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Abstract: A series of indane-based phosphine-oxazoline ligands with a spirocarbon stereogenic center
were examined for palladium-catalyzed asymmetric allylic alkylation of indoles. Under optimized
conditions, high yields (up to 98%) and enantioselectivities (up to 98% ee) were obtained with a broad
scope of indole derivatives. The ligand was determined to be the most efficient P,N-ligand for this
reaction. Moreover, the ligand was also efficient for Pd-catalyzed asymmetric allylic etherification
with hard aliphatic alcohols as nucleophiles.
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1. Introduction

As a typical heterocyclic structural subunit, the indole scaffold is highly prevalent in biological
compounds, pharmaceuticals, natural products and material science [1–5]. Notably, a variety of
biologically active indole derivatives and indole-based drugs are enantiopure. Therefore, the synthesis
and functionalization of chiral indole derivatives is meaningful. It is found that many 3-substitued
indoles are important intermediates of natural products, such as (−)-agroclavine and (−)-aurantioclavine
(Figure 1). Because of the biologically significant activities, including treatment of migraine headaches,
antagonists, antiviral activity and agonist, functionalization of indoles on C-3 position has attracted
much attention [6]. Enantioselective alkylation of indoles at the C-3 position by the Friedel–Crafts
reaction with Lewis acid as the catalyst has been explored extensively [7–10]. However, high catalyst
loading (10 %mol) is usually needed to obtain satisfactory yields and enantioselectivites.

Recently, palladium-catalyzed allylic alkylation has been proven to be an attractive strategy
to achieve enantiopure 3-substituted indoles [11–14] and diligent efforts have been made to
develop novel and efficient chiral palladium-complexes using the asymmetric allylic alkylation
of indoles as the model reaction. Chan reported that chiral ferrocenyl P/S ligands demonstrated
good catalytic performance [15]. Hoshi reported that high yields and good enantioselectivities
were obtained with sulphur-MOP ligands [16]. A phosphine ligand developed by Mino afforded
89% yields and 80% enatioselectivities with narrow substrate scope [17]. Other ligands such as
phosphoramidite-thioether [18], phosphoramidite-terminal olefin [19], phosphine olefin [20,21],
and helicenylphosphine ligands [22] were also reported as efficient catalysts.

The P,N-ligands are an important class of ligands and have successfully been applied in a large
scope of reactions because the steric and electronic characters of ligands can be finely tuned [23,24].
However, for the asymmetric allylic alkylation of indole, P,N ligands were not as effective as other ligands
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mentioned above. The reaction only afforded < 10% ee using iPr-phosphine-oxazoline (iPr-PHOX) as
the ligand [15]. Hence, design of highly active and selective P/N ligands is still desirable.
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Spiro phosphine-oxazoline ligands exhibit impressive catalytic performance in many cases
by taking advantage of the chelating units of PHOX (phosphine-oxazoline ligands) and the
spiro backbone. So far, there are four kinds of spiro phosphine-oxazoline ligands reported,
including SIPHOX (spirobiindane-based phosphine-oxzoline ligands) by Zhou [25–30], SpinPHOX
(spiro[4.4]-1,6-nonadiene-based phosphine-oxazoline ligands) by Ding [31–34], HMSI-PHOX
(hexamethyl-1,1’-spirobiindane phosphine-oxazoline ligands) by Lin [35] and SMI-PHOX
(an abbreviation for spiro mono-indane-based phosphine-oxazoline ligands L1–L4 in Scheme 1)
by us [36,37]. Compared with the other three ligands, SMI-PHOX ligands possess potentially distinct
features: (i) first spiro indane-based phosphine-oxazoline ligand with non-C2-symmetric skeleton
in asymmetric metal catalysis; (ii) better stability and higher rigidity; (iii) only one chiral center
avoiding the complex stereochemistry; (iv) modularity by changing easily accessible carboxylic acid
and ClPR2

2 [36]. Because of the aforementioned properties, SMI-PHOX ligands have demonstrated
excellent catalytic performance in several asymmetic reactions [36,37]. Therefore, we envisaged that they
would be efficient chiral ligands for an indole C3-allylic alkylation reaction. As a result, high catalytic
activities and enantioselectivities were obtained when these spiro phosphine-oxazoline ligands were
used. We here disclose a detailed account of the Pd-catalyzed asymmetric allylic alkylation of indoles
using a series of highly rigid spiro phosphine-oxazolines as chiral ligands.
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2. Results and Discussion

The chiral phosphine-oxazoline ligands L1–L4 were synthesized according to the literature [36].
We investigated the ability of four representative spiro phosphine-oxazoline ligands L1–L4 for
palladium-catalyzed asymmetric allylic alkylation of indole. The reaction of indole (1a) with
1,3-diphenyl-2-propenyl acetate (2a) as the model reaction was examined in the presence of
[Pd(C3H5)Cl]2 (2.0 mol%) and ligand (4.0 mol%, Pd/ligand = 1/1) in toluene at room temperature using
Cs2CO3 (2 equivalent) as the base. The results were summarized in Table 1. The reactions gave the
corresponding product 3a in high yields (87%–95%) and enantioselectivities (87–96% ee) with the use
of ligands L1, L2 and L4 (entry 1, 2, 4). However, yield and enantioselectivity slightly decreased in the
presence of ligand L3 with a phenyl substitution on the oxazoline ring (entry 3). Taking into account
the catalytic activity and enantioselectivity, ligand L1 was chosen as the optimal ligand for further
intensive study.

