
RESEARCH Open Access

Sex-specific IL-6-associated signaling
activation in ozone-induced lung
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Abstract

Background: Acute ozone (O3) exposure has known deleterious effects on the respiratory system and has been
linked with respiratory disease and infection. Inflammatory lung disease induced by air pollution has demonstrated
greater severity and poorer prognosis in women vs. men. Both severe damage to the bronchial-alveolar epithelium
and malfunctioning of bronchial-blood barrier have been largely attributed to the pathobiology of O3-induced
inflammatory response, but the associated mechanisms in the male and female lung remain unknown.

Methods: Here, we investigated sex-based differential regulation of lung interleukin-6 (IL-6) and its downstream
signaling pathways JAK2/STAT3 and AKT1/NF-κB in response to O3 exposure in a mouse model. We exposed male
and female mice (in different stages of the estrous cycle) to 2 ppm of O3 or filtered air (FA) for 3 h, and we harvested
lung tissue for protein expression analysis by Western blot.

Results: We found significant up-regulation of IL-6 and IL-6R in females and IL-6 in males in response to O3 vs.
FA. Ozone exposure induced a significant increase in STAT3-Y705 phosphorylation in both females and males.
Males exposed to O3 had decreased levels of JAK2, but increased JAK2 (Y1007+Y1008) phosphorylation, while
females exposed to O3 showed significant up-regulation of both proteins. Both NF-κB (p105/p50) and AKT1
protein levels were significantly increased only in females exposed to O3. In addition, females exposed to O3

during proestrus displayed increased expression of selected genes when compared to females exposed to O3

in other estrous cycle stages.

Conclusions: Together, our observations indicate a sex-based and estrous cycle-dependent differential lung
inflammatory response to O3 and involvement of two converging JAK2/STAT3 and AKT1/NF-κB pathways. To
our knowledge, this is the first study specifically addressing the impact of the estrous cycle in O3-associated
lung inflammatory pathways.
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Background
Ground-level ozone (O3) is a photochemical air pollutant
and a powerful oxidant formed by the action of sunlight on
nitrogen oxides and reactive hydrocarbons, both of which
are emitted by motor vehicles and industrial sources [1].
Exposure to O3 even within the safe concentration range as
per the standard definition by Environmental Protection
Agency can affect breathing and lung function and has

deleterious effects on pulmonary innate immunity [2–4].
Acute O3 exposure is toxic to the respiratory system and
has been linked with respiratory tract infections, asthma,
chronic obstructive pulmonary disease, cystic fibrosis, lung
cancer, and cardiovascular disease, with relatively poor
prognosis and higher mortality in women than in men
[5–11]. Studies point to gender-based differences in inci-
dence, risk, severity, and pathology of certain environ-
mental lung diseases in women as compared to men
[12–14]. Growing evidence indicated that females are
more susceptible to the toxic effects of tobacco [15, 16],
have worse respiratory symptoms [17, 18], and higher
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airway responsiveness [19] compared to males. Several
studies have proposed circulating hormone levels as po-
tential regulatory factors of immune responses in the fe-
male [20–23]. However, the mechanisms associated with
the differential lung disease outcomes in men and women
are still poorly understood.
Acute O3 exposure and manifestation of clinical respira-

tory symptoms can primarily be attributed to formation of
cytotoxic products and acute cellular injury through
oxidative stress, causing biochemical and physiological
changes in the lung epithelium. These are mediated by
an increased production of reactive oxygen species, ac-
cumulation of oxidized biomolecules and activation of
inflammatory processes, both locally and systemically
[24, 25]. The pathologic response of acute O3 exposure
associated oxidative stress is yet to be completely eluci-
dated. However, investigations indicate a crucial involve-
ment of O3-associated damage to the bronchial-alveolar
epithelium as a potential mechanism [26, 27]. Malfunction
of the bronchial-alveolar epithelium and bronchial-blood
barrier due to loss of integrity of tight junctions may in-
crease immune cell infiltration and inflammatory response.
Predominantly, studies have indicated involvement of two
groups of markers in O3 pathobiology, the free arachidonic
acid and its metabolites [28, 29] and cytokines [30–32].
Cytokines have been implicated as potential mediators
of lung oxidative injury [33, 34]. Recent studies have
shown induction of acute-phase cytokines including IL-1,
IL-2, IL-6, IL-8, and TNF-α, as well as the neutrophil
chemotactic factors keratinocyte-derived chemokine (KC),
MIP-2, and LPS-induced CXC chemokine (LIX), following
O3 exposures [30, 35–39]. Many of these secreted factors
are recognized downstream products of activation of
the innate immune system. These data suggest that
downstream activation of pro-inflammatory factors play
an important role in response to ambient O3; however,
the stimulus leading to activation of these pro-inflammatory
factors and their cross-talk remains poorly understood.
Previously, we have reported that exposure of O3 sig-

nificantly decreased survival of male and female mice
after bacterial infection [27]. Infected females exposed to
O3 had more pronounced lung inflammation and higher
mortality rates compared to males [29]. Our additional
work demonstrated that gonadal hormones are respon-
sible for the observed sex differences, indicating that
both sex and air pollution may alter the effectiveness of
lung host defense [28]. Recently, we have showed sex
differences in the messenger RNA (mRNA) expression
of cytokines, chemokines, and oxidative stress-related
enzymes in the lungs of filtered air (FA, control) and O3

exposed animals [39].
The cytokine IL-6 demonstrates pleiotropy and func-

tional redundancy. We have previously demonstrated
that neutrophil-attracting chemokines (Ccl20, Cxcl5, and

Cxcl2) and pro-inflammatory cytokine IL-6 mRNAs are
most affected by ozone inhalation in both males and fe-
males, where females had significantly higher expression
levels compared to the males [39]. It has also been reported
that ozone increases airway neutrophil recruitment, which
contributes to acute lung injury and hyper-reactivity and
promotes inflammatory lung diseases [40–43]. The ability
of alveolar macrophages to express IL-6 after ozone expos-
ure and importance of IL-6 in pulmonary neutrophil
recruitment following ozone exposure raises an important
question, whether IL-6 and its sequential downstream path-
ways exhibit any sex differences and whether those differ-
ences can be accounted for higher susceptibility and
severity of lung diseases in females. In an effort to study the
overall effects of O3 in mediating acute inflammation and
oxidative stress in the lungs of males and females, the
present study evaluates a possible role of JAK2/STAT3 and
AKT1/NF-κB signaling in relation to IL-6 and IL-6R
response and the effects of the female estrous cycle in
O3-induced lung inflammation.
At the cellular level, an inflammatory event is primarily

characterized by an initial influx of neutrophils, which is
subsequently replaced by inflammatory monocytes and T
cells. IL-6 has been shown to be a key player in both acute
and chronic inflammation and can dictate the profile of
leukocyte recruitment during the inflammatory response
via selective regulation of inflammatory chemokines/
cytokines and apoptotic events. This paper extends
our previous work and describes the possible role of
IL-6R-associated signaling pathways in the inflammatory
response to O3 in the male and female lung, as well as the
contributions of the female estrous cycle to this regulation.
Our results indicate a sex-based differential, and estrous
cycle stage-dependent lung immune response to O3, and
involvement of two converging JAK2/STAT3 and AKT1/
NF-κB pathways in O3-associated lung inflammation. To
our knowledge, this is the first study specifically address-
ing the impact of the female reproductive cycle in lung in-
flammatory pathways associated with O3 exposure.

Methods
Animals
Adult male and female mice (8 weeks of age) from the
C57BL/6 background were purchased from JAX labora-
tories (Bar Harbor, ME) and housed and maintained in a
12/12 h light/dark cycle, with food and water available
ad libitum. The Pennsylvania State University College of
Medicine Institutional Animal Care and Use Committee
approved all procedures.

Assessment of estrous cycle stage in female mice
Assessment of estrous cycle stages in females was per-
formed by the analysis of vaginal secretions for at least
three consecutive cycles, as described previously [44].
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Briefly, mice were restrained, and their vaginas were
flushed daily with PBS. For vaginal cytology, a smear of
vaginal flush was prepared and observed unstained
under light microscope at ×10 and ×40 objectives. De-
termination of the estrous cycle stage was decided on
the proportion among three cell types: nucleated epi-
thelial cells, leucocytes, and cornified cells, where (A)
proestrus was defined for a smear containing predom-
inantly nucleated epithelial cells; (B) estrus was defined
for a smear with majority of anucleated cornified cells;
(C) metestrus, for smears consisting of the three types
of cells; and (D) diestrus, in smears consisting predom-
inantly of leucocytes. Animals that did not cycle regu-
larly were excluded from the experiment.

