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Abstract

Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in
neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying
aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive,

3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the
difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be

substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition
and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography

connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based
connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in
the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data.
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Introduction

Brain connectivity mapping has emerged as a major focus of
neuroscience research, in part due to the recognition that altered
neural connectivity may contribute to a number of neurologic and
psychiatric diseases (Konrad and Eickhoff 2010; Lo et al. 2010; Sku-
dlarski et al. 2010; Xue et al. 2014). Several techniques have been
used to explore structural brain connectivity in animal models in-
cluding anterograde/retrograde tracer studies (Swanson 1982; Oh
et al. 2014), two-photon tomography (Ragan et al. 2012), diffusion
magnetic resonance imaging (MRI) tractography (Mori et al. 1999),
and polarized light imaging (Larsen et al. 2007; Axer et al. 2011).
Neuronal tracer studies have become the de facto gold standard
for brain connectivity mapping because of their high sensitivity
and specificity; however, these studies are limited by the

requirement for stereotaxic tracer injections, 2D (slice) imaging,
and the inability to study multiple pathways within a single brain.

Diffusion MRI tractography—the 3D tracing of water diffusion
pathways measured by MRI—offers a noninvasive method for
brain connectivity mapping. Tractography is generated from ana-
tomically defined seed regions of arbitrary size (above image
resolution), shape, and number, allowing a complete connectiv-
ity map, or connectome, to be developed from a single brain. Des-
pite these benefits, diffusion tractography has historically been
limited to the study of gross connectivity between distant ana-
tomic regions, and generally fails to accurately represent meso-
scale brain connectivity (i.e., ~100 pm resolution) (Oh et al.
2014). This limitation is primarily due to the low spatial reso-
lution and low signal-to-noise ratio (SNR) of diffusion MRI, and
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the difficulty in resolving subvoxel fiber complexity (Fillard et al.
2011).

Three distinct technologies have emerged that can dramatic-
ally increase the sensitivity of diffusion tractography for detect-
ing mesoscale brain connectivity: 1) imaging of fixed ex vivo
specimens treated with MRI contrast agents allows considerably
higher spatial resolution, higher SNR, and longer acquisition
times than would be possible with in vivo imaging (Johnson
et al. 2012; Lerch et al. 2012); 2) advanced diffusion acquisition
and processing techniques like Q-ball (Tuch 2004), spherical de-
convolution (Tournier et al. 2004), and diffusion spectrum im-
aging (Wedeen et al. 2008) provide accurate modeling of
multiple fiber populations within a single image voxel; and 3)
probabilistic tractography techniques yield increased sensitivity
for detecting nondominant fiber pathways (Behrens et al. 2007).
The combination of these 3 techniques represents a novel meth-
od for exploring brain connectivity in postmortem brain speci-
mens from virtually any species, although it is currently most
practical in small animal models due to imaging hardware and
scan time requirements.

Neuronal connections in the mouse brain have been investi-
gated more thoroughly than in virtually any other mammalian
species. The Allen Brain Atlas (ABA) mouse brain connectome
is one of the most comprehensive attempts to map mouse
brain connectivity, and includes data from nearly 500 unique an-
terograde viral neuronal tracer injections in the wild-type C57BL/
6 mouse brain (Oh et al. 2014). These data provide a unique oppor-
tunity to explore the similarities and differences between micro-
scopic diffusion tractography and neuronal tracer data in the
mouse brain.

Here, we present the first comprehensive diffusion tractogra-
phy connectome of the mouse brain at microscopic resolution,
and a brain-wide comparison of tractography data with neuronal
tracer data from the ABA. The tractography-based connectome
has several advantages over neuronal tracer-based connec-
tomes; 1) all pathways are derived from a single brain instead
of different brains for each pathway; 2) tractography seed regions
are based on anatomy rather than stereotaxic tracer injections;
and 3) the data are 3D, and interactive, so users can explore the
connectivity of arbitrarily defined seed regions at will. However,
tractography-based connectivity data are fundamentally differ-
ent from neuronal tracer-based data, and suffers from several
limitations that complicate its interpretation. For example, trac-
tography is based on water diffusion orientation, which is an
imperfect surrogate for underlying axonal orientation, and is in-
capable of distinguishing anterograde versus retrograde connec-
tions. To explore these differences and limitations, we compare
microscopic probabilistic tractography data with neuronal tracer
data from all 488 wild-type tracer injection sites available
through the ABA using 3D colocalization and connectivity-
based analyses. The data presented here can serve as a reference
database for future tractography studies of the mouse brain and
as a test of the fundamental limits of the diffusion tractography
technique.