Table 1. Evaluation of ligands for Pd-catalyzed allylic alkylation of indoles. a
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The reaction was investigated under various conditions using the ligand L1. The results are
summarized in Table 2. It was shown that solvents have a great influence on the reaction activity
and enantioselectivity (entries 1–8). High yield (95%) and excellent enantioselectivity (96% ee) were
obtained with toluene as the solvent (entry 1). When the reaction was carried out in xylenes and
mesitylene, the enantioselectivities slightly decreased (entries 2 and 3). With dichloromethane and ethyl
acetate as solvents, the entioselectivities decreased to around 80% ee (entries 4 and 5). Using acetonitrile,
tetrahydrofuran or N,N-dimethylformamide as the solvents, low yields and entioselectivities were
obtained (entries 6–8). Toluene was proved to be the best choice. We next changed the base for the
reaction in toluene besides of Cs2CO3 (entries 9 and 10). Using K2CO3 as the base, product 3a was
obtained with a slight decrease in enantioselectivity (89% ee) (entry 9). But the yield of 3a decreased to
65%. With Na2CO3, the enantioselectivity of the reaction dramatically decreased to 15% ee (entry 10).
Subsequent optimization of temperature indicated that the reaction afforded lower yield of 3a at 0 ◦C
and lower enantioselectivity at 40 ◦C than that at room temperature (entries 11 and 12). Compared
to the results shown in entry 1, a slight decrease of yields and enantioselectivities was observed by
changing the ratio of indole to 1,3-diphenyl-2-propenyl acetate from 1:1.2 to 1.2:1 (entries 13 and 14).
Accordingly, the optimal reaction conditions were established as follows: 2 mol% [Pd(C3H5)Cl]2,
4 mol% of ligand L1, 2.0 equivalents of Cs2CO3 in toluene at room temperature with the molar ratio of
1a to 2a being 1:1.2.

With the optimized conditions in hand, we examined the substrate scope with various indoles
1a–1o and allylic acetates 2a–2e. As shown in Table 3, the reaction exhibited high tolerance of various
substituted indoles. All reactions gave high yields and enantioselectivities either with substituents
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in the C2 position or in the phenyl ring. With 2-substituted indoles 1b–1c, the reactions proceeded
smoothly to obtain the desired products 3b and 3c with 85–89% yields and 86–96% ee. C4, C5,
C6 and C7-substituted indoles 1d–1o underwent the reactions smoothly to give the corresponding
products 3d–3o in consistently high yields (86%–98%) and enantioselectivities (83–98% ee) with either
electron-donating groups (Me, MeO, BnO) or electron-withdrawing (Cl, Br) groups in the phenyl
ring. The electronic properties of the substituents in the phenyl ring of the indoles have no obvious
effect on the reaction. As for the 1,3-diarylallyl acetate components, the substrates bearing either
electron-donating (OMe) or electron-withdrawing (NO2) substituents at the para position of the benzene
ring underwent the reaction smoothly to give the corresponding products in good yield with excellent
ee values (Table 3, 3p–3s). To summarize Table 3, the ligand L1 exhibits superior catalytic performance
for allylic alkylation reaction of 1,3-diaryl-2-propenyl acetate and indoles.

Table 2. Optimization of reaction conditions for Pd-catalyzed allylic alkylation of indoles. a
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2 xylenes Cs2CO3 12 25 86 94
3 mesitylene Cs2CO3 12 25 84 90
4 CH2Cl2 Cs2CO3 12 25 76 83
5 EtOAc Cs2CO3 12 25 74 84
6 CH3CN Cs2CO3 24 25 47 19
7 THF Cs2CO3 24 25 49 3
8 DMF Cs2CO3 48 25 N.R. e N.D. f

9 toluene K2CO3 12 25 65 89
10 toluene Na2CO3 12 25 76 15
11 toluene Cs2CO3 12 0 70 90
12 toluene Cs2CO3 12 40 84 79

13 g toluene Cs2CO3 12 25 91 94
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a Unless otherwise noted, reactions were performed with 1a (0.3 mmol), 2a (0.36 mmol), [Pd(C3H5)Cl]2 (2 mol%),
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Encouraged by the excellent results achieved in the asymmetric allylic alkylation of
indole, we successfully extended the current catalytic system to Pd-catalyzed asymmetric allylic
etherification [38–41] by directly utilizing relatively hard aliphatic alcohols as nucleophiles (Table 4).
We were pleased to find that the protocol is applicable to aromatic rings of benzylicalcohols with
different electronic and steric natures. For example, a wide variety of benzylic alcohols bearing
electron-donating (MeO) or electron-withdrawing (Br) groups at ortho-, meta-, or para-positions
were well tolerated, and afforded the corresponding products 5a–5e in consistently high yields and
enantioselectivities with dichloromethane (DCM) as the solvent (Table S1). When the aryl group
was changed to naphthyl and aromatic heterocycle, good yields and ee values were also observed
(5f and 5g). Notably, spiro phosphine-oxazoline ligand L1 also worked efficiency in the asymmetric
allylic etherification of simple aliphatic alcohols, including primary and secondary alcohols, which led
to the formation of the desired products in excellent enantioselectivities (5h–5j, 93–99% ee).
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Table 3. Substrate scope of asymmetric allylic alkylation of indoles. a
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determined by chiral HPLC with the N-Boc-protected derivative of 3. d The absolute configurations were assigned
as S via comparison of specific rotations with the literature data [20].
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Entry 4 Product Yield b (%) ee c,d (%)

1 4a 5a 99 98
2 4b 5b 97 97
3 4c 5c 93 91
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5 4e 5e 93 93
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3. Materials and Methods

3.1. General Information

All solvents were purified and dried according to standard methods prior to use. All air and
moisture sensitive manipulations were carried out with standard Schlenk techniques under argon.
Commercially available reagents were used without further purification. Melting points were recorded
on a RY-1 microscopic melting apparatus and uncorrected. 1H- and 13C-nuclear magnetic resonance
(NMR) spectra were recorded on a Bruker Avance 500 spectrometer (Bruker, Rheinstetten, Germany).
Chemical shifts were reported in parts per million (δ) relative to tetramethylsilane (TMS). High resolution
mass spectrometry (HRMS) were performed on an Ultima Global spectrometer (Waters, Milford, MA,
USA) with an electrospray ionization (ESI) source. HPLC was performed on a Shimadzu LC-20 Liquid
Chromatograph ( Shimadzu, Kyoto, Japan) using chiralcel OD-H, AD-H and OJ-H columns. Ligands
L1–L4 were prepared according to the reported procedure [36].