Ozone exposure
Male and female mice (at different stages of estrous cycle)
were exposed to 2 ppm of O3 or FA (control) for 3 h, in
different chambers as described previously [22, 45, 46].
Briefly, mice were exposed to ozone or to FA at the same
time in separate chambers. Each chamber consisted of a
3.7-L closed glass vessel into which glass containers with
wire mesh tops were placed. The temperature was main-
tained at 25 °C, humidity was set to 50 %, and the flow
rate was 15 L/min through each (FA and ozone) chamber.
Air flow and ozone content were continually monitored.
All FA and ozone exposures were conducted in parallel.
Animals were sacrificed 4 h after exposure, and total lung
tissue was collected for Western blot experiments (n = 22
animals per group). Blood was also collected in female
mice for serum hormone determinations.

Assessment of serum hormone levels in female mice
Serum levels of progesterone were determined by ELISA
(cat #MBS266675, MyBioSource, San Diego, CA) at the
Penn State Hershey core endocrine laboratory. Serum
levels of luteinizing hormone (MBS041300, MyBioSource,
San Diego, CA) were also determined by ELISA.

Protein extraction and Western blot
RIPA buffer (Thermo, Rockford, IL) was used to extract
protein from pulverized lung tissues, following the man-
ufacturer’s protocol. Protein concentration was deter-
mined by BCA assay (Thermo, Rockford, IL), and 20 μg
were used for Western blot analysis with the respective
antibodies. For densitometric quantitation of Western
blots, images were digitized by using a BioRad GS800
calibrated densitometer and analyzed on BioRad Quan-
tity One software (Penn State Hershey Core Facility).
Quantification for the difference in the expression was
assessed following normalization to GAPDH.

Primary and secondary antibodies
Antibodies to IL-6 (AB6672) and IL-6R (AB83053),
STAT3-unphosphorylated (AB68153), STAT3 Serine 727
phosphorylation (AB86430), STAT3 Tyrosine 705 phos-
phorylation (AB76315), JAK2-unphosphorylated (AB98031
and AB108596), JAK2 phosphorylated-Y1007+Y1008
(AB68268), NF-κB-p105/p50 (AB32360), AKT1 (AB32505),
and GAPDH (AB9485) were obtained from Abcam
(Cambridge, MA). All HRP-conjugated secondary anti-
bodies were from Invitrogen.

Statistical analysis
A total of 88 animals were used in the study with 22 ani-
mals in each study arm comprising of male filter air, male
ozone, female filter air, and female ozone. Based on the
assessment of estrous cycle stages, females (n = 44)
were further sub-grouped in non-proestrus female filter
air, non-proestrus female ozone, proestrus female filter
air, and proestrus female ozone categories. The differences
between O3- and FA-exposed animals were first compared
by Kruskal-Wallis analysis of variance of the densitometric
data of Western blot experiments. The values are depicted
as mean with SD. p ≤ 0.05 were considered significant,
where, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001
are the levels of statistical significance compared to con-
trols. Statistical analyses were performed using GraphPad
Prism version 6.00 for Mac OS X, GraphPad Software (La
Jolla California USA, www.GraphPad.com). To further as-
certain the effect of sex and female estrous cycle stages, a
two-way ANOVA analysis was performed using SPSS ver-
sion 22.0 (IBM Corp. Released 2013. IBM SPSS Statistics
for Windows, Version 22.0. Armonk, NY: IBM Corp.) on
IL6, IL6R, STAT3 (unphosphorylated), STAT3 Serine 727
and Tyrosine 705 phosphorylation, JAK2 and JAK2 (Y1007
+Y1008) phosphorylation, NF-κB (p105/p50), and AKT1
expression with filter air and ozone exposure. Residual ana-
lysis was performed to test for the assumptions of the two-
way ANOVA. Outliers were assessed by inspection of a
boxplot, normality was assessed using Shapiro-Wilk’s nor-
mality test for each cell of the design, and homogeneity of
variances was assessed by Levene’s test. Analyses of simple
main effects (the effect of one factor at each level of the
other factor) for sex and estrous cycle stage compared to
the type of exposure were performed with statistical
significance receiving a Bonferroni adjustment and being
accepted at the p < 0.025 level. For the interpretation of
significant interactions, it was also investigated if the inter-
action effects were ordinal or disordinal.

Results
Ozone-associated lung inflammation and up-regulation of
IL-6 and IL-6R expression
With one-way analysis of variance, ozone exposure re-
sulted in a significant increase in the expression levels of
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IL-6 in both male and female mice compared to the
matched controls exposed to FA (Fig. 1a, b, Additional
file 1: Figure S1-a). However, the expression of IL-6 was
significantly higher in females in comparison to males
exposed to O3 (Fig. 1a, b). A two-way ANOVA on the
sex and ozone/filter air exposure showed statistically
significant interaction F (1, 52) = 6.55, p = 0.013, partial
η2 = 0.112. An analysis of simple main effects for sex
and exposure type with Bonferroni adjustment revealed
statistically significant difference in IL6 expression
score between filter air and ozone exposure. Ozone-ex-
posed females had a significant increase in the IL6 score
of 0.566 (95 % CI, 0.313 to 0.819) points compared to the
ozone-exposed males, F (1, 52) = 20.11, p = <0.0005, partial
η2 = 0.279 (Table 1). Similarly, females with ozone expos-
ure had significant increase in the IL6 score of 2.641 (95 %
CI, 2.38 to 2.89) points compared to the females exposed
to the filter air, F (1, 52) = 438.0, p = <0.0005, partial
η2 = 0.894 (Table 1). Interaction effect of sex and ex-
posure for IL6 expression is given in Fig. 1c, d.
To evaluate the contributions of female hormones to

this regulation, we further investigated IL-6 levels in fe-
males exposed to O3 or FA at different stages of the es-
trous cycle. Serum hormone measurements performed
at the time of sample collection (between 6:00 pm and
7:00 pm) indicated higher levels of luteinizing hormone
and progesterone in proestrus vs. other estrous cycle
stages (Table 2), as previously described [47]. Thus, for
the purpose of this work, we performed comparisons of
lung protein expression levels in proestrus vs. the rest of
the days combined. With one-way analysis of variance,
we found that exposure to O3 on the day of proestrus
had a slightly higher but non-significantly different effect
on lung IL-6 expression than exposure in non-proestrus
cycle stages (Fig. 1h, i); however statistically, the O3 ex-
posed non-proestrus cycle stage had a significant in-
crease in the expression due to much lower IL-6 levels
in the matched FA-exposed group. A two-way ANOVA
examining the effects of estrous cycle stages and filter
air/ozone exposure on the IL6 expression, showed statis-
tically significant interaction F (1, 24) = 4.45, p = 0.045,
partial η2 = 0.156. An analysis of simple main effects for
estrous cycle stages and exposure type with Bonferroni
adjustment revealed statistically significant difference
in IL6 expression score. Proestrus females exposed to
ozone had a significant increase in the IL6 score of
2.462 (95 % CI, 1.97 to 2.95) points compared to the fil-
tered air-exposed proestrus females, F (1, 24) = 108.67,
p = <0.0005, partial η2 = 0.819 (Table 1). Similarly,
ozone-exposed proestrus females had a significant in-
crease in the IL6 score of 1.245 (95 % CI, 0.757 to
1.732) points compared to the non-proestrus females
exposed to ozone, F (1, 24) = 27.77, p = <0.0005, partial
η2 = 0.536 (Table 1). Filter air/ozone exposure on each

sex alone and estrous cycle type alone in relation to the
IL6 is given in Table 1. Interaction effect of exposure
and estrous cycle stages for IL6 expression is given in
Fig. 1j, k.
Levels of IL-6R exerted an overall increase (Additional

file 1: Figure S1-b) and a marked difference in expression
between male and female mice exposed to O3 or FA
(Fig. 1a, e). With one-way analysis of variance, the basal
levels of IL-6R in female mice exposed to FA were lower
compared to male mice. With O3 exposure, we found little
to no change in the expression levels of IL-6R in male
mice, while a very significant increase in female mice
(Fig. 1a, e). A two-way ANOVA on the sex and ozone/fil-
ter air exposure showed statistically significant interaction
F (1, 52) = 37.94, p = <0.0005, partial η2 = 0.422. An
analysis of simple main effects for sex and exposure
type with Bonferroni adjustment revealed statistically
significant difference in IL6R expression score between
filter air and ozone exposure. Ozone-exposed females
had a significant increase in the IL6R score of 1.409
(95 % CI, 0.984 to 1.835) points compared to the
ozone-exposed males, F (1, 52) = 44.13, p = <0.0005,
partial η2 = 0.459 (Table 3). Similarly, females with
ozone exposure had a significant increase in the IL6R
score of 1.785 (95 % CI, 1.36 to 2.211) points compared
to the females exposed to the filter air, F (1, 52) = 70.84,
p = <0.0005, partial η2 = 0.577 (Table 3). Interaction
effect of sex and exposure for IL6R expression is given
in Fig. 1f, g.
In concordance with the IL-6 expression, one-way ana-