Materials and Methods

Specimen Preparation

Animal experiments and procedures were carried out in compli-
ance with the Duke University Institutional Animal Care and Use
Committee. Two wild-type adult male C57BL/6 mice weighing ap-
proximately 27 g were chosen for imaging. The animals were per-
fusion-fixed and doped with gadolinium contrast agent using the

active staining technique described more thoroughly elsewhere
(Johnson et al. 2012). In short, the animals were transcardially
perfused with a solution of 10% neutral buffered formalin and
50 mM gadoteridol (ProHance, Bracco Diagnostics). Immediately
prior to imaging, the brain specimens, still intact inside the neu-
rocranium, were placed in a custom-made MRI compatible tube
and immersed in liquid fluorocarbon (Galden PFPE, Solvay
Plastics).

Diffusion MRI

Imaging was performed on a 9.4-Tesla small animal imaging system
controlled by an Agilent Vnmzi]J 4 console. A custom-made silver so-
lenoid coil was used for radiofrequency transmission and reception.
Diffusion imaging was accomplished using a 3D diffusion-weighted
spin-echo pulse sequence with repetition time (TR) = 100 ms, echo
time (TE) = 15 ms, and b-value = 4000 s/mm? The acquisition matrix
was 568 x 284 x 228 over a 244 mmx 12.2mmx 9.8 mm field of
view, resulting in a native isotropic image resolution of 43 pm.
The diffusion sampling protocol included 120 unique diffusion
directions (Koay 2011; Koay et al. 2011) and 11 nondiffusion-
weighted (b0) measurements (i.e., one b0 every 12 diffusion mea-
surements). Total acquisition time was 235 h. Bore temperature
was controlled with a chilled water pump and monitored with a
fiber-optic probe for the duration of the experiment (Supplemen-

tary Fig. 1).

Data Processing

Data processing was done on a high-performance computing clus-
ter with 96 physical cores and 1.5 TB of RAM. After image recon-
struction, all 131 image volumes were registered to the first b0
image using Advanced Normalization Tools (ANTs) affine trans-
formation (Avants et al. 2011) to correct for the linear portion of
eddy current distortions. Scalar image volumes were recon-
structed using FSL’s DTIFIT-weighted least-squares tensor estima-
tion (Behrens et al. 2003). Fiber data for probabilistic tractography
were reconstructed using FSL's BEDPOSTX (Behrens et al. 2007)
with a maximum of 4 fiber orientations per voxel.

Anatomic Segmentation

Image data were acquired with the brain inside the skull to pre-
serve native spatial relationships. A brain tissue mask was gener-
ated using a previously described automated skull-stripping
algorithm (Badea et al. 2007) based on interactive thresholding
and binary morphological operations. Automated atlas-based
anatomic segmentation was performed as previously described
(Sharief et al. 2008) using 2 different reference label sets: the
Waxholm Space atlas of the mouse brain (Johnson et al. 2010)
for subcortical labels, and the Ullmann et al. atlas of the mouse
neocortex (Ullmann et al. 2013) for cortical labels. After auto-
mated image segmentation, the resulting labels were manually
corrected to ensure anatomic accuracy. Labels were split along
the midline to generate separate label sets for the left and right
hemispheres of the brain.

Probabilistic Tractography

Probabilistic tractography was performed using FSL’s PROB-
TRACKX (Behrens et al. 2007). Tracking parameters included
5000 samples per voxel, a step size of 21 pm, and a curvature
threshold of 45°. Probabilistic tractography maps were individu-
ally generated for the left and right halves of each of the 148 ana-
tomic labels (i.e., 296 total tractography datasets per specimen).
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For waypoint connectivity studies, one or more label masks were
used as target regions, and only fibers passing through these tar-
gets were included in output maps.