3.2. General Procedure for the Pd-Catalyzed Asymmetric Allylic Alkylation of Indoles

Ligand L1 (5.0 mg, 4 mol%) and [Pd(C3H5)Cl]2 (2.2 mg, 2 mol%) were dissolved in toluene
(1.0 mL) in a Schlenk tube under Ar. After 0.5 h of stirring at room temperature, allylic acetate 2
(0.36 mmol) dissolved in toluene (0.5 mL) was added, followed by indole 1 (0.3 mmol), and Cs2CO3

(195 mg, 0.6 mmol). The mixture was stirred at room temperature for 12 h and then was diluted
with CH2Cl2 and washed with saturated NH4Cl (aq). The organic layers were dried over MgSO4

and filtered, and the solvents were evaporated in vacuo. The residue was purified by flash column
chromatography, eluting with petroleum ether and ethyl acetate to afford the corresponding product 3.

(S,E)-3-(1,3-diphenylallyl)-1H-indole (3a) [15]: Yellow solid (m.p. 121–123 ◦C), 95% yield. 1H-NMR
(500 MHz, CDCl3) δ 7.98 (brs, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.39–7.19 (m, 12H), 7.04 (t, 7.4 Hz, 1H),
6.91 (s, 1H), 6.76 (dd, J = 15.8, 7.4 Hz, 1H), 6.47 (d, J = 15.8 Hz, 1H), 5.14 (d, J = 7.4 Hz, 1H); 13C-NMR
(125 MHz, CDCl3) δ 143.3, 137.4, 136.6, 132.5, 130.5, 128.4, 128.3, 127.1, 126.7, 126.3, 126.2, 122.5, 122.0,
119.8, 119.3, 118.6, 111.0, 46,1.

(S,E)-3-(1,3-diphenylallyl)-2-methyl-1H-indole (3b) [15]: Yellow solid (m.p. 39–41 ◦C), 89% yield. 1H-NMR
(500 MHz, CDCl3) δ 7.83 (brs, 1H), 7.40–7.36 (m, 5H), 7.31–7.28 (m, 5H), 7.23–7.21 (m, 2H), 7.12
(t, J = 7.3 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.88 (dd, J = 15.8, 7.2 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H), 5.17
(d, J = 7.2 Hz, 1H), 2.40 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 143.4, 137.5, 135.3, 132.1, 131.6, 130.5,
128.4, 128.3, 128.2, 127.9, 127.0, 126.2, 126.1, 120.9, 119.4, 119.2, 112.8, 110.2, 45.0, 12.4.

(S,E)-3-(1,3-diphenylallyl)-2-phenyl-1H-indole (3c) [15]: Yellow solid (m.p. 40–42 ◦C), 85% yield. 1H-NMR
(500 MHz, CDCl3) δ 8.09 (brs, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.45–7.31 (m, 9H), 7.26–7.24 (m, 4H),
7.19–7.14 (m, 3H), 6.99 (t, J = 7.6 Hz, 1H), 6.90 (dd, J = 15.8, 7.3 Hz, 1H), 6.40 (d, J = 15.8 Hz, 1H), 5.27
(d, J = 8.4 Hz, 1H); 13C-NMR (125 MHz, CDCl3) δ 143.4, 137.4, 136.2, 135.5, 132.9, 132.2, 131.0, 128.7,
128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.8, 127.0, 126.2, 126.0, 122.0, 121.1, 119.6, 113.8, 110.8, 45.1.

(S,E)-3-(1,3-diphenylallyl)-4-methyl-1H-indole (3d) [17]: White solid (m.p. 172–174 ◦C), 93% yield.
1H-NMR (500 MHz, CDCl3) δ 8.00 (brs, 1H), 7.35 (d, J = 7.4 Hz, 2H), 7.32–7.26 (m, 6H), 7.25–7.18
(m, 3H), 7.07 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 2.2 Hz, 1H), 6.81 (d, J = 7.0 Hz, 1H), 6.75 (dd, J = 15.8, 6.6 Hz,
1H), 6.25 (d, J = 15.8 Hz, 1H), 5.46 (d, J = 6.4 Hz, 1H), 2.53 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 144.1,
137.6, 137.1, 134.0, 131.2, 130.8, 129.0, 128.6, 127.2, 126.4, 125.7, 123.6, 122.3, 121.4, 119.1, 109.1, 46.6, 20.5.

(S,E)-3-(1,3-diphenylallyl)-4-methoxy-1H-indole (3e): Yellow oil, 95% yield. 1H-NMR (500 MHz, CDCl3) δ
7.96 (brs, 1H), 7.36 (d, J = 7.6 Hz, 2H), 7.31–7.25 (m, 6H), 7.19–7.16 (m, 2H), 7.07 (t, J = 8.0 Hz, 1H), 6.96
(d, J = 8.2 Hz, 1H), 6.83 (d, J = 1.8 Hz, 1H), 6.77 (dd, J = 15.8, 7.2 Hz, 1H), 6.45 (d, J = 7.8 Hz, 1H), 6.35
(d, J = 15.8 Hz, 1H), 5.55 (d, J = 7.2 Hz, 1H), 3.73 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 154.8, 144.7,
138.1, 137.9, 134.0, 129.9, 128.5, 128.4, 128.0, 126.8, 126.2, 125.7, 122.9, 121.1, 119.3, 117.0, 104.3, 100.0,
55.0, 46.3. HRMS (ESI): calcd for C24H21NNaO [M + Na]+: 362.1515, found 362.1510.
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(S,E)-3-(1,3-diphenylallyl)-5-methyl-1H-indole (3f) [15]: White solid (m.p. 113–114 ◦C), 96% yield. 1H-NMR
(500 MHz, CDCl3) δ 7.90 (brs, 1H), 7.38–7.26 (m, 8H), 7.25–7.19 (m, 4H), 7.01 (d, 8.2 Hz, 1H), 6.86 (s, 1H),
6.73 (dd, J = 15.8, 7.3 Hz, 1H), 6.44 (d, J = 15.8 Hz, 1H), 5.11 (d, J = 7.2 Hz, 1H), 2.38 (s, 3H); 13C-NMR
(125 MHz, CDCl3) δ 143.6, 137.7, 135.0, 132.8, 130.6, 128.6, 127.2, 126.4, 123.8, 122.9, 119.5, 118.2, 110.9,
46.1, 21.6.