lysis of variance of female mice exposed to O3 at differ-
ent estrous cycle stages showed a slightly higher, but not
significant, expression of IL-6R in proestrus compared
to non-proestrus (Fig. 1h, l). A two-way ANOVA exam-
ining the effects of estrous cycle stages and filter air/
ozone exposure on the IL6R expression, showed statisti-
cally insignificant interaction F (1, 24) = 0.076, p = 0.785,
partial η2 = 0.003. However, an analysis of simple main
effects for estrous cycle stages and exposure type with
Bonferroni adjustment revealed statistically significant
difference in IL6R expression score. Non-proestrus
female exposed to ozone had a significant increase in
the IL6R score of 2.592 (95 % CI, 2.104 to 2.954) points
compared to the filtered air-exposed non-proestrus fe-
male, F (1, 24) = 150.94, p = <0.0005, partial η2 = 0.863
(Table 3). Likewise, filtered air-exposed proestrus females
had a significant increase in the IL6R score of 0.659
(95 % CI, 0.234 to 1.084) points compared to the non-
proestrus females exposed to the filter air, F (1, 24) =
10.240, p = 0.004, partial η2 = 0.299 (Table 3). Filter air/
ozone exposure on each sex alone and estrous cycle
type alone in relation to the IL6R is given in Table 3.
Interaction effect of exposure and estrous cycle stages
for IL6R expression is given in Fig. 1m, n.
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Fig. 1 IL6 and IL6R expression and effect of ozone exposure. Left panels: a Representative Western blot images of IL6 and IL6R expression in
males and females with filter air and O3 exposure; univariate analysis of IL6 (b) and IL6R (e), expression in males and females, with FA and O3

exposure; two-way ANOVA interaction effect of sex (c) and exposure (d), for IL6 expression and sex (f) and exposure (g), for IL6R expression. Right
panels: h Representative Western blot images of IL6 and IL6R expression in estrous cycle stages of females, with filter air and O3 exposure;
univariate analysis of IL6 (i) and IL6R (l), expression in estrous cycle stages of females, with FA and O3 exposure. Two-way ANOVA interaction effect of
exposure (j) and estrous cycle stages (k), for IL6 expression and exposure (m) and estrous cycle stages (n), for IL6R expression. Univariate analysis data
expressed as Ranks-Kruskal-Wallis test of densitometric analysis; the values are depicted as mean with SD, where *p≤ 0.05, **p≤ 0.01, and ***p≤ 0.001
are the levels of statistical significance compared to controls (n= 6–8 per group). Two-way ANOVA for IL6 and IL6R analysis is given in Tables 1 and
3, respectively
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Ozone-associated lung inflammation and expression of
STAT3 unphosphorylated and STAT3 Serine 727 and
Tyrosine 705 phosphorylation
In order to establish the possible role of STAT3 in rela-
tion to the IL-6 and IL-6R expression, we further investi-
gated the expression levels of STAT3 unphosphorylated,
as well as STAT3 Serine 727 (p-S727) and Tyrosine 705
(p-Y705) phosphorylation in mice exposed to O3 or FA.
The expression levels were further compared between
males and females, and the impact of exposure in differ-
ent female estrous cycle stages was assessed.
One-way analysis of variance revealed no difference in

the levels of lung unphosphorylated STAT3 with O3 or
FA exposure (Additional file 1: Figure S1-c). Similarly,
no sex differences were observed in either groups
(Fig. 2a, b). Similarly, a two-way ANOVA on the sex and
ozone/filter air exposure showed statistically insignificant
interaction F (1, 52) = 1.765, p = 0.190, partial η2 = 0.033.
However, analysis of simple main effects for sex and expos-
ure type with Bonferroni adjustment revealed statistically
significant but marginal difference in unphosphorylated

STAT3 expression score between filter air and ozone ex-
posure. Ozone-exposed females had a very marginal but
significant increase in the STAT3 score of 0.135 (95 % CI,
0.003 to 0.267) points compared to the ozone-exposed
males, F (1, 52) = 4.22, p = 0.045, partial η2 = 0.075 (Table 4),
whereas males with filter air exposure had an insignificant
increase in the STAT3 score of 0.098 (95 % CI, 0.034 to
0.230) points compared to the males exposed to the ozone,
F (1, 52) = 2.217, p = 0.143, partial η2 = 0.041 (Table 4).
Interaction effect of sex and exposure for unphosphorylated
STAT3 expression is given in Fig. 2c, d.
However, one-way analysis of variance of different fe-

male estrous cycle stages exerted a significant difference.
We found that STAT3 unphosphorylated levels were
significantly decreased in females exposed to O3 in
non-proestrus cycle stages, whereas females exposed in
proestrus showed a marked increase with O3 exposure
compared to the matched control females (Fig. 2k, l). A
two-way ANOVA examining the effects of estrous cycle
stages and filter air/ozone exposure on the unphosphory-
lated STAT3 expression showed statistically insignificant

Table 1 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages, and exposure for IL6 expression

Univariate tests: dependent variable: IL6

df F Sig. Partial η2

Analysis of gender and exposure Exposure FA 1, 52 0.751 0.390 0.014

Ozone 1, 52 20.113 <0.0005 0.279

Sex F 1, 52 438.088 <0.0005 0.894

M 1, 52 299.716 <0.0005 0.852

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus 1, 24 55.368 <0.0005 0.698

Proestrus 1, 24 108.679 <0.0005 0.819

Exposure FA 1, 24 5.228 0.031 0.179

Ozone 1, 24 27.777 <0.0005 0.536

Pairwise comparisons: dependent variable: IL6

(I) Sex (J) Sex Mean difference
(I–J)

95 % CI for difference

Lower bound Upper bound

Analysis of gender and exposure Exposure FA F M 0.109 0.144 0.363

Ozone F M 0.566 0.313 0.819

Sex F Ozone FA 2.641 2.388 2.895

M Ozone FA 2.185 1.932 2.438

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus Ozone FA 1.758 1.270 2.245

Proestrus Ozone FA 2.462 1.975 2.950

Exposure FA Proestrus Non-proestrus .540 0.053 1.028

Ozone Proestrus Non-proestrus 1.245 0.757 1.732

Table 2 Serum hormone levels in female mice

Proestrus Estrus Metestrus Diestrus Non-proestrus combined

LH (mIU/ml) 11.0 ± 0.9 3.4 ± 0.4 4.4 ± 0.5 3.8 ± 0.5 3.9 ± 0.3*

Progesterone (ng/ml) 5.6 ± 1.3 2.3 ± 0.4 2.1 ± 0.3 2.0 ± 0.2 2.2 ± 0.2*

*p < 0.05 vs. proestrus

Mishra et al. Biology of Sex Differences  (2016) 7:16 Page 6 of 22



interaction F (1, 24) = 14.57, p = 0.001, partial η2 = 0.378.
Analysis of simple main effects for estrous cycle stages
and exposure type with Bonferroni adjustment revealed
statistically significant difference in unphosphorylated
STAT3 expression score. Proestrus females exposed to
ozone had a significant increase in the STAT3 score of
0.414 (95 % CI, 0.201 to 0.628) points compared to the
filtered air-exposed proestrus females, F (1, 24) = 16.113,
p = 0.001, partial η2 = 0.402 (Table 4). Likewise, ozone-
exposed proestrus females had a significant increase in the
STAT3 score of 0.588 (95 % CI, 0.375 to 0.801) points
compared to the non-proestrus females exposed to ozone,
F (1, 24) = 32.414, p = <0.0005, partial η2 = 0.575 (Table 4).
Filter air/ozone exposure on each sex alone and estrous
cycle type alone in relation to the unphosphorylated
STAT3 is given in Table 4. Interaction effect of exposure
and estrous cycle stages for unphosphorylated STAT3 ex-
pression is given in Fig. 2m, n.
When we compared he levels of STAT3 S727 phos-

phorylation in these mice, we found an overall increase
with O3 exposure (Additional file 1: Figure S1-d). These
were comparable in males exposed to O3 or FA and in
females exposed to FA. However, females exposed to O3

displayed a slight but not significant increase in the
STAT3 p-S727 levels vs. females exposed to FA (Fig. 2a,
e). Two-way ANOVA on the sex and ozone/filter air
exposure showed statistically significant interaction F