Connectivity Analysis

All 296 seed region tractography maps from each specimen were
used to generate tractography-based connectivity estimates. For
a given seed region A, the corresponding tractography dataset re-
presents all connections from region A to the rest of the brain. To
estimate connectivity from region A to another region B, all fibers
from A that fall within B were summed, regardless of path or ter-
mination point. Connectivity estimates were then normalized by
the volume of the seed region to correct for differences in the
total number of tractography seeds per structure. Connectivity
estimates were used to populate a 296 x 296 weighted, directed,
connectivity matrix. Connectivity matrix data are available for
download in multiple formats at http:/www.civm.duhs.duke.
edu/mouseconnectome/.

Comparison with Allen Brain Atlas Neuronal Tracer data

To assess similarities and differences between tractography and
neuronal tracer data, we performed 3D colocalization and con-
nectivity-based comparisons of microscopic diffusion tractogra-
phy data with ABA neuronal tracer data. A separate set of
tractography maps was generated from the 488 wild-type tracer
injection sites included in the ABA connectome. First, diffusion
MRI datasets were registered to the ABA mouse brain atlas
image using ANTs automated image registration. Tracer injection
sites were modeled as spherical regions of interest (ROIs)

centered at the injection coordinates provided by the ABA, with
volume equal to the tracer injection volume. Injection site ROIs
were then transformed back to the native space of the diffusion
MRI data and used to generate probabilistic tractography maps.
Finally, tractography maps were transformed into ABA space
for direct comparison with tracer data.

Colocalization analysis was used to assess the 3D overlap be-
tween spatially normalized probabilistic tractography images
and ABA neuronal tracer projection energy images. Projection en-
ergy is defined as the product of density (number of pixels with
tracer signal) and intensity (total tracer signal per pixel). 3D pro-
jection energy data were downloaded in from the ABA website
(http://connectivity.brain-map.org/) in Metalmage format, and
converted to NIfTI format for further analysis. Both tractography
and projection energy data were log-transformed and normal-
ized between zero and one. Colocalization was assessed as
voxel-wise Spearman rank correlation between the 2 image vo-
lumes within a whole-brain mask. Nonparametric correlation
was used because we did not assume a linear relationship be-
tween tracer projection energy and probabilistic tractography
fiber count.

Injection site ROI tractography data were also used
for connectivity-based comparisons with ABA tracer data.
Tractography-based connectivity estimates between injection
site ROIs and targets from the ABA mouse brain anatomic seg-
mentation were generated using the previously described meth-
ods. A 469 injection site ROI by 592 anatomic region (296 on each
side of the brain) weighted, directed, connectivity matrix was
generated, corresponding to the tracer-based connectivity matrix
provided by the ABA (Oh et al. 2014). Connectivity data were log-
transformed, normalized between zero and one, and compared
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Figure 1. A schematic of the tractography data-processing pipeline. (A) Representative anatomic image. Arrows indicate the mesencephalic trigeminal tract (red) and
granule cell layer of the dentate gyrus (yellow). (B) Representative diffusion data (color fractional anisotropy). (C) A magnified view of the ventrolateral hippocampus
shows estimates of the diffusion orientation distribution function at each voxel. (D) Multiple fiber orientations estimated from diffusion data. (E) Automatically
generated brain mask. (F) Automated atlas-based segmentation of 148 distinct anatomic structures. (G) The seed region for the right hippocampal formation.

(H) Volume-rendered probabilistic tractography data for the seed region shown in (G).
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using Spearman rank correlation at 3 different levels of detail. First,
the complete 469 x 592 connectivity matrices were compared dir-
ectly (seed-level comparison). Connectivity matrices were then
binarized using a series of thresholds that preserved 10-100% of
connections. The resulting binary connectivity matrices were com-
pared using receiver operatic characteristic (ROC) analysis with tra-
cer-based connectivity as ground truth. To assess similarity on a
mid-level scale, total connectivity from all seed ROIs/injection
sites to a given anatomic structure were summed (structure-level
comparison). Finally, for the coarsest-scale analysis, anatomic
regions were collapsed (summed) into their parent structures ac-
cording to the ABA ontology (parent-level comparison).

