 2x
such that x > 0 is an integer. For this case, we can do a
similar analysis to compute the total number of con-
tacts, which will be the same, i.e., 8n - 50. So when all
the H-runs have even length, we get that the total num-
ber of contacts is at least 8n - 50. Now we consider the
alternating edges. For every alternating edge we get two
extra contacts for the two corresponding vertices (each
having one). So, for n number of H’s and k alternating
edges we get a total of at least 8n - 50 + 2k contacts.
Hence we get the following approximation ratio A2,

A2 =
10n − 1

2 k

(8n − 50 + 2k)
(2)

From Equation 2 it can be seen that for large n, A2

tends to reach 10
8 . So we are going to find the value of k

for which our approximation ratio will be at most 10
8 or

10n− k
2

(8n−50+2k) ≤ 10
8

⇒ 10n − k
2 ≤ 10

8 × (8n − 50 + 2k)

⇒ 10n − k
2 ≤ 10n − 125

2 + 5k
2)

⇒ 5k
2 + k

2 ≥ 125
2

⇒ 6k
2 ≥ 125

2

⇒ k ≥ 125
2 ≈ 20

.

10n− k
2

(8n−50+2k) ≤ 10
8

⇒ 10n − k
2 ≤ 10

8 × (8n − 50 + 2k)

⇒ 10n − k
2 ≤ 10n − 125

2 + 5k
2)

⇒ 5k
2 + k

2 ≥ 125
2

⇒ 6k
2 ≥ 125

2

⇒ k ≥ 125
2 ≈ 20

Note that, the value of k is dependent on n and the HP
string. We now deduce the expected value of k for a given
HP string such that each H-run is even and has length
greater than two. Again, this problem can be mapped into
the problem of Integer Partitioning, and hence, as before,
the expected value of k is less than or equal to

√
n × log n

which implies
√

n × log n ≥ 125
6 or n ≥ 22. The above

results can be summarized in the form of following
theorems.
Theorem 0.7 For any given HP string such that each

H-run is even and has length greater than two, Algo-
rithm ImprovedChainArrangement achieves an approxi-
mation ratio of 5

4 for k > 20 where k is the total number
of H-runs. □
Theorem 0.8 For any given HP string such that each

H-run is even and has length greater than two, it is

expected that Algorithm ImprovedChainArrangement
would achieve an approximation ratio of 5

4for n ≥ 22
where n is the total number of H’s. □
HP string contains both odd H-runs and even H-runs
So far we have assumed that the given HP string con-
tains only even H-runs. Now we are going to consider
the case where both odd and even H-runs are present.
Let k1 is the total number of odd H-runs. According to
the Steps 3 and 4 of Algorithm ImprovedChainArrange-
ment, we have to put P in the outer-left chain or outer-
right chain for each odd H-run. So, the total number of
P’s in the outer-left chain or the outer-right chain is k1.
Let, n2 = n + k1. We will loose at most 14 (10) contacts
for each P in the left (right) region of the outer-left
chain and same will happen for the outer-right chain.
So, on an average, we lose 12k1 contacts for such place-
ment of P due to odd H-runs. So, from Equation 2, we
get the following expected approximation ratio A3,

A3 =
10n− 1

2 k

(8n2−50+2k−12k1)

⇒ A3 =
10n− 1

2 k

(8n+8k1−50+2k−12k1)

⇒ A3 =
10n− 1

2 k

(8n−50+2k−4k1)

Assuming that an H-run can be odd or even with
equal probability, we get k = 2k1. Then we can simplify

as follows: A3 =
10n− 1

2 k

(8n−50+2k−2k) =
10n− 1

2 k

(8n−50) .

This gives us an approximation ratio for the case
when H-runs could be both odd and/or even under the
assumption that H-run could be odd or even with equal
probability. Now we are going to find the value of k so
that our expected approximation ratio will be at most 10

8
or 5

4.