(1, 60) = 13.568, p = <0.0005, partial η2 = 0.184. Analysis
of simple main effects for sex and exposure type with
Bonferroni adjustment revealed statistically significant
difference in STAT3 S727 phosphorylation expression
score between filter air and ozone exposure. Ozone-
exposed females had a significant increase in the STAT3
serine 727 score of 1.009 (95 % CI, 0.622 to 1.397) points
compared to the ozone-exposed males, F (1, 60) = 27.137,
p = <0.0005, partial η2 = 0.311 (Table 5). Similarly, females
with ozone exposure had significant increase in the
STAT3 serine 727 score of 0.804 (95 % CI, 0.416 to 1.191)
points compared to the females exposed to the filter
air, F (1, 60) =17.209, p = <0.0005, partial η2 = 0.223
(Table 5). Interaction effect of sex and exposure for
STAT3 p-S727 expression is given in Fig. 2f, g.
With one-way analysis of variance, females exposed to

O3 in proestrus depicted a markedly higher, but not
significant, phosphorylation compared to the females
exposed in non-proestrus (Fig. 2k, o). Two-way ANOVA
examining the effects of estrous cycle stages and filter air/
ozone exposure on the STAT3 serine 727 expression
showed statistically significant interaction F (1, 28) =
38.710, p = <0.0005, partial η2 = 0.580. Simple main effects
for estrous cycle stages and exposure type with Bonferroni
adjustment revealed statistically significant difference in
STAT3 serine 727 expression score. Proestrus females ex-
posed to ozone had a significant increase in the STAT3

Table 3 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages, and exposure for IL6R expression

Univariate tests: dependent variable: IL6R

df F Sig. Partial η2

Analysis of gender and exposure Exposure FA 1, 52 4.275 0.044 0.076

Ozone 1, 52 44.137 <0.0005 0.459

Sex F 1, 52 70.840 <0.0005 0.577

M 1, 52 0.087 0.770 0.002

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus 1, 24 150.946 <0.0005 0.863

Proestrus 1, 24 141.524 <0.0005 0.855

Exposure FA 1, 24 10.240 0.004 0.299

Ozone 1, 24 7.898 0.010 0.248

Pairwise comparisons: dependent variable: IL6R

(I) Sex (J) Sex Mean difference
(I–J)

95 % CI for difference

Lower bound Upper bound

Analysis of gender and exposure Exposure FA M F 0.439 0.013 0.864

Ozone F M 1.409 0.984 1.835

Sex F Ozone FA 1.785 1.360 2.211

M FA Ozone 0.062 0.363 0.488

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus Ozone FA 2.529 2.104 2.954

Proestrus Ozone FA 2.449 2.024 2.874

Exposure FA Proestrus Non-proestrus 0.659 0.234 1.084

Ozone Proestrus Non-proestrus 0.579 0.154 1.003
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serine 727 score of 1.223 (95 % CI, 0.880 to 1.567) points
compared to the filtered air-exposed proestrus females,
F (1, 28) = 53.117, p = <0.0005, partial η2 = 0.655
(Table 5). Similarly, ozone-exposed proestrus females had
a significant increase in the STAT3 serine 727 score of
1.995 (95 % CI, 1.652 to 2.339) points compared to the
non-proestrus females exposed to ozone, F (1, 28) =
141.295, p = <0.0005, partial η2 = 0.835 (Table 5). Filter air/
ozone exposure on each sex alone and estrous cycle type
alone in relation to the unphosphorylated STAT3 serine
727 phosphorylation is given in Table 5. Interaction effect
of exposure and estrous cycle stages for SATAT3 p-S727
expression is given in Fig. 2p, q.

Univariate analysis of lung STAT3 Y705 phosphoryl-
ation revealed a significant overall increase in animals
exposed to O3 compared to FA (Additional file 1: Figure
S1-e) irrespective of sex differences (Fig. 2a, h). Two-way
ANOVA on the sex and ozone/filter air exposure also
showed statistically significant interaction F (1, 52) = 12.40,
p = 0.001, partial η2 = 0.193. Analysis of simple main effects
for sex and exposure type with Bonferroni adjustment re-
vealed statistically significant difference in STAT3 tyrosine
705 phosphorylation expression score between filter air and
ozone exposure. Ozone-exposed male had significant in-
crease in the STAT3 tyrosine 705 score of 1.645 (95 % CI,
0.982 to 2.308) points compared to the ozone-exposed

(See figure on previous page.)
Fig. 2 STAT3, STAT3 Serine 727, and STAT3 Tyrosine 705 phosphorylation and effect of ozone exposure. Left panels: a Representative Western
blot images of STAT3, STAT3 Serine 727 and STAT3 Tyrosine 705 phosphorylation expression in males and females with filter air and O3 exposure;
univariate analysis of STAT3 (b), STAT3 Serine 727 (e), and STAT3 Tyrosine 705 (h), expression in males and females, with FA and O3 exposure;
Two-way ANOVA interaction effect of sex (c) and exposure (d), for STAT3 expression, sex (f) and exposure (g), for STAT3 Serine 727 expression
and sex (i) and exposure (j), for STAT3 Tyrosine 705 expression. Right panels: k Representative Western blot images of STAT3, STAT3 Serine 727,
and STAT3 Tyrosine 705 phosphorylation expression in estrous cycle stages of females, with filter air and O3 exposure; univariate analysis of STAT3
(l), STAT3 Serine 727 (o), and STAT3 Tyrosine 705 (r), expression in estrous cycle stages of females, with FA and O3 exposure. Two-way ANOVA
interaction effect of exposure (m) and estrous cycle stages (n), for STAT3 expression, exposure (p) and estrous cycle stages (q), for STAT3 Serine
727 expression, and exposure (s) and estrous cycle stages (t), for STAT3 Tyrosine 705 expression. Univariate analysis data expressed as Ranks-Kruskal-
Wallis test of densitometric analysis; the values are depicted as mean with SD, where *p≤ 0.05 and **p≤ 0.01 are the levels of statistical significance
compared to controls (n = 6–8 per group). Two-way ANOVA for STAT3, STAT3 Serine 727, and STAT3 Tyrosine 705 phosphorylation expression analysis
is given in Tables 4, 5, and 6, respectively

Table 4 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages, and exposure for STAT3
expression

Univariate tests: dependent variable: STAT3

df F Sig. Partial η2

Analysis of gender and exposure Exposure FA 1, 52 0.031 0.862 0.001

Ozone 1, 52 4.220 0.045 0.075

Sex F 1, 52 0.152 0.698 0.003

M 1, 52 2.217 0.143 0.041

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus 1, 24 1.916 0.179 0.074

Proestrus 1, 24 16.113 0.001 0.402

Exposure FA 1, 24 0.087 0.770 0.004

Ozone 1, 24 32.414 < .0005 0.575

Pairwise comparisons: dependent variable: STAT3

(I) Sex (J) Sex Mean difference (I–J) 95 % CI for difference

Lower bound Upper bound

Analysis of gender and exposure Exposure FA F M 0.012 0.120 0.143

Ozone F M 0.135 0.003 0.267

Sex F Ozone FA 0.026 0.106 0.157

M FA Ozone 0.098 0.034 0.230

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus FA Ozone 0.143 0.070 0.356

Proestrus Ozone FA 0.414 0.201 0.628

Exposure FA Proestrus Non-proestrus 0.030 0.183 0.244

Ozone Proestrus Non-proestrus 0.588 0.375 0.801
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females, F (1, 52) = 24.80, p = <0.0005, partial η2 = 0.323
(Table 6) whereas males with ozone exposure had insignifi-
cant increase in the STAT3 tyrosine 705 score of 4.214
(95 % CI, 3.35 to 4.87) points compared to the males ex-
posed to the filter air, F (1, 52) = 162.686, p = <0.0005, par-
tial η2 = 0.758 (Table 6). Interaction effect of sex and
exposure for STAT3 p-Y705 expression is given in Fig. 2i, j.
Ozone exposure in females in proestrus exerted a

slightly higher expression change in the STAT3 p-Y705
compared to females exposed in non-proestrus stages,
but unilabiate analysis exhibited no significant differences
between these groups (Fig. 2k, r). Similarly, two-way
ANOVA examining the effects of estrous cycle stages and
filter air/ozone exposure on the STAT3 tyrosine 705
expression showed statistically insignificant interaction
F (1, 28) = 0.143, p = 0.709, partial η2 = 0.005. However,
simple main effects for estrous cycle stages and exposure
type with Bonferroni adjustment revealed statistically sig-
nificant difference in STAT3 tyrosine 705 expression score.
Non-proestrus female exposed to ozone had significant in-
crease in the STAT3 tyrosine 705 score of 1.185 (95 % CI,
0.866 to 1.504) points compared to the filtered air-exposed
non-proestrus female, F (1, 28) = 58.045, p = <0.0005, partial
η2 = 0.675 (Table 6) whereas filtered air-exposed proestrus
females had significant increase in the STAT3 tyrosine 705
score of 0.617 (95 % CI, 0.299 to 0.936) points compared to

the non-proestrus females exposed to the filter air, F
(1, 28) =15.759, p = <0.0005, partial η2 = 0.360 (Table 6).
Filter air/ozone exposure on each sex alone and estrous
cycle type alone in relation to the unphosphorylated
STAT3 tyrosine 705 phosphorylation is given in Table 6.
Interaction effect of exposure and estrous cycle stages for
STAT3 p-Y705 expression is given in Fig. 2s, t.