Interexperiment Diffusion Tractography Differences

All tractography-based connectivity experiments were repeated
on a second mouse brain specimen. The resulting connectivity
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matrix was compared with both the ABA neuronal tracer-based
connectivity matrix and to the first tractography-based connect-
ivity matrix using the methods described in the previous section.
For tractography to tractography connectivity matrix compari-
sons, ROC analysis was replaced by simple percent agreement
and percent disagreement since ground truth is not currently de-
fined for tractography.

Results

Probabilistic Tractography Mapping of the
Whole Mouse Brain

The diffusion MRI data used for this study are, to our knowledge,
the highest spatial resolution diffusion MRI data ever reported
for the whole mouse brain. At an isotropic voxel size of 43 pm,
the spatial resolution is approximately 30000 times higher

Figure 2. Representative seed region connectivity maps displayed as color overlays on standard anatomic MR images. The seed region is displayed in red along the top row
within a transparent surface rendering of the brain. Seven different coronal slices are shown for each connectivity map, as indicated by the slice diagram in the top left
corner. Connectivity data are displayed with a log;o scale color map (top right). LGN, lateral geniculate nucleus; Acb, accumbens nucleus; S1BF, primary somatosensory

cortex barrel field; M1, primary motor cortex; Aul, primary auditory cortex.
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resolution than a typical human diffusion MRI scan, and 10 times
higher after accounting for the approximately 3000-fold differ-
ence in total brain volume (Herculano-Houzel 2009). At this reso-
lution, many microscopic features, including cell layers and
small white matter tracts, can be identified (Fig. 1A,B, arrows).
The final dataset consists of approximately 6.5 million in-brain
voxels, and 121 distinct diffusion measurements per voxel, for
a total data volume of nearly 800 million points. Each diffusion
measurement is a discrete sample of the diffusion probability
distribution function within a voxel (Fig. 1C) from which the
underlying fiber orientation(s) are estimated (Fig. 1D). Multiple
fiber orientations per voxel are possible, if supported by the
data, up to a maximum of four. In these data, over 72% of brain
voxels were found to have 2 or more fiber populations (Supple-
mentary Fig. 2), suggesting that accounting for multiple fiber po-
pulations is essential, even at high spatial resolution.

After initial diffusion data processing, probabilistic tractogra-
phy connectivity maps were systematically generated for 148 dif-
ferent anatomic regions in each hemisphere of the mouse brain
(296 total). First, automated skull-stripping was used to segment
brain tissue from surrounding muscle and connective tissue. The
resulting brain mask (Fig. 1E) includes the optic nerves and ret-
inae, which are embryologic derivatives of the ventral forebrain
and thus considered to be part of the brain. The skull-stripped
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brain image data were automatically segmented using 148 refer-
ence labels (Fig. 1F) and manually edited to ensure anatomic ac-
curacy. The label set was divided along the midline to produce
separate labels for each hemisphere, which were then used as
seed regions for probabilistic tractography (Fig. 1G,H).

Individual connectivity maps were generated for each seed re-
gion (i.e., 296 connectivity maps total, 148 for each hemisphere).
These seed region connectivity maps represent all connections
from a given region to the rest of the brain. The value of a given
voxel is the total number of tracks originating from the seed re-
gion that pass through or terminate in that voxel, which is used
as a surrogate for relative connection probability. The absolute
connectivity value depends on the number of voxels in the
seed region and the number of times each voxel is seeded for
tractography. We observed a connection probability range of
10" across the entire dataset after normalizing for the total num-
ber of voxels in each seed region. Five representative seed region
connectivity maps are presented as color overlays on top of
standard anatomic MR images (Fig. 2). These same seed region
connectivity maps can be visualized as 3D volume renderings
(Supplementary Fig. 3). Probabilistic tractography was able to re-
produce a majority of connections that have been previously
shown with other methods including corticospinal motor path-
ways (Fig. 2; M1, rows 1-7) and interhemispheric connections