(S,E)-3-(1,3-diphenylallyl)-5-methoxy-1H-indole (3g) [15]: Colorless oil, 98% yield. 1H-NMR (500 MHz,
CDCl3) δ 7.90 (brs, 1H), 7.38–7.19 (m, 11H), 6.89–6.83 (m, 3H), 6.74 (dd, J = 15.8, 7.4 Hz, 1H), 6.47
(d, J = 15.8 Hz, 1H), 5.09 (d, J = 7.3 Hz, 1H), 3.72 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 154.0, 143.5,
137.7, 132.7, 132.0, 130.8, 128.7, 128.6, 127.4, 127.3, 126.6, 126.5, 123.6, 118.6, 112.4, 111.9, 102.0, 56.0, 46.4.

(S,E)-5-(benzyloxy)-3-(1,3-diphenylallyl)-1H-indole (3h) [15]: Colorless oil, 97% yield. 1H-NMR (500 MHz,
CDCl3) δ 7.82 (brs, 1H), 7.37–7.17 (m, 16H), 6.92–6.88 (m, 2H), 6.82 (s, 1H), 6.70 (dd, J = 15.8, 7.4 Hz, 1H),
6.43 (d, J = 15.8 Hz, 1H), 5.04 (d, J = 7.3 Hz, 1H), 4.93 (s, 2H); 13C-NMR (125 MHz, CDCl3) δ 152.9,
143.3, 137.6, 137.5, 132.4, 131.9, 130.5, 128.5, 127.7, 127.6, 127.2, 126.4, 126.3, 123.5, 118.3, 112.9, 111.8,
103.4, 70.8, 46.2.

(S,E)-5-chloro-3-(1,3-diphenylallyl)-1H-indole (3i) [15]: Yellow oil, 95% yield. 1H-NMR (500 MHz, CDCl3)
δ 8.01 (brs, 1H), 7.38–7.20 (m, 12H), 7.13–7.11 (m, 1H), 6.94 (s, 1H), 6.69 (dd, J = 15.8, 7.3 Hz, 1H), 6.43
(d, J = 15.8 Hz, 1H), 5.07 (d, J = 7.3 Hz, 1H); 13C-NMR (125 MHz, CDCl3) δ 143.0, 137.4, 135.0, 132.1,
130.9, 128.6, 128.5, 128.0, 127.3, 126.6, 126.4, 125.2, 124.0, 122.5, 119.3, 118.6, 112.2, 46.0.

(S,E)-5-bromo-3-(1,3-diphenylallyl)-1H-indole (3j) [15]: Colorless oil, 92% yield. 1H-NMR (500 MHz,
CDCl3) δ 8.00 (brs, 1H), 7.53 (s, 1H), 7.36 (d, J = 7.6 Hz, 2H), 7.32–7.28 (m, 5H), 7.26–7.19 (m, 5H), 6.90
(d, J = 2.2 Hz, 1H), 6.69 (dd, J = 15.8, 7.3 Hz, 1H), 6.42 (d, J = 15.8 Hz, 1H), 5.05 (d, J = 7.3 Hz, 1H);
13C-NMR (125 MHz, CDCl3) δ 142.8, 137.2, 135.2, 132.0, 130.7, 128.4, 128.3, 127.2, 126.5, 126.3, 125.0,
123.8, 122.2, 118.4, 112.7, 112.5, 45.8.

(S,E)-3-(1,3-diphenylallyl)-6-methyl-1H-indole (3k) [20]: Yellow oil, 90% yield. 1H-NMR (500 MHz, CDCl3)
δ 7.85 (brs, 1H), 7.37–7.17 (m, 11H), 7.14 (s, 1H), 6.86–6.83 (m, 2H), 6.74 (dd, J = 15.8, 7.4 Hz, 1H), 6.45
(d, J = 15.8 Hz, 1H), 5.09 (d, J = 7.4 Hz, 1H), 2.43 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 143.4, 137.5,
137.1, 132.6, 131.8, 130.4, 128.4, 128.3, 127.1, 126.3, 124.6, 121.9, 121.1, 119.5, 118.4, 111.0, 46.2, 21.6.

(S,E)-6-chloro-3-(1,3-diphenylallyl)-1H-indole (3l) [20]: Yellow oil, 94% yield. 1H-NMR (500 MHz, CDCl3)
δ 8.01 (brs, 1H), 7.38–7.28 (m, 10H), 7.26–7.20 (m, 2H), 7.00 (dd, J = 8.5, 1.8 Hz, 1H), 6.91 (d, J = 2.0 Hz,
1H), 6.72 (dd, J = 15.8, 7.4 Hz, 1H), 6.44 (d, J = 15.8 Hz, 1H), 5.09 (d, J = 7.4 Hz, 1H); 13C-NMR (125 MHz,
CDCl3) δ 143.0, 137.2, 137.0, 132.1, 130.8, 128.5, 128.4, 128.0, 127.3, 126.6, 126.3, 125.4, 123.3, 120.8, 120.2,
118.9, 111.1, 46.1.

(S,E)-3-(1,3-diphenylallyl)-7-methyl-1H-indole (3m) [19]: Yellow oil, 90% yield. 1H-NMR (500 MHz, CDCl3)
δ 7.89 (brs, 1H), 7.41–7.30 (m, 9H), 7.28-7.22 (m, 2H), 7.03–6.98 (m, 2H), 6.92 (s, 1H), 6.78 (dd, J = 15.8,
7.3 Hz, 1H), 6.49 (d, J = 15.8 Hz, 1H), 5.16 (d, J = 7.2 Hz, 1H), 2.50 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ
143.4, 137.5, 136.2, 132.5, 130.5, 128.4, 128.3, 127.1, 126.3, 122.6, 122.3, 120.2, 119.6, 119.1, 117.6, 46.2, 16.5.

(S,E)-3-(1,3-diphenylallyl)-7-methoxy-1H-indole (3n): Yellow oil, 86% yield. 1H-NMR (500 MHz, CDCl3) δ
8.21 (brs, 1H), 7.37-7.17 (m, 10H), 7.03 (d, J = 8.0 Hz, 1H), 6.95-6.88 (m, 2H), 6.74 (dd, J = 15.8, 7.4 Hz,
1H), 6.63 (d, J = 7.6 Hz, 1H), 6.44 (d, J = 15.8 Hz, 1H), 5.10 (d, J = 7.4 Hz, 1H), 3.94 (s, 3H); 13C-NMR
(125 MHz, CDCl3) δ 146.1, 143.5, 137.5, 132.6, 130.5, 128.4, 128.2, 127.1, 122.2, 119.8, 119.1, 112.7, 101.9,
55.3, 46.3. HRMS (ESI): calcd for C24H21NNaO [M+Na]+: 362.1515, found 362.1516.