Ozone-associated lung inflammation and expression of
JAK2 and JAK2 phosphorylation
Interleukin-6 preferentially activates STAT3 with phos-
phorylation of Y705 via the JAK signaling pathway. To
assess activation of this mechanism in our model, we
measured the levels of JAK2 and JAK2 phosphorylation
(Y1007+Y1008) with relation to O3 and FA exposure
and further comparison of sex differences and female
estrous cycle.
Irrespective of sex differences, one-way analysis of

variance of pooled data showed a significant increase in
the expression of JAK2 unphosphorylated with O3 ex-
posure compared to animals exposed to FA (Additional
file 1: Figure S1-f ). However, comparison of males and
females represented deviations in the expression patterns,
where O3 exposure resulted in an overall decrease in JAK2
expression in males, while females had a significant in-
crease in JAK2 expression (Fig. 3a, b). Two-way ANOVA

Table 5 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages, and exposure for STAT3
Serine 727 phosphorylation expression

Univariate tests: dependent variable: STAT3 Serine 727

df F Sig. Partial η2

Analysis of gender and exposure Exposure FA 1, 60 0.001 1.000 0.002

Ozone 1,60 27.137 <0.0005 0.311

Sex F 1, 60 17.209 <0.0005 0.223

M 1, 60 1.126 0.293 0.018

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus 1, 28 2.282 0.142 0.075

Proestrus 1, 28 53.117 <0.0005 0.655

Exposure FA 1, 28 9.535 0.005 0.254

Ozone 1, 28 141.295 <.0005 0.835

Pairwise comparisons: dependent variable: STAT3 Serine 727

(I) Sex (J) Sex Mean difference (I–J) 95 % CI for difference

Lower bound Upper bound

Analysis of gender and exposure Exposure FA F M 2.500E-8 0.388 0.388

Ozone F M 1.009 0.622 1.397

Sex F Ozone FA 0.804 0.416 1.191

M FA Ozone 0.206 0.182 0.593

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus FA Ozone 0.254 0.090 0.597

Proestrus Ozone FA 1.223 0.880 1.567

Exposure FA Proestrus Non-proestrus 0.518 0.174 0.862

Ozone Proestrus Non-proestrus 1.995 1.652 2.339
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on the sex and ozone/filter air exposure showed statisti-
cally significant interaction F (1, 52) = 627.9, p = <0.0005,
partial η2 = 0.924. Analysis of simple main effects for sex
and exposure type with Bonferroni adjustment revealed
statistically significant difference in unphosphorylated
JAK2 expression score between filter air and ozone expos-
ure. Ozone-exposed female had significant increase in the
unphosphorylated JAK2 expression score of 2.395 (95 %
CI, 2.225 to 2.543) points compared to the ozone-exposed
males, F (1, 52) = 1190.013, p = <0.0005, partial η2 = 0.958
(Table 7) whereas females with ozone exposure had
significant increase in the unphosphorylated JAK2
score of 2.165 (95 % CI, 2.026 to 2.304) points compared
to the females exposed to the filter air, F (1, 52) =972.74,
p = <0.0005, partial η2 = 0.942 (Table 7). Interaction
effect of sex and exposure for JAK2 expression is given
in Fig. 3c, d.
Univariate analysis of females at different estrous cycle

stages revealed a higher and significant increase in the
levels of unphosphorylated JAK2 in females exposed to
O3 in proestrus compared to females exposed in non-
proestrus stages and females exposed to FA (Fig. 3h, i).
Two-way ANOVA examining the effects of estrous cycle
stages and filter air/ozone exposure showed statistically
significant interaction F (1, 36) = 19.596, p = <0.0005,
partial η2 = 0.352. Simple main effects for estrous cycle

stages and exposure type with Bonferroni adjustment
revealed statistically significant difference in unpho-
sphorylated JAK2 expression score. Ozone-exposed
non-proestrus females had significant increase in the
unphosphorylated JAK2 score of 1.795 (95 % CI, 1.603
to 1.987) points compared to the non-proestrus females
exposed to the filter air, F (1, 36) = 360.191, p = <0.0005,
partial η2 = 0.909 (Table 7). Similarly, proestrus female ex-
posed to ozone had significant increase in the unpho-
sphorylated JAK2 score of 0.555 (95 % CI, 0.363 to 0.747)
points compared to the ozone-exposed non-proestrus
female, F (1, 36) = 34.392, p = <0.0005, partial η2 = 0.489
(Table 7). Filter air/ozone exposure on each sex alone and
estrous cycle type alone in relation to the unphosphory-
lated JAK2 is given in Table 7. Interaction effect of expos-
ure and estrous cycle stages for JAK2 expression is given
in Fig. 3j, k.
JAK2 phosphorylation (Y1007+Y1008) showed an

overall significant increase with O3 exposure compared
to FA (Additional file 1: Figure S1g). Females showed a
higher and significant expression of phosphorylated
JAK2 (Y1007+Y1008) compared to O3-exposed males
(Fig. 3a, e). Two-way ANOVA on the sex and ozone/filter
air exposure showed statistically significant interaction
F (1, 52) = 23.991, p = <0.0005, partial η2 = 0.316. Ana-
lysis of simple main effects for sex and exposure type

Table 6 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages, and exposure for STAT3
Tyrosine 705 phosphorylation expression

Univariate tests: dependent variable: STAT3 Tyrosine 705

df F Sig. Partial η2

Analysis of gender and exposure Exposure FA 1, 52 0.001 1.000 0.001

Ozone 1, 52 24.800 <0.0005 0.323

Sex F 1, 52 60.448 <0.0005 0.538

M 1, 52 162.686 <0.0005 0.758

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus 1, 28 58.045 <0.0005 0.675

Proestrus 1, 28 50.192 <0.0005 0.642

Exposure FA 1, 28 15.759 <0.0005 0.360

Ozone 1, 28 11.804 0.002 0.297

Pairwise comparisons: dependent variable: STAT3 Tyrosine 705

(I) Sex (J) Sex Mean difference (I–J) 95 % CI for difference

Lower bound Upper bound

Analysis of gender and exposure Exposure FA M F 1.429E−8 0.663 0.663

Ozone M F 1.645 0.982 2.308

Sex F Ozone FA 2.569 1.906 3.232

M Ozone FA 4.214 3.551 4.877

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus Ozone FA 1.185 0.866 1.504

Proestrus Ozone FA 1.102 0.783 1.421

Exposure FA Proestrus Non-proestrus 0.617 0.299 0.936

Ozone Proestrus Non-proestrus 0.534 0.216 0.853
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with Bonferroni adjustment revealed statistically signifi-
cant difference in phosphorylated JAK2 expression score
between filter air and ozone exposure. Ozone-exposed fe-
male had significant increase in the phosphorylated JAK2
expression score of 1.122 (95 % CI, 0.779 to 1.465) points
compared to the ozone-exposed males, F (1, 52) = 43.108,
p = <0.0005, partial η2 = 0.453 (Table 8) whereas females
with ozone exposure had significant increase in the
phosphorylated JAK2 score of 1.538 (95 % CI, 1.195 to
1.881) points compared to the females exposed to the
filter air, F (1, 52) = 80.967, p = <0.0005, partial η2 = 0.609
(Table 8). Interaction effect of sex and exposure for JAK2
p-(Y1007+Y1008) expression is given in Fig. 3f, g.
However, as opposed to unphosphorylated JAK2,

phosphorylated JAK2 (Y1007+Y1008) was found to
have a higher and significant increase in females exposed

to O3 in non-proestrus stages vs. females exposed in pro-
estrus (Fig. 3h, l). Two-way ANOVA examining the effects
of estrous cycle stages and filter air/ozone exposure
showed statistically significant interaction F (1, 24) =
93.334, p = <0.0005, partial η2 = 0.795. Simple main effects
for estrous cycle stages and exposure type with Bonferroni
adjustment revealed statistically significant difference in
phosphorylated JAK2 expression score. Ozone-exposed
non-proestrus females had significant increase in the
phosphorylated JAK2 score of 1.965 (95 % CI, 1.710 to
2.220) points compared to the non-proestrus females
exposed to the filter air, F (1, 24) = 253.484, p = <0.0005,
partial η2 = 0.914 (Table 8). Similarly, non-proestrus fe-
male exposed to ozone had significant increase in the
phosphorylated JAK2 score of 1.578 (95 % CI, 1.324 to
1.883) points compared to the ozone-exposed proestrus