E}-ﬁ

Figure 3. A probabilistic tractography connectivity matrix for the mouse brain. Relative connectivity estimates between 148 anatomic regions are displayed with a log;o
scale color map (top left). Tractography seeds (rows) and targets (columns) are organized based on their developmental origins as indicated by colored surface renderings
of parent structures along the top and left side of the figure. The complete structure list is presented in order in Supplementary Table 1.
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between the primary auditory cortices (Fig. 2; Aul, row 5). Many
tractography maps also included connections that have not
been previously observed (e.g., callosal connections from the lat-
eral geniculate nucleus), which could be attributed to false posi-
tives, or to the fundamental differences between connectivity
mapping techniques. Complete connectivity maps for all 296
seed regions are available online for visualization and download
at http:/www.civm.duhs.duke.edu/mouseconnectome/.

Connectivity Matrix Analysis

Probabilistic tractography data were used to generate brain-wide
connectivity matrices. To facilitate visualization, seed regions
were organized into groups based on their embryologic origins
as outlined by the Puelles et al. (2013) developmental ontology
of the mouse brain. The complete hierarchical organization
for the 148 anatomic structures used in this study is presented
in Supplementary Table 1. One notable deviation from the
Puelles et al. ontology is the inclusion of a separate parent
group for white matter structures. This was done because
many white matter pathways span multiple embryologically
distinct anatomic regions (Fig. 3).

Connectivity estimates were generated for all 296 seed region
tractography datasets and all 296 anatomic regions. Importantly,
because seeding was done independently for each region, the
connectivity estimate between seed region A and target region
B is not necessarily the same as that between seed region B and
targetregion A. As a result, 4 different connectivity matrices were
generated—right seeds to right targets, right seeds to left targets,
left seeds to right targets, and left seeds to left targets (Supple-
mentary Fig. 4). The average of all 4 connectivity matrices reflects
bilateral connectivity (Fig. 2). In general, ipsilateral connectivity
was higher than contralateral connectivity, which is consistent
with previous studies of the mouse brain (Oh et al. 2014). Right
and left connectivity maps showed strong mirror image similar-
ity, suggesting a high degree of lateral symmetry in mouse brain
connections. Small lateral asymmetries were observed in the an-
terior pallium, prepontine hindbrain, and forebrain white matter
tracts (Supplementary Fig. 5). Although there is evidence for lat-
erally asymmetric connectivity in the human brain (Toga and
Thompson 2003), the extent to which these asymmetries are con-
served in mice is unknown.

Waypoint Connectivity Mapping

One feature that distinguishes diffusion MRI tractography from
other brain connectivity mapping techniques is the ability to
map only the pathways that connect 2 different regions. To accom-
plish this, tractography is generated at random from a seed region,
and only those tracks that pass through a given target region (way-
point) are retained. This allows visualization of the specific path-
way connecting 2 regions without extraneous connectivity to
other regions. For example, we generated probabilistic tractogra-
phy connecting the basolateral amygdaloid nucleus (BLA) to the
ipsilateral cingulate cortex area 32 (A32, sometimes referred to
as the prelimbic cortex) (Fig. 4). This pathway is believed to be in-
volved in a variety of psychiatric diseases including schizophrenia
and depression (Rosenkranz and Grace 2002). Probabilistic tracto-
graphy shows connections coursing from the BLA, through the
ventral striatum, then medially and dorsally toward the dorsal cin-
gulate cortex (Fig. 4; right). These results are consistent with previ-
ous tractography experiments in the mouse (Gutman et al. 2012),
and with neuronal tracer studies in the mouse and rat (Vertes
2004; Oh et al. 2014). The 3D nature of diffusion tractography

Figure 4. Waypoint connectivity map between the basolateral amygdaloid
nucleus (BLA) and cingulate cortex area 32 (A32). (A-C) Three-dimensional
renderings of the pathway are displayed within a transparent surface rendering
of the brain from lateral (A), dorsal (B), and oblique (C) perspectives. Surface
renderings of the BLA (blue) and A32 (green) are included for reference. Data are
also displayed as color overlays on 4 coronal slices (right) as indicated by the slice
diagram (top right). The color map used for overlays is the same as in Figure 2.

data allows this pathway to be visualized and manipulated in 3D
as a volume-rendered object (Fig. 4A-C). Without the constraints
of a waypoint, the pathway of interest is obscured by multiple
other pathways emanating from the BLA (Supplementary Fig. 6).