(S,E)-7-chloro-3-(1,3-diphenylallyl)-1H-indole (3o): Yellow solid (m.p. 81–82 ◦C), 90% yield. 1H-NMR
(500 MHz, CDCl3) δ 8.23 (brs, 1H), 7.38–7.28 (m, 9H), 7.24–7.17 (m, 3H), 6.98–6.94 (m, 2H), 6.73
(dd, J = 15.8, 7.3 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H), 5.11 (d, J = 7.3 Hz, 1H); 13C-NMR (125 MHz, CDCl3)
δ 143.0, 137.3, 133.9, 132.1, 130.9, 128.5, 128.4, 128.3, 127.3, 126.6, 126.4, 123.3, 121.5, 120.3, 119.9, 118.6,
116.6, 46.2. HRMS (ESI): calcd for C23H18ClNNa [M + Na]+: 366.1020, found 366.1018.
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(S,E)-3-(1,3-di-p-tolylallyl)-1H-indole (3p) [19]: Yellow oil, 92% yield. 1H-NMR (500 MHz, CDCl3) δ
7.97 (brs, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.28–7.02 (m, 10H), 6.91 (s, 1H), 6.70
(dd, J = 15.8, 7.4 Hz, 1H), 6.44 (d, J = 15.8 Hz, 1H), 5.09 (d, J = 7.2 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H);
13C-NMR (125 MHz, CDCl3) δ 140.7, 137.0, 136.8, 136.0, 135.0, 132.0, 130.4, 129.4, 129.3, 128.6, 127.0,
126.4, 122.8, 122.2, 120.1, 119.6, 119.2, 111.3, 46.0, 21.3.

(S,E)-3-(1,3-bis(4-methoxyphenyl)allyl)-1H-indole (3q) [43]: Yellow oil, 85% yield. 1H-NMR (500 MHz,
CDCl3) δ 7.98 (s, 1H), 7.43–7.28 (m, 4H), 7.24 (d, J = 8.2 Hz, 2H), 7.16 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.6 Hz,
1H), 6.89 (s, 1H), 6.85–6.81 (m, 4H), 6.56 (dd, J = 15.8, 7.3 Hz, 1H), 6.36 (d, J = 15.8 Hz, 1H), 5.05
(d, J = 7.3 Hz, 1H), 3.78 (s, 6H); 13C-NMR (125 MHz, CDCl3) δ 158.9, 158.1, 136.7, 135.8, 130.8, 130.4,
129.7, 129.5, 127.5, 126.9, 122.6, 122.0, 120.0, 119.4, 119.2, 113.9, 113.8, 111.2, 55.3, 55.2, 45.4.

(S,E)-3-(1,3-bis(4-chlorophenyl)allyl)-1H-indole (3r) [19]: Yellow oil, 91% yield. 1H-NMR (500 MHz, CDCl3)
δ 8.05 (brs, 1H), 7.39 (d, J = 8.2 Hz, 2H), 7.30–7.19 (m, 9H), 7.06 (t, J = 7.5 Hz, 1H), 6.92 (s, 1H), 6.69 (dd,
J = 15.8, 7.2 Hz, 1H), 6.38 (d, J = 15.8 Hz, 1H), 5.11 (d, J = 7.2 Hz, 1H); 13C-NMR (125 MHz, CDCl3) δ
141.8, 136.9, 135.9, 133.1, 132.8, 132.4, 130.0, 129.9, 128.9, 128.8, 127.7, 126.7, 122.8, 122.5, 119.9, 119.8,
118.2, 111.4, 45.7.

(S,E)-3-(1,3-bis(4-nitrophenyl)allyl)-1H-indole (3s): Yellow oil, 87% yield. 1H-NMR (500 MHz, CDCl3) δ
8.23–8.11 (m, 5H), 7.50–7.32 (m, 6H), 7.22 (t, J = 7.4 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.98 (s, 1H), 6.90
(dd, J = 15.8, 7.2 Hz, 1H), 6.5 (d, J = 15.8 Hz, 1H), 5.28 (d, J = 8.0 Hz, 1H); 13C-NMR (125 MHz, CDCl3)
δ 150.2, 146.8, 143.4, 136.7, 135.7, 130.0, 129.4, 127.0, 126.2, 124.0, 123.9, 122.8, 122.7, 119.9, 119.2, 116.2,
111.6, 46.1. HRMS (ESI): calcd for C23H17N3NaO4 [M + Na]+: 422.1111, found 422.1110.

3.3. General Procedure for the N-Boc Protection of Alkylated Indoles

To a solution of 3 (0.15 mmol) and DMAP (0.9 mg, 0.0075 mmol) in CH2Cl2 (3 mL) was added
(Boc)2O (49 mg, 0.225 mmol), and the solution was stirred for 0.5 h at room temperature. The resulting
mixture was evaporated under reduced pressure and purified by flash column chromatography
(elution with n-hexane/EtOAc = 30:1) to afford the N-Boc-protected alkylated indole (Boc-3).