(See figure on previous page.)
Fig. 3 JAK2 and JAK2 phosphorylated (Y1007+Y1008) expression and effect of ozone exposure. Left panels: a Representative Western blot images
of JAK2 and JAK2 phosphorylated (Y1007+Y1008) expression in males and females with filter air and O3 exposure; univariate analysis of JAK2 (b)
and JAK2 (e) phosphorylated (Y1007+Y1008), expression in males and females, with FA and O3 exposure; two-way ANOVA interaction effect of
sex (c) and exposure (d), for JAK2 expression and sex (f) and exposure (g), for JAK2 phosphorylated (Y1007+Y1008) expression. Right panels:
h Representative Western blot images of JAK2 and JAK2 phosphorylated (Y1007+Y1008) expression in estrous cycle stages of females, with
filter air and O3 exposure; univariate analysis of i JAK2 and l JAK2 phosphorylated (Y1007+Y1008), expression in estrous cycle stages of females, with FA
and O3 exposure. Two-way ANOVA interaction effect of exposure (j) and estrous cycle stages (k), for JAK2 expression and exposure (m) and estrous
cycle stages (n) and for JAK2 phosphorylated (Y1007+Y1008) expression. Univariate analysis data expressed as Ranks-Kruskal-Wallis test of densitometric
analysis; the values are depicted as mean with SD, where *p≤ 0.05 and **p≤ 0.01 are the levels of statistical significance compared to controls (n = 6–8
per group). Two-way ANOVA for JAK2 and JAK2 phosphorylated (Y1007+Y1008) analysis is given in Tables 7 and 8, respectively

Table 7 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages, and exposure for JAK2 expression

Univariate tests: dependent variable: JAK2

df F Sig. Partial η2

Analysis of gender and exposure Exposure FA 1, 52 0.890 0.350 0.017

Ozone 1, 52 1190.01 <0.0005 0.958

Sex F 1, 52 972.745 <0.0005 0.949

M 1, 52 18.071 <0.0005 0.258

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus 1, 36 360.191 <0.0005 0.909

Proestrus 1, 36 161.757 <0.0005 0.818

Exposure FA 1, 36 147.012 <0.0005 0.803

Ozone 1, 36 34.392 <0.0005 0.489

Pairwise comparisons: dependent variable: JAK2

(I) Sex (J) Sex Mean difference (I–J) 95 % CI for difference

Lower bound Upper bound

Analysis of gender and exposure Exposure FA M F 0.065 0.074 0.205

Ozone F M 2.395 2.255 2.534

Sex F Ozone FA 2.165 2.026 2.304

M FA Ozone 0.295 0.156 0.434

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus Ozone FA 1.795 1.603 1.987

Proestrus Ozone FA 1.203 1.011 1.395

Exposure FA Proestrus Non-proestrus 1.147 0.955 1.339

Ozone Proestrus Non-proestrus 0.555 0.363 0.747
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female, F (1, 24) = 163.543, p = <0.0005, partial η2 = 0.872
(Table 8). Filter air/ozone exposure on each sex alone and
estrous cycle type alone in relation to the phosphorylated
JAK2 is given in Table 8. Interaction effect of exposure
and estrous cycle stages for JAK2 p-(Y1007+Y1008) ex-
pression is given in Fig. 3m, n.

Ozone-associated lung inflammation and expression of
NF-κB (p105/p50)
NF-κB activation is widely implicated in inflammatory
conditions and is also known to possess cross-talk with
pathways that may influence IL-6 expression. IL-6 via
STAT3 transcription effector mediates local vascular
macrophage activation in lungs and protection from oxi-
dative stress. In addition, the NF-κB–IL-6 signaling
pathway plays multiple roles in initiating and sustaining
vascular inflammation. Assessment of NF-κB expression
in our model showed sex differences in the lungs of mice
exposed to O3 or FA. Ozone-exposed male mice showed
a reduction in NF-κB expression, whereas females ex-
posed to O3 had a significant increase in the NF-κB
expression (Fig. 4a, b). However, due to sheer increase
in the expression of NF-κB in females, pooling male
and female data together masked the decrease in the
expression in males, and an overall increase in expression

was found with O3 exposure (Additional file 1: Figure
S1-h). Two-way ANOVA on the sex and ozone/filter
air exposure showed statistically significant interaction
F (1, 52) = 266.435, p = <0.0005, partial η2 = 0.837. Ana-
lysis of simple main effects for sex and exposure type
with Bonferroni adjustment revealed statistically signifi-
cant difference in NF-κB (p105/p50) expression score
between filter air and ozone exposure. Ozone-exposed
female had significant increase in the NF-κB (p105/p50)
expression score of 0.970 (95 % CI, 0.855 to 1.085)
points compared to the ozone-exposed males, F (1, 52) =
287.977, p = <0.0005, partial η2 = 0.847 (Table 9), whereas
females with ozone exposure had significant increase in
the NF-κB (p105/p50) score of 1.056 (95 % CI, 0.941 to
1.170) points compared to the females exposed to the fil-
ter air, F (1, 52) = 341.072, p = <0.0005, partial η2 = 0.868
(Table 9). Interaction effect of sex and exposure for NF-κB
expression is given in Fig. 4c, d.
Univariate analysis of females exposed in different es-

trous cycle stages showed no overall difference in the
expression patterns of the NF-κB with O3 exposure,
compared to the matched controls exposed to the FA
(Fig. 4e, f ). Examining the effects of estrous cycle stages
and filter air/ozone exposure through two-way ANOVA
also showed statistically insignificant interaction F (1, 32) =

Table 8 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages, and exposure for JAK2
phosphorylation (Y1007+Y1008) expression

Univariate tests: dependent variable: JAK2 phosphorylated (Y1007+Y1008)

df F Sig. Partial η2

Analysis of gender and
exposure

Exposure FA 1, 52 0.131 0.719 0.003

Ozone 1, 52 43.108 <0.0005 0.453

Sex F 1, 52 80.967 <0.0005 0.609

M 1, 52 4.290 0.043 0.076

Analysis of female estrous cycle
stages and exposure

Estrous cycle
stage

Non-proestrus 1, 24 253.484 <0.0005 0.914

Proestrus 1, 24 5.101 0.033 0.175

Exposure FA 1, 24 0.764 0.391 0.031

Ozone 1, 24 163.543 <0.0005 0.872

Pairwise comparisons: dependent variable: JAK2 phosphorylated (Y1007+Y1008)

(I) Sex (J) Sex Mean difference
(I–J)

95 % CI for difference

Lower
bound

Upper
bound

Analysis of gender and
exposure

Exposure FA M F 0.062 0.281 0.405

Ozone F M 1.122 0.779 1.465

Sex F Ozone FA 1.538 1.195 1.881

M Ozone FA 0.354 0.011 0.697

Analysis of female estrous cycle
stages and exposure

Estrous cycle
stage

Non-proestrus Ozone FA 1.965 1.710 2.220

Proestrus Ozone FA 0.279 0.024 0.534

Exposure FA Proestrus Non-proestrus 0.108 0.147 0.363

Ozone Non-proestrus Proestrus 1.578 1.324 1.833
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3.774, p = <0.061, partial η2 = 0.105. Simple main effects for
estrous cycle stages and exposure type with Bonferroni
adjustment revealed statistically significant difference in
NF-κB expression score. Ozone-exposed non-proestrus
females had significant increase in the NF-κB score of
1.129 (95 % CI, 0.940 to 1.318) points compared to the
non-proestrus females exposed to the filter air, F (1, 32) =
148.459, p = <0.0005, partial η2 = 0.823 (Table 9). Similarly,
proestrus female exposed to filter had insignificant in-
crease in the NF-κB score of 0.175 (95 % CI, 0.013 to
0.363) points compared to the filtered air-exposed
non-proestrus female, F (1, 32) = 3.581, p = 0.068, par-
tial η2 = 0.101 (Table 9). Filter air/ozone exposure on
each sex alone and estrous cycle type alone in relation
to the NF-κB is given in Table 9. Interaction effect of
exposure and estrous cycle stages for NF-κB expression is
given in Fig. 4g, h.