Waypoint connectivity mapping can also employ more than
one target region, further increasing the specificity of the result-
ing connectivity maps. For example, waypoint connectivity map-
ping of the superior colliculus with the lateral geniculate nucleus
and contralateral retina as waypoints yields only the retinotectal
portion of the visual pathway (Supplementary Fig. 7). Once again,
these tractography results closely resemble results from other
connectivity mapping methods (Linden and Perry 1983; Pautler
et al. 1998). Different combinations of seed regions and waypoint
regions yield a virtually infinite number of possible connectivity
maps that can be generated from these data.

Comparison with the ABA Mouse Connectome

A separate set of tractography experiments was used to allow dir-
ect comparison with neuronal tracer data from the ABA. Probabil-
istic tractography data were generated from ROIs corresponding
to each of the 488 wild-type neuronal tracer injection sites in-
cluded in the ABA mouse connectivity atlas (Fig. 5A). These
data were used for 3D colocalization and connectivity-based
comparisons with corresponding ABA neuronal tracer datasets.

Colocalization analysis for both tractography datasets (i.e., 488
comparisons x 2) revealed weak but significant correlation be-
tween neuronal tracer data and probabilistic tractography
(Fig. 5A,B). In total, 966/976 (99%) of correlations reached statistical
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Figure 5. Colocalization analysis of spatially normalized tractography and ABA neuronal tracer data. (A) Schematic of the processing steps used to generate tractography
data corresponding to the 488 wild-type mouse brain tracer injection experiments provided by the ABA. MRI images were registered to the ABA atlas image, and the
resulting transforms were used to propagate ROIs modeling tracer injection sites into MRI space. Injection site ROIs were used to generate tractography data, which
was compared directly with tracer data. (B) 3D colocalization of data from 3 representative sites. Tractography is shown in red, and ABA projection energy in green.
Correlation values and injection site/ROI names and ABA ID numbers are included for each image.

significance, with 957/976 (98%) surviving Bonferroni correction
for multiple comparisons. The average Spearman r-value was
r=0.23+0.11 with a range from r=-0.06 to 0.51 (Fig. 5B). Only 11/
976 (1%) comparisons yielded negative correlation values.
The average seed volume for comparisons with nonsignificant
P-values and negative r-values was 0.03 and 0.16 mL, respectively,
while the average seed volume for all comparisons was 0.25 mL.
Tractography and neuronal tracer colocalization for all 488 injec-
tion sites/seed regions can be visualized interactively in 3D at
http:/www.duhs.duke.edu/mouseconnectome/.

Colocalization analysis measures the 3D overlap of pathways,
but does not assess structural connectivity directly. The ABA pro-
vides a weighted, directed, connectivity matrix between 469 tracer
injection sites and 296 anatomic regions on either side of the
mouse brain (i.e., 592 total regions). An analogous tractography-
based connectivity matrix was generated using tractography
data generated from the 469 ROIs corresponding to the injection
sites used for the ABA matrix (Fig. 6A). Tractography- and tracer-
based connectivity matrices were compared at 3 levels of anatom-
ic detail. Correlation at the finest, seed-to-target level was r =0.42
(P <<0.05). The accuracy of tractography-based connectivity esti-
mates at the finest level was further assessed using ROC analysis
with tracer-based connectivity as the ground truth (Fig. 6B). Trac-
tography yielded a true-positive rate of 61% and a false-positive
rate of 26%. For the mid-level (structure-level) connectivity com-
parison, where all connections to a given target structure were
summed, the correlation between tractography and tracer-based
connectivity increased to r=0.71 (P << 0.05) (Fig. 6C). Finally, for

the coarsest, parent-level comparison, where all connections to
each anatomic parent structure were summed, correlation in-
creased to near unity (r=0.99, P << 0.05) (Fig. 6D). Relative to neuron-
al tracer data, tractography tended to underestimate connectivity in
the cortex, and overestimate connectivity in the midbrain and di-
encephalon (Fig. 6C,D). Graph data are available at http:/www.
duhs.duke.edu/mouseconnectome/.