10n− k
2

(8n−50) ≤ 10
8

⇒ 10n − k
2 ≤ 10

8 × (8n − 50)

⇒ 10n − k
2 ≤ 10n − 500

8

⇒ k
2 ≥ 500

8

⇒ k ≥ 1000
8 = 125

Note that, the value of k is dependent on n. To get an
idea on the expected behaviour of our algorithm, we
now deduce the expected value of k for a given HP
string such that H-runs can be even or odd and has
length greater than two. Again, this problem can be
mapped into the problem of Integer Partitioning, So the
expected value of k is less than or equal to

√
n × log n

which implies
√

n × log n ≥ 125 or n ≥ 260. The results
discussed above can be summarised in the form of fol-
lowing theorem.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 11 of 13

Theorem 0.9 For any given HP string such that
H-runs can be even or odd and has length greater than
two, it is expected that Algorithm ImproveChainArrange-
ment gives a 5

4approximation ratio for n ≥ 260.
H-runs of length 1 and 2
Although in our analysis we excluded the HP-string
having H-runs with length less than 3, below we discuss,
how we can arrange such H-runs to get a folding using
our approach. We can arrange HP-strings with H-runs
of length 2 in the inner-left chain (inner-right chain) as
shown in Figure 12. For each H-run of length two we
will lose 24 contacts. If the total number of such H-runs
is k2, then we will lose at most 24k2 contacts. If we have
HP strings having H-runs of length one, we can arrange
this at the outside of the outer-left chain (outer-right
chain) as shown in Figure 12. For each H-run of length
one we will lose 20 contacts. If the total number of such
H-runs is k3, then we will lose at most 20k3 contacts.

Conclusion
In this paper, we have introduced hexagonal lattice with
diagonals for the protein folding problem in the HP
model. We have presented two novel approximation
algorithms for protein folding in this lattice. Our first
algorithm is a 5

3-approximation algorithm for k > 10
where k is the number of H-runs in the HP string. Our
second algorithm gives a better approximation ratio of 5

4
for k > 22. The latter result is applicable to HP strings

where the H-runs are of even length greater than two.
The expected approximation ratio of this algorithm
would be 5

4 for n > 260 when both odd and even length
H-runs having length greater than two are allowed (n is
the number of total H’s in the HP string). Notably the
best approximation ratio for hexagonal lattice is 6,
which is due to [9], and the approximation ratio for
square lattice with diagonal is 25

16[6]. Clearly the approxi-
mation ratio of our algorithm is better than the above
result.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both Shaw and Islam perceived the study, proposed the models and the
algorithms. Both of them along with Rahman conducted and verified the
analysis. The total work was supervised by Rahman and Hasan.
All authors wrote and approved the manuscript.

Acknowledgements
The authors would like to thank Md. Mahbubul Hasan and Shuvasish
Karmaker for fruitful discussion. The authors gratefully acknowledge the
fruitful comments and suggestions of the anonymous reviewers which aided
in improving the presentation of the paper. This research work was partially
supported by a CodeCrafters-Investortools Research Grant for CSE BUET.

Declaration
The publication costs for this article were partially funded by a small grant
from BRAC University, Bangladesh and a CodeCrafters-Investortools Research
Grant. A significant part of the costs have been borne by the authors.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 2, 2014: Selected articles from the Twelfth Asia Pacific

Figure 12 Folding of H-runs having length one and two . This figure aids in finding the approximation ratio for Algorithm
ImprovedChainArrangement.

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 12 of 13

Bioinformatics Conference (APBC 2014): Bioinformatics. The full contents of
the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/15/S2.

Authors’ details
1AℓEDA Group, CSE, BUET, Bangladesh. 2Department of CSE, BUET, Dhaka
1000, Bangladesh. 3Department of CSE, BRAC University, Dhaka, Bangladesh.
4Department of Computer Science, College of Computer Science and
Engineering, Taibah University, Madina Munawwarah, Saudi Arabia.