Ozone-associated lung inflammation and expression of
AKT1
Studies have documented that IL-6/STAT3 signaling can
regulate AKT1 activation and that both JAK2 and AKT1
may play role in the activation of NF-κB [48, 49]. Ini-
tially believed to operate as components of distinct sig-
naling pathways, several studies have demonstrated that
the NF-κB and AKT1 signaling pathways can converge
and play a crucial role in stress responses and inflamma-
tion [50]. In our experimental model, ozone exposure in
pooled male and female mice resulted in no differences
in AKT1 expression compared to animals exposed to FA
(Additional file 1: Figure S1i). However, analysis of sex
differences in lung AKT1 levels in response to O3 expos-
ure depicted a marked decrease in males compared to
matched controls exposed to FA, while females exposed
to O3 showed a significant increase vs. FA (Fig. 5a, b).

Fig. 4 NF-κB (p105/p50) expression and effect of ozone exposure. Left panel: a Representative Western blot images of NF-κB (p105/p50) expression in
males and females with filter air and O3 exposure; b univariate analysis of NF-κB (p105/p50) expression in males and females with FA and O3 exposure;
two-way ANOVA interaction effect of sex (c) and exposure (d) for NF-κB (p105/p50) expression. Right panel: e Representative Western blot images of
NF-κB (p105/p50) expression in estrous cycle stages of females, with filter air and O3 exposure; f univariate analysis of NF-κB (p105/p50) expression in
estrous cycle stages of females with FA and O3 exposure. Two-way ANOVA interaction effect of exposure (g) and estrous cycle stages (h) for NF-κB
(p105/p50) expression. Univariate analysis data expressed as Ranks-Kruskal-Wallis test of densitometric analysis; the values are depicted as mean with
SD, where **p≤ 0.01 is the level of statistical significance compared to controls (n = 6–8 per group). Two-way ANOVA for NF-κB (p105/p50) expression
analysis is given in Table 9
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Two-way ANOVA on the sex and ozone/filter air expos-
ure showed statistically significant interaction F (1, 52) =
60.730, p = <0.0005, partial η2 = 0.539. Analysis of simple
main effects for sex and exposure type with Bonferroni
adjustment revealed statistically significant difference
in AKT1 expression score between filter air and ozone
exposure. Ozone-exposed female had significant in-
crease in the AKT1 expression score of 0.919 (95 % CI,
0.751 to 1.086) points compared to the ozone-exposed
males, F (1, 52) = 121.354, p = <0.0005, partial η2 = 0.70
(Table 10) whereas females with ozone exposure had
significant increase in the AKT1 score of 0.670 (95 %
CI, 0.503 to 0.837) points compared to the females ex-
posed to the filter air, F (1, 52) = 64.526, p = <0.0005,
partial η2 = 0.554 (Table 10). Interaction effect of sex
and exposure for AKT1 expression is given in Fig. 5c, d.
Examination of lung AKT1 levels in females exposed

to O3 at different stages of the estrous cycle showed an
increased expression in animals exposed in both proes-
trus and non-proestrus, but only females exposed in
proestrus had a significant increase in AKT1 (Fig. 5e, f ).
The effects of estrous cycle stages and filter air/ozone
exposure through two-way ANOVA also showed statisti-
cally significant interaction F (1, 24) = 42.745, p = <
0.0005, partial η2 = 0.639. Simple main effects for estrous

cycle stages and exposure type with Bonferroni adjust-
ment revealed statistically significant difference in AKT1
expression score. Ozone-exposed proestrus females had
significant increase in the AKT1 score of 1.892 (95 % CI,
1.719 to 2.065) points compared to the proestrus females
exposed to the filter air, F (1, 24) = 511.045, p = <0.0005,
partial η2 = 0.955 (Table 10). Similarly, proestrus female
exposed to ozone had significant increase in the AKT1
score of 0.620 (95 % CI, 0.448 to 0.793) points compared
to the ozone-exposed non-proestrus female, F (1, 24) =
54.923, p = <0.0005, partial η2 = 0.696 (Table 10). Filter
air/ozone exposure on each sex alone and estrous cycle
type alone in relation to the AKT1 is given in Table 10.
Interaction effect of exposure and estrous cycle stages
for AKT1 expression is given in Fig. 5g, h.

Discussion
Innate immunity plays a critical role against infection
and oxidative damage from inhaled air pollutants. Acute
airway responses to inhaled ground-level O3 are charac-
terized by recruitment of inflammatory cells to the lung
epithelium and by the generation of inflammatory medi-
ators including cytokines, chemokines, and adhesion
molecules [51]. The specific mechanisms of O3 toxicity
appear to be related to oxidation of cell membranes and

Table 9 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages, and exposure for NF-κB
(p105/p50) expression

Univariate tests: dependent variable: NF-κB (p105/p50)

df F Sig. Partial η2

Analysis of gender and
exposure

Exposure FA 1,52 37.382 <0.0005 0.418

Ozone 1,52 287.977 <0.0005 0.847

Sex F 1,52 341.072 <0.0005 0.868

M 1,52 21.306 <0.0005 0.291

Analysis of female estrous cycle
stages and exposure

Estrous cycle
stage

Non-proestrus 1,32 148.459 <0.0005 0.823

Proestrus 1,32 89.059 <0.0005 0.736

Exposure FA 1,32 3.581 0.068 0.101

Ozone 1,32 0.731 0.399 0.022

Pairwise comparisons: dependent variable: NF-κB (p105/p50)

(I) Sex (J) Sex Mean difference
(I–J)

95 % CI for difference

Lower
bound

Upper
bound

Analysis of gender and
exposure

Exposure FA M F 0.349 0.235 0.464

Ozone F M 0.970 0.855 1.085

Sex F Ozone FA 1.056 0.941 1.170

M FA Ozone 0.264 0.149 0.379

Analysis of female estrous cycle
stages and exposure

Estrous cycle
stage

Non-proestrus Ozone FA 1.129 0.940 1.318

Proestrus Ozone FA 0.874 0.686 1.063

Exposure FA Proestrus Non-proestrus 0.175 0.013 0.364

Ozone Non-proestrus Proestrus 0.079 .110 0.268
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surfactant, resulting in lipid peroxidation and the pro-
duction of reactive oxygen species [52]. The resulting
oxidation products can prime alveolar macrophages and
induce an increase in the production of pro-inflammatory
cytokines that can result in injury of the lung epithelium,
affecting its normal function and the overall lung innate
immunity. Although studies have reported differential out-
comes for lung disease triggered by ambient air pollution
in men and women, the associated mechanisms of the im-
mune response to O3 in the male and female lung remain
unknown [53–55].
It has been known for years that the clinical course of

inflammatory lung disease is highly influenced by sex,
hormones, and the environment [56, 57]. In our previ-
ous work, we demonstrated that expression of inflamma-
tory mediators varies with sex in response to acute O3

exposure, indicating that fluctuating sex hormones levels

may affect the immune response to environmental
challenges [39]. Specifically, we reported differential
mRNA expression levels of immune-related genes in-
cluding pattern recognition receptors, transcription
factors, and immune response mediators in the lungs
of male and female mice exposed to O3 or FA, with
significantly altered expression levels of neutrophil-
attracting chemokines, oxidative stress-related enzymes,
and pro-inflammatory cytokines such as IL-6 [39]. Studies
have indicated a complex and conflicting role for IL-6 in
the lung injury. Overexpression of IL-6 greatly reduces
hyperoxic lung injury in the transgenic mice [58]. Simi-
larly, in an aerosolized endotoxin model of lung injury,
endogenous IL-6 was found to be associated with de-
creased levels of TNF-α, MIP-2, GM-CSF, IFNgamma,
and airspace neutrophils and thereby exhibits a crucial
anti-inflammatory function. On the contrary, various