Interexperiment Diffusion Tractography Differences

Connectivity matrices generated from 2 different mouse brain dif-
fusion acquisitions were compared with each other to assess inter-
study similarity (Supplementary Fig. 8). Correlation of weighted
connectivity matrices revealed an r-value of r = 0.81 (P << 0.05), in-
dicating a relatively strong relationship. With optimal threshold-
ing, the 2 tractography studies had 87.5% agreement (12.5%
disagreement).

Discussion

A growing body of evidence suggests that altered brain connectiv-
ity is present in a variety of neurologic and psychiatric diseases,
yet identifying affected pathways in animal models remains diffi-
cult with conventional techniques. Neuronal tracer studies, while
significantly more specific than tractography, are labor intensive,
require an a priori hypothesis of the affected pathway, and are
not amenable to studying multiple pathways within the same
brain. Neuronal tracer-based connectomes, like the ABA mouse
connectome, require the sacrifice of hundreds of animals,
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Figure 6. Connectivity-based analysis of tractography and ABA neuronal tracer data. (A) A 469 injection site ROI by 592 anatomic region connectivity matrices generated
from ABA tracer data (left) and probabilistic tractography data (right). Matrix correlation (seed-level) was r = 0.46. (B) ROC analysis of tractography accuracy with ABA tracer
data as ground truth. (C) Mid-level (structure-level) comparison of tractography-based connectivity with tracer-based connectivity. Tractography-based connectivity
estimates are shown in red, tracer-based estimates in green, and overlap between the two in yellow. (D) Coarse (parent-level) comparison similar to (C) but collapsed
into ontologically defined parent structures. Parent structure abbreviations are consistent with the ABA.

thousands of hours of imaging, and all of the associated monetary
expenses. For these reasons, it is currently impractical to use neur-
onal tracer studies to screen for aberrant connectivity. In contrast,
high-quality diffusion tractography data, have several features
that are well suited to use as a survey tool: 1) they offer sensitive,
whole-brain coverage within a single animal; 2) they are 3D, and
thus do not require 3D reformatting; 3) data analysis is easily auto-
mated, including anatomic segmentation, fiber tracking, and con-
nectivity estimation; and 4) the entire process is nondestructive to
the tissue, thus allowing virtually any ex vivo brain imaging tech-
nique to be performed on the same tissue after MRI acquisition.

False-positive results, though generally not an issue for survey
tests, can be reduced to some extent with post hoc waypoint con-
nectivity mapping. Once a potentially affected pathway is identi-
fied, results can be subsequently validated in the same
specimen using more specific, destructive brain imaging techni-
ques like conventional histology (Calabrese, Du et al. 2014) or elec-
tron microscopy (Calabrese and Johnson 2013).

Despite its many benefits, diffusion MRI of fixed ex vivo speci-
mens also presents several unique challenges. Formalin fixation
causes an approximately 4-fold reduction in brain diffusivity,
thus requiring 4-fold higher b-value for in vivo equivalent
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diffusion weighting. Fortunately, brain tissue diffusivity reduc-
tion appears to be uniform and proportional, thus preserving dif-
fusion anisotropy and the ability to estimate fiber orientations
from diffusion MRI of fixed specimens (Sun et al. 2005; Dyrby
et al. 2011). Gadolinium doping does not affect diffusion MRI dir-
ectly, but, in conjunction with fixation, causes dramatic reduc-
tions in tissue T1 and T2 relaxation times, which must be
accounted for with careful pulse sequence design.