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-1H-indole-1-carboxylate (Boc-3a) [15]: Colorless oil. 99% yield and
96% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.4 mL/min,
25 ◦C, UV 254 nm), Retention times: tr = 13.2 min for (S)-isomer (major), tr = 16.0 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 8.12 (brs, 1H), 7.39–7.21 (m, 13H), 7.14 (t, J = 7.6 Hz, 1H), 6.72
(dd, J = 15.8, 7.4 Hz, 1H), 6.46 (d, J = 15.8 Hz, 1H), 5.06 (d, J = 7.4 Hz, 1H), 1.68 (s, 9H); 13C-NMR
(125 MHz, CDCl3) δ 150.0, 142.1, 137.3, 135.8, 131.4, 131.3, 129.9, 128.6, 128.5, 128.4, 127.4, 126.8, 126.4,
124.4, 123.8, 123.1, 122.5, 120.2, 115.3, 83.7, 46.0, 28.3.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-2-methyl-1H-indole-1-carboxylate (Boc-3b) [15]: Colorless oil. 99%
yield and 96% ee, determined by chiral HPLC analysis (Chiralcel OJ-H hexane/isopropanol, 99:1 v/v,
0.3 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 37.2 min for (R)-isomer (minor), tr = 50.1 min
for (S)-isomer (major). 1H-NMR (500 MHz, CDCl3) δ 8.14 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 7.5 Hz,
2H), 7.34–7.27 (m, 7H), 7.23–7.19 (m, 3H), 7.07 (t, J = 7.5 Hz, 1H), 6.83 (dd, J = 15.8, 7.4 Hz, 1H), 6.48
(d, J = 16.0 Hz, 1H), 5.20 (d, J = 7.4 Hz, 1H), 2.62 (s, 3H), 1.70 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ
150.7, 142.3, 137.2, 136.0, 134.0, 131.5, 130.5, 128.9, 128.5, 128.3, 128.0, 127.2, 126.3, 123.1, 122.2, 119.5,
119.1, 115.3, 83.6, 44.5, 28.3, 14.3.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-2-phenyl-1H-indole-1-carboxylate (Boc-3c) [15]: White solid
(m.p. 153–155 ◦C). 98% yield and 86% ee, determined by chiral HPLC analysis (Chiralcel AD-H
hexane/isopropanol, 99:1 v/v, 0.8 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 5.1 min for (S)-isomer
(major), tr = 13.4 min for (R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 8.29 (d, J = 8.6 Hz, 1H),
7.42–7.36 (m, 5H), 7.33–7.17 (m, 12H), 7.10 (t, J = 7.8 Hz, 1H), 6.77 (dd, J = 15.8, 7.6 Hz, 1H), 6.32
(d, J = 15.8 Hz, 1H), 4.85 (d, J = 7.6 Hz, 1H), 1.22 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 150.4, 142.8,
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137.6, 137.2, 136.9, 134.5, 131.9, 130.9, 130.3, 128.7, 128.5, 128.4, 128.2, 128.1, 127.5, 126.6, 124.5, 122.8,
121.5, 121.2, 115.6, 83.3, 45.1, 27.8.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-4-methyl-1H-indole-1-carboxylate (Boc-3d) [18]: White solid
(m.p. 137–139 ◦C). 98% yield and 84% ee, determined by chiral HPLC analysis (Chiralcel OD-H
hexane/isopropanol, 99:1 v/v, 0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 7.1 min for
(S)-isomer (major), tr = 8.5 min for (R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 8.07 (brs, 1H),
7.38 (d, J = 7.4 Hz, 2H), 7.35–7.25 (m, 8H), 7.24–7.19 (m, 2H), 6.94 (d, J = 7.3 Hz, 1H), 6.73 (dd, J = 15.8,
6.6 Hz, 1H), 6.31 (d, J = 15.8 Hz, 1H), 5.37 (d, J = 6.6 Hz, 1H), 2.50 (s, 3H), 1.68 (s, 9H); 13C-NMR
(125 MHz, CDCl3) δ 149.9, 142.8, 137.4, 136.4, 132.7, 131.3, 131.2, 128.9, 128.6, 127.4, 126.7, 126.5, 125.0,
124.9, 124.4, 123.5, 113.2, 83.7, 46.6, 28.3, 27.5, 20.4.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-4-methoxy-1H-indole-1-carboxylate (Boc-3e): Colorless oil. 99% yield
and 92% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v,
0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 7.8 min for (S)-isomer (major), tr = 11.6 min for
(R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 7.73 (brs, 1H), 7.37 (d, J = 7.5 Hz, 2H), 7.30–7.27
(m, 7H), 7.20 (t, J = 7.8 Hz, 3H), 6.73 (dd, J = 15.8, 7.4 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 6.37 (d, J = 15.8 Hz,
1H), 5.46 (d, J = 7.4 Hz, 1H), 3.70 (s, 3H), 1.66 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 154.3, 150.0, 143.5,
137.7, 137.3, 132.9, 130.5, 128.5, 128.2, 127.1, 126.4, 126.1, 125.3, 123.4, 122.6, 119.6, 108.3, 103.8, 93.7, 55.2,
46.5, 28.3. HRMS (ESI): calcd for C29H29NNaO3 [M + Na]+: 462.2040, found 462.2033.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-5-methyl-1H-indole-1-carboxylate (Boc-3f) [15]: White solid
(m.p. 151–152 ◦C). 98% yield and 95% ee, determined by chiral HPLC analysis (Chiralcel OD-H
hexane/isopropanol, 99:1 v/v, 0.7 mL/min, 25 ◦C, ultraviolet (UV) 254 nm), Retention times: tr = 7.5 min
for (S)-isomer (major), tr = 8.9 min for (R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 7.96 (brs, 1H),
7.37–7.27 (m, 9H), 7.25–7.19 (m, 2H), 7.12–7.09 (m, 2H), 6.68 (dd, J = 15.8, 7.3 Hz, 1H), 6.42 (d, J = 15.8 Hz,
1H), 5.01 (d, J = 7.3 Hz, 1H), 2.35 (s, 3H), 1.65 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 150.0, 142.2, 137.3,
134.0, 131.9, 131.4, 131.3, 130.1, 128.6, 128.5, 127.4, 126.7, 126.4, 125.8, 123.9, 122.8, 119.9, 114.9, 83.5, 45.9,
28.3, 21.5.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-5-methoxy-1H-indole-1-carboxylate (Boc-3g) [15]: Yellow oil. 98%
yield and 98% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v,
0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 8.0 min for (S)-isomer (major), tr = 10.2 min for
(R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 7.99 (brs, 1H), 7.39–7.22 (m, 11H), 6.91 (dd, J = 9.0,
2.4 Hz, 1H), 6.78 (d, J = 2.3 Hz, 1H), 6.69 (dd, J = 15.8, 7.4 Hz, 1H), 6.46 (d, J = 15.8 Hz, 1H),
5.00 (d, J = 7.3 Hz, 1H), 3.73 (s, 3H), 1.67 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 155.8, 155.0, 142.2,
137.4, 131.5, 131.3, 130.9, 128.8, 128.7, 128.6, 127.6, 126.9, 126.6, 124.7, 123.0, 116.1, 112.9, 103.3, 83.7, 55.8,
46.2, 28.4, 27.6.