Fig. 5 AKT1 expression and effect of ozone exposure. Left panel: a Representative Western blot images of AKT1 expression in males and females
with filter air and O3 exposure; b univariate analysis of AKT1 expression in males and females with FA and O3 exposure; two-way ANOVA interaction
effect of sex (c) and exposure (d) for AKT1 expression. Right panels: e Representative Western blot images of AKT1 expression in estrous cycle stages of
females, with filter air and O3 exposure; f univariate analysis of AKT1 expression in estrous cycle stages of females with FA and O3 exposure. Two-way
ANOVA interaction effect of exposure (g) and estrous cycle stages (h) for AKT1 expression. Univariate analysis data expressed as Ranks-Kruskal-Wallis test
of densitometric analysis; the values are depicted as mean with SD where **p≤ 0.01 and ***p≤ 0.001 are the levels of statistical significance compared
to controls (n = 6–8 per group). Two-way ANOVA for AKT1 expression analysis is given in Table 10
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other clinical and experimental studies establish dele-
terious function of IL-6 in acute lung injury. Clinical
and animal studies both have suggested a role of IL-6
in the pathogenesis of ventilator-associated lung injury
[59–62]. Similarly, in a mouse sepsis model, IL-6 was
found to be associated with increased mortality and in-
creased lung complement 5a receptor expression [63].
IL-6 plays an important and essential role in activating
STAT transcription factors and thereby increases the
recruitment of neutrophils in lung. In our animal model,
we have previously demonstrated sex differences in the
lung vascular permeability and polymorphonuclear
neutrophil content in response to ozone exposure [39].
Marked increase in the neutrophil-attracting chemo-
kines (Ccl20, Cxcl5, and Cxcl2) and pro-inflammatory
cytokine IL-6 mRNAs with ozone exposure along with
sex differences warrants further studies to examine the
IL-6 and its sequential downstream pathways for mechan-
ism of ozone-associated lung damage and higher suscepti-
bility and severity of lung diseases in females. Better
understating of the mechanism of the ozone-induced lung
damage and sex differences will pave path for the research
and discovery of therapeutic targets for patients with acute
lung injury.
In this work, we have further characterized the acute

lung immune response to O3 in the male and female

lung at the intracellular level, by identifying sex-specific
intracellular signaling associated with IL-6. We also eval-
uated a potential contribution of the estrous cycle to this
regulation, in order to investigate whether circulating fe-
male hormones contribute to O3-induced inflammatory
responses by modulating lung gene expression changes.
Our results showed sex differences in protein expression
and phosphorylation of various components of the IL-6/
IL-6R intracellular pathway and suggested a correlation
of some of these with increases in pre-ovulatory hor-
mone levels in the afternoon of proestrus. Because the
lung expresses both estrogen and progesterone recep-
tors, and these control alveolar loss and regeneration
processes [64, 65], it is likely that ovarian hormones play
a central role in lung inflammation and injury by modu-
lating of immune gene expression [66]. In this regard,
future studies using models of gonadectomy and hor-
mone replacement will likely unveil the specific roles of
sex hormones in the inflammatory response to O3.
Interleukin-6 is secreted by immune cells and lung

endothelial and epithelial cells in response to environ-
mental insults [67, 68]. This cytokine is known for its
pleiotropic effects in mediating the pathogenesis, pro-
gression, and severity of various chronic lung diseases
[69–71]. Binding of IL-6 to its receptor activates the signal
transducing receptor glycoprotein 130 (gp130), inducing

Table 10 Two-way ANOVA for univariate and pairwise comparisons between gender, estrous cycle stages and exposure for AKT1
expression

Univariate tests: dependent variable: AKT1

df F Sig. Partial η2

Analysis of gender and exposure Exposure FA 1,52 0.001 0.996 0.002

Ozone 1,52 121.354 <0.0005 0.700

Sex F 1,52 64.526 <0.0005 0.554

M 1,52 8.929 0.004 0.147

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus 1,24 179.278 <0.0005 0.882

Proestrus 1,24 511.045 <0.0005 0.955

Exposure FA 1,24 3.261 0.084 0.120

Ozone 1,24 54.923 <0.0005 0.696

Pairwise comparisons: dependent variable: AKT1

(I) Sex (J) Sex Mean difference
(I–J)

95 % CI for difference

Lower bound Upper bound

Analysis of gender and exposure Exposure FA F M 0.001 0.167 0.168

Ozone F M 0.919 0.751 1.086

Sex F Ozone FA 0.670 0.503 0.837

M FA Ozone 0.249 0.082 0.417

Analysis of female estrous cycle
stages and exposure

Estrous cycle stage Non-proestrus Ozone FA 1.121 0.948 1.293

Proestrus Ozone FA 1.892 1.719 2.065

Exposure FA Non-proestrus Proestrus 0.151 0.022 0.324

Ozone Proestrus Non-proestrus 0.620 0.448 0.793
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homodimerization and activation of Janus kinases (JAKs)
that in turn activate signal transducers and activators of
transcription (AKT1, NF-κB, STAT3) [72–74]. Phosphor-
ylation of STAT3 allows for dimerization and nuclear
translocation, where it can bind to specific elements in

gene promoters and regulate their expression [75]. Our re-
sults strongly advocate for the co-existence of canonical
and non-canonical STAT3 signaling mechanisms in the
O3 induced oxidative lung damage (Fig. 6). A very minor
alteration in the level of non-phosphorylated STAT3 in O3

Fig. 6 Schematic of ozone-induced lung inflammation and role of IL-6 signaling pathway: ozone-associated lung inflammation is primarily driven
by lipid ozonation products (LOP) and generation of free radicals primarily in lung epithelial cells. LOP and free radicals can further mediate activation
of downstream biochemical events and cascades of secondary cellular responses leading to the inflammatory damage. The production of free radicals
and LOP can trigger (i) increased expression of IL-6 and STAT3 and (ii) activation of NF-κB and (iii) activation of PI3K/AKT pathway
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exposed males and lowering of the non-phosphorylated
STAT3 in O3 exposed non-proestrus females is a suggest-
ive of canonical mechanism of STAT3 nuclear transloca-
tion. Conversely, up-regulation of non-phosphorylated
STAT3 in O3 exposed females in proestrus arguments for
the non-canonical mechanism. Based on our results, we
hypothesized that dual converging pathways which are
acting synergistically in response to the level and type of
hormones presented during the O3 insult dictate the in-
flammatory response and severity of the lung damage
(Fig. 6). Our data suggest that O3 induced oxidative stress
acts as a dual-edged sword for the dysfunction of the lung
alveolar epithelial barrier and alveolar-capillary endothelial
barrier. The oxidative damage by itself compromise the
barrier function integrity and also in turn promote expres-
sion of increased levels of IL-6, STAT3, and NF-κB, and
the resultant convergent trio-cascade may further deteri-
orate the barrier functionalities [68, 76] (Fig. 6).
Intracellular signaling mediated by STAT3 has been

implicated in lung inflammation and in the pathogenesis
of various lung diseases that affect men and women
differentially [77, 78]. In this study, females displayed
higher expression and/or phosphorylation of key ele-
ments of the IL-6R intracellular pathway, indicating
that these mechanisms may mediate the observed in-
creased inflammatory and cytokine gene expression
previously reported by us in females vs. males [39]. In
addition, our data indicate that the hormonal status of
proestrus may predispose females to an increased in-
flammatory response to O3. Differential intracellular
activation of JAK2/STAT3 and NF-κB/AKT1 pathways
may be partially responsible for these effects (Fig. 6).
In this regard, our study is the first to describe differ-
ential activation of these pathways in the lungs of male
and female mice following acute O3 exposure, and the
effects of hormonal status, as determined by the estrous
cycle stage.
Studies have shown that O3, an air pollutant, can trigger

allergic airway inflammation in women of reproductive
age, and that these suffer more hospitalizations and death
from asthma exacerbations than men [79, 80]. Since
asthma complications occur at differential rates in women
depending on their hormonal status (i.e., during the
menstrual cycle, pregnancy, and menopause), and since
these can be ameliorated with the use of oral contra-
ceptives [20, 81, 82], it has been postulated that female
sex hormones can act as physiological modulators of
lung function and immunity in female patients. With
the rise in the burden of inflammatory lung diseases in
women worldwide, it is important to increase our
knowledge of sex-specific mechanisms of immune re-
sponse, as well as to understand the biological roles of
sex hormones in modulating airway inflammation, in-
nate immunity, and other processes relevant to the

development and progression of these life-threatening
conditions.

Conclusions
In conclusion, our data indicate a sex-specific IL-6 medi-
ated inflammatory response to acute O3 exposure via in-
volvement of JAK2/STAT3 and AKT1/NF-κB pathways
and variations of this response with the estrous cycle
stage in females. Our results show that the female IL-6
mediated acute inflammatory response to inhaled O3 is
higher in females than in males and that activation of
specific intracellular mechanisms in this response in
females is dependent of the hormonal status of the
animal. Our work contributes to the overall understanding
of the physiopathology of lung disease triggered by envir-
onmental exposures and hormonal status in women. Fu-
ture studies will likely uncover points of intervention for
lung disease therapies that will be specific for women and
consider the hormonal status of the patient and facilitate
the development of individualized medical treatments that
are more efficient to treat lung inflammatory disease
caused by air pollution.
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