The data presented here required over 1 week for acquisition;
however, the total time required to generate a brain-wide tracto-
graphy connectivity map is comparable with the time required
for a single neuronal tracer study, and could be reduced even fur-
ther with faster MRI acquisition techniques and/or improved
computational power. For example, we chose a relatively simple
Cartesian diffusion spin-echo pulse sequence with <10% data-
acquisition time efficiency (readout time/TR). A more time-efficient
echo-planar or spiral pulse sequence could substantially reduce
total scan time at the expense of a potential increase in image ar-
tifacts. In addition, multispecimen parallel imaging techniques
could dramatically reduce acquisition time for group studies
(Dazai et al. 2011). There is also considerable debate over the
number of diffusion measurements necessary for multifiber esti-
mation methods (Tournier et al. 2013; Calabrese, Badea et al.
2014). The values chosen for this study (120 diffusion measure-
ments at b =4000 s/mm?) meet or exceed recommendations for
optimal ex vivo diffusion imaging (Dyrby et al. 2011; Tournier
et al. 2013), so it is reasonable to assume that similar results
could be generated from a more sparsely sampled, and therefore
faster to acquire dataset. Conversely, these results could poten-
tially be improved with increased diffusion sampling at multiple
b-values, particularly, when coupled with advanced diffusion
sampling and reconstruction schemes like diffusion spectrum
imaging (Wedeen et al. 2008) or generalized g-sampling imaging
(Yeh et al. 2010).

Despite the high quality of the diffusion tractography data
presented here, we observed relatively poor correspondence
with neuronal tracer data, particularly with regard to 3D coloca-
lization analysis. Connectivity results were slightly more similar;
however, strong correlation results were only observed in the
coarsest, parent structure-level connectivity analysis. Previous
comparisons of tractography and tracer data have yielded similar
results (Thomas et al. 2014). This is perhaps not surprising since
tractography and neuronal tracer studies are fundamentally dif-
ferent. Anterograde viral tracers, like those used for the ABA
mouse connectome, are unidirectional, follow individual axons,
and do not cross synapses. In contrast, tractography is bidirec-
tional, follows bundles of axons, and is not necessarily con-
strained by synapses. Connections present in tractography but
absent in anterograde tracer data are presumed to be false posi-
tives, but could also represent true retrograde connections or true
multisynaptic connections. Further, the fact that tractography is
dissimilar from neuronal tracer data does not preclude its use as
a method for structural brain mapping or detecting neuropathol-
ogy. However, the biological interpretation of results remains the
single greatest challenge to the diffusion tractography commu-
nity, and further study, particularly in animal models where a
gold standard for neuronal connectivity exists, will be essential
for addressing this challenge.

As researchers continue to explore the role of brain con-
nectivity in human health and disease, mouse models will un-
doubtedly remain a primary system for new discoveries, and
new tools will be needed to identify subtle connectivity varia-
tions. The small animal diffusion tractography techniques pre-
sented here can provide brain-wide connectivity maps at

microscopic image resolution and may prove useful in identify-
ing aberrant connectivity in models of neurologic and psychiatric
diseases. High-quality mouse tractography datasets, like those
presented here, will be essential for understanding the neural
basis of tractography, through direct comparisons with more spe-
cific, invasive connectivity methods like neuronal tracer studies
and electrophysiology.

Asis frequently the case, new research methods are not unam-
biguously superior to previous methods but rather provide new,
different, and often complementary information. Diffusion MRI
tractography is unlikely to supplant other small animal connectiv-
ity mapping techniques, but it does provide a nondestructive
method for 3D, brain-wide connectivity mapping. Small animal
diffusion tractography has already been used to identify specific
connectivity-related pathology in a variety of disease models (Mol-
drich et al. 2010; Kerbler et al. 2012; Harsan et al. 2013), and the
brain-wide connectivity assessment methods described here
should serve to accelerate such findings. With attention to proper
interpretation of results, and validation, diffusion tractography
should continue to be a valuable tool for discovering new connect-
ivity alterations in small animal models of human brain diseases.

Supplementary Material

Supplementary material can be found at: http:/www.cercor.
oxfordjournals.org.
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