(S,E)-tert-butyl 5-(benzyloxy)-3-(1,3-diphenylallyl)-1H-indole-1-carboxylate (Boc-3h) [15]: Colorless oil. 99%
yield and 96% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v,
0.35 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 34.3 min for (S)-isomer (major), tr = 38.3 min for
(R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 8.00 (brs, 1H), 7.38–7.30 (m, 13H), 7.28–7.22 (m, 3H),
6.99 (dd, J = 9.0, 2.2 Hz, 1H), 6.86 (d, J = 2.2 Hz, 1H), 6.69 (dd, J = 15.8, 7.4 Hz, 1H), 6.45 (d, J = 15.8 Hz,
1H), 4.98 (d, J = 5.0 Hz, 3H), 1.67 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 154.9, 150.0, 142.2, 137.4, 131.5,
131.3, 130.9, 128.8, 128.7, 128.6, 128.0, 127.7, 127.6, 126.9, 126.6, 124.7, 123.0, 116.2, 113.9, 104.7, 83.7, 70.8,
46.2, 28.4.

(S,E)-tert-butyl 5-chloro-3-(1,3-diphenylallyl)-1H-indole-1-carboxylate (Boc-3i) [15]: White solid
(m.p. 54–56 ◦C). 99% yield and 92% ee, determined by chiral HPLC analysis (Chiralcel OD-H
hexane/isopropanol, 99:1 v/v, 0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 8.2 min for
(S)-isomer (major), tr = 9.0 min for (R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 8.02 (brs, 1H),
7.37–7.27 (m, 10H), 7.24–7.20 (m, 2H), 6.64 (dd, J = 15.8, 7.3 Hz, 1H), 6.42 (d, J = 15.8 Hz, 1H),
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4.98 (d, J = 7.3 Hz, 1H), 1.65 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 149.6, 141.7, 137.1, 134.2, 131.6,
131.1, 130.8, 128.7, 128.6, 128.4, 128.2, 127.5, 127.0, 126.4, 125.1, 124.6, 122.5, 119.6, 116.4, 84.2, 45.8, 28.2.

(S,E)-tert-butyl 5-bromo-3-(1,3-diphenylallyl)-1H-indole-1-carboxylate (Boc-3j) [15]: White solid
(m.p. 72–73 ◦C). 96% yield and 93% ee, determined by chiral HPLC analysis (Chiralcel OD-H
hexane/isopropanol, 99:1 v/v, 0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 8.2 min for
(S)-isomer (major), tr = 8.8 min for (R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 7.99 (brs, 1H),
7.46 (s, 1H), 7.38–7.36 (m, 4H), 7.33–7.27 (m, 6H), 7.26–7.21 (m, 2H), 6.67 (dd, J = 15.8, 7.3 Hz, 1H), 6.43
(d, J = 15.8 Hz, 1H), 4.99 (d, J = 7.3 Hz, 1H), 1.65 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 149.4, 141.5,
137.0, 134.5, 131.5, 131.4, 130.7, 128.6, 128.4, 128.2, 127.4, 127.2, 126.8, 126.3, 124.8, 122.5, 122.3, 116.6,
115.8, 84.1, 45.6, 28.1.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-6-methyl-1H-indole-1-carboxylate (Boc-3k): White solid (m.p. 121–123 ◦C).
99% yield and 93% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol,
99:1 v/v, 0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 7.2 min for (S)-isomer (major),
tr = 8.2 min for (R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 7.97 (brs, 1H), 7.37–7.18 (m, 12H),
6.96 (d, J = 8.0 Hz, 1H), 6.69 (dd, J = 15.8, 7.4 Hz, 1H), 6.44 (d, J = 15.8 Hz, 1H), 5.01 (d, J = 7.4 Hz, 1H),
2.44 (s, 3H), 1.65 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 150.0, 142.2, 137.3, 136.3, 134.4, 131.3, 131.2,
128.6, 128.5, 128.4, 127.6, 127.4, 126.7, 126.4, 123.9, 123.1, 123.0, 119.7, 115.6, 83.5, 46.0, 28.2, 22.0. HRMS
(ESI): calcd for C29H29NNaO2 [M + Na]+: 446.2091, found 446.2093.

(S,E)-tert-butyl 6-chloro-3-(1,3-diphenylallyl)-1H-indole-1-carboxylate (Boc-3l): Colorless oil. 98% yield and
93% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.7 mL/min,
25 ◦C, UV 254 nm), Retention times: tr = 8.5 min for (S)-isomer (major), tr = 9.2 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 8.14 (brs, 1H), 7.36–7.19 (m, 12H), 7.10 (dd, J = 8.3, 1.7 Hz,
1H), 6.67 (dd, J = 15.8, 7.4 Hz, 1H), 6.43 (d, J = 15.8 Hz, 1H), 5.00 (d, J = 7.3 Hz, 1H), 1.66 (s, 9H);
13C-NMR (125 MHz, CDCl3) δ 171.2, 149.5, 141.8, 137.1, 136.2, 131.5, 130.9, 130.4, 128.7, 128.6, 128.4,
127.5, 126.9, 126.4, 124.3, 123.0, 122.9, 120.9, 115.6, 84.3, 60.4, 45.9, 28.2, 21.1, 14.2. HRMS (ESI): calcd for
C28H26ClNNaO2 [M + Na]+: 466.1544, found 466.1547.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-7-methyl-1H-indole-1-carboxylate (Boc-3m) [19]: White solid
(m.p. 123–124 ◦C). 99% yield and 83% ee, determined by chiral HPLC analysis (Chiralcel OD-H
hexane/isopropanol, 99:1 v/v, 0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 7.6 min for
(S)-isomer (major), tr = 8.9 min for (R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 7.39–7.28
(m, 9H), 7.26–7.18 (m, 3H), 7.09–7.04 (m, 2H), 6.71 (dd, J = 15.8, 7.4 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H),
5.03 (d, J = 7.4 Hz, 1H), 2.64 (s, 3H), 1.63 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 149.6, 142.0, 137.2,
135.4, 131.2, 131.1, 131.0, 128.4, 128.3, 127.6, 127.2, 126.5, 126.3, 125.9, 125.3, 122.8, 122.4, 117.6, 83.2, 45.8,
28.0, 22.1.