Published: 24 January 2014

References
1. DilL KA: Theory for the folding and stability of globular proteins. 1985,

24:1501-1509.
2. Duan Y, Kollman PA: Computational protein folding: From lattice to all

atom. IBM research journal 1998.
3. Crescenzi P, Goldman D, Papadimitriou C, Piccolboni A, Yannakakis M: On the

complexity of protein folding. Journal of Computational Biology 1998, 5(3).
4. Hart W, Istrail S: Fast protein folding in the hydrophobic-hydrophilic

model within three-eighths of optimal. Journal of Computational Biology
1996, 3(1):53-96.

5. Newman A: A new algorithm for protein folding in the hp model.
Symposium on Discrete Algorithms(SODA) 2002, 876-884.

6. Bockenhauer HJ, Bongartz D: Protein folding in the hp model on grid
lattices with diagonals. Discrete Applied Mathematics 2007, 155:230-256.

7. Newman Alantha, Ruhl Matthias: Combinatorial problems on strings with
applications to protein folding. In LATIN of Lecture Notes in Computer
Science. Volume 2976. Springer; 2004:369-378.

8. Agarwala R, Batzogloa S, Dancik V, Decatur S, Hannenhalli S, Farach M,
Muthukrishnan S, Skiena S: Local rules for protein folding on a triangular
lattice and generalized hydrophobicity in the hp model. Journal of
Computational Biology 1997, 4(3):276-296.

9. Jiang Minghui, Zhu Binhai: Protein folding on the hexagonal lattice in the
hp model. J Bioinformatics and Computational Biology 2005, 3(1):19-34.

10. Heun Volker: Approximate protein folding in the hp side chain model on
extended cubic lattices. ESA 1999, 212-223.

11. Unger Ron, Moult John: Genetic algorithms for protein folding
simulations. Journal of Molecular Biology 1993, 231:75-81.

12. Hoque Tamjidul, Chetty Madhu, Dooley SLaurence: A hybrid genetic
algorithm for 2d fcc hydrophobic-hydrophilic lattice model to predict
protein folding. Australian Conference on Artificial Intelligence 2006, 867-876.

13. Hoque Tamjidul, Chetty Madhu, Sattar Abdul: Protein folding prediction in
3d fcc hp lattice model using genetic algorithm. IEEE Congress on
Evolutionary Computation 2007, 4138-4145.

14. Lesh N, Mitzenmacher M, Whitesides S: A complete and effective move
set for simplified protein folding. 7th Annual International Conference on
Research in Computational Molecular Biology (RECOMB) 2003 ACM Press;
2003, 188-195.

15. Böckenhauer Hans-Joachim, Dayem Ullah MAbu Zafer,
Kapsokalivas Leonidas, Steinhöfel Kathleen: A local move set for protein
folding in triangular lattice models. WABI 2008, 369-381.

16. Sohidull Islam ASM, Sohel Rahman M: On the protein folding problem in
2d-triangular lattices. Algorithms for Molecular Biology 2013, 8(30).

17. Kessler I, Livingston M: The expected number of parts in a partition of n.
Monatshefte für Mathematik 1976, 81(3):203-212.

doi:10.1186/1471-2105-15-S2-S7
Cite this article as: Shaw et al.: Protein folding in HP model on
hexagonal lattices with diagonals. BMC Bioinformatics 2014 15(Suppl 2):S7.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Shaw et al. BMC Bioinformatics 2014, 15(Suppl 2):S7
http://www.biomedcentral.com/1471-2105/15/S2/S7

Page 13 of 13

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S2
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S2
http://www.ncbi.nlm.nih.gov/pubmed/3986190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9773342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9773342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8697239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8697239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9278060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9278060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15751110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15751110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8496967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8496967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24279437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24279437?dopt=Abstract

	Abstract
	Introduction
	Preliminaries
	Our approaches
	An upper bound
	Algorithms and lower bounds
	Approximation ratio for Algorithm ChainArrangement
	An improved algorithm
	Algorithm ImprovedChainArrangement
	Approximation ratio for Algorithm ImprovedChainArrangement
	HP string contains only even H-runs
	HP string contains both odd H-runs and even H-runs
	H-runs of length 1 and 2

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declaration
	Authors’ details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