(S,E)-tert-butyl 3-(1,3-diphenylallyl)-7-methoxy-1H-indole-1-carboxylate (Boc-3n): Colorless oil. 95% yield
and 84% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v,
0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 21.4 min for (S)-isomer (major), tr = 49.0 min for
(R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 7.37 (d, J = 7.5 Hz, 2H), 7.32–7.26 (m, 7H), 7.25–7.21
(m, 2H), 7.07 (t, J = 7.9 Hz, 1H), 6.96 (d, J = 7.8 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.69 (dd, J = 15.8,
7.4 Hz, 1H), 6.43 (d, J = 15.8 Hz, 1H), 5.01 (d, J = 7.4 Hz, 1H), 3.93 (s, 3H), 1.62 (s, 9H); 13C-NMR
(125 MHz, CDCl3) δ 150.0, 148.4, 142.2, 137.3, 132.8, 131.4, 131.3, 128.6, 127.4, 126.7, 126.5, 126.4, 125.2,
123.5, 122.4, 112.8, 106.9, 83.3, 55.8, 46.0, 28.1. HRMS (ESI): calcd for C29H29NNaO3 [M+Na]+: 462.2040,
found 462.2043.

(S,E)-tert-butyl 7-chloro-3-(1,3-diphenylallyl)-1H-indole-1-carboxylate (Boc-3o): Colorless oil. 99% yield and
94% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.7 mL/min,
25 ◦C, UV 254 nm), Retention times: tr = 11.6 min for (S)-isomer (major), tr = 17.3 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 7.36–7.27 (m, 10H), 7.26–7.21 (m, 3H), 7.06 (t, J = 7.8 Hz, 1H),
6.67 (dd, J = 15.8, 7.4 Hz, 1H), 6.43 (d, J = 15.8 Hz, 1H), 5.00 (d, J = 7.4 Hz, 1H), 1.63 (s, 9H); 13C-NMR
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(125 MHz, CDCl3) δ 149.1, 141.7, 137.0, 133.2, 132.7, 131.5, 130.8, 128.6, 128.5, 128.4, 127.4, 127.3,
126.8, 126.5, 126.4, 123.4, 122.4, 120.4, 118.7, 84.5, 45.8, 27.9. HRMS (ESI): calcd for C28H26ClNNaO2

[M + Na]+: 466.1544, found 466.1539.

(S,E)-tert-butyl 3-(1,3-di-p-tolylallyl)-1H-indole-1-carboxylate (Boc-3p) [19]: Colorless oil. 99% yield and
94% ee, determined by chiral HPLC analysis (Chiralcel AD-H hexane/isopropanol, 99:1 v/v, 0.5 mL/min,
25 ◦C, UV 254 nm), Retention times: tr = 12.0 min for (S)-isomer (major), tr = 14.1 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 8.13 (brs, 1H), 7.38 (d, J = 8.2 Hz, 2H), 7.31–7.27 (m, 3H), 7.24–7.22
(m, 2H), 7.16–7.11 (m, 5H), 6.67 (dd, J = 15.8, 7.4 Hz, 1H), 6.43 (d, J = 15.8 Hz, 1H), 5.01 (d, J = 7.7 Hz,
1H), 2.35 (s, 3H), 2.34 (s, 3H), 1.69 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 150.1, 139.4, 137.2, 136.3, 136.0,
134.7, 131.1, 130.6, 130.1, 129.4, 129.3, 128.5, 126.4, 124.5, 123.9, 123.5, 122.6, 120.4, 115.4, 83.8, 45.7,
28.4, 21.3.

(S,E)-tert-butyl 3-(1,3-bis(4-methoxyphenyl)allyl)-1H-indole-1-carboxylate (Boc-3q): Yellow oil. 85% yield
and 90% ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v,
0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 17.5 min for (S)-isomer (major), tr = 19.3 min for
(R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 8.08 (s, 1H), 7.33–7.74 (m, 5H), 7.22 (d, J = 8.6 Hz,
2H), 7.11 (t, J = 7.5 Hz, 1H), 6.82 (t, J = 9.2 Hz, 4H), 6.51 (dd, J = 15.8, 7.2 Hz, 1H), 6.34 (d, J = 15.8 Hz,
1H), 4.95 (d, J = 7.2 Hz, 1H), 3.78 (s, 6H), 1.65 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 159.1, 158.3, 150.0,
134.4, 130.4, 130.1, 130.0, 129.4, 127.5, 124.3, 123.7, 123.6, 122.4, 120.2, 115.3, 113.9, 83.7, 55.3, 55.2, 45.1,
28.3. HRMS (ESI): calcd for C30H31NNaO4 [M + Na]+: 492.2145, found 492.2150.

(S,E)-tert-butyl 3-(1,3-bis(4-chlorophenyl)allyl)-1H-indole-1-carboxylate (Boc-3r) [19]: White solid
(m.p. 65–67 ◦C). 99% yield and 95% ee, determined by chiral HPLC analysis (Chiralcel OD-H
hexane/isopropanol, 99:1 v/v, 0.7 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 8.6 min for
(S)-isomer (major), tr = 11.7 min for (R)-isomer (minor). 1H-NMR (500 MHz, CDCl3) δ 8.11 (brs, 1H),
7.36 (s, 1H), 7.32–7.23 (m, 10H), 7.14 (t, J = 7.5 Hz, 1H), 6.64 (dd, J = 15.8, 7.2 Hz, 1H), 6.37 (d, J = 15.8 Hz,
1H), 5.01 (d, J = 7.2 Hz, 1H), 1.68 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 150.0, 140.5, 136.0, 135.6, 133.3,
132.8, 131.5, 130.7, 129.9, 129.7, 129.0, 128.9, 127.8, 124.7, 124.0, 122.7, 122.4, 120.1, 115.5, 84.1, 45.4, 28.4.

(S,E)-tert-butyl 3-(1,3-bis(4-nitrophenyl)allyl)-1H-indole-1-carboxylate (Boc-3s): Yellow oil. 87% yield
and 97% ee, determined by chiral HPLC analysis (Chiralcel AD-H hexane/isopropanol, 93:7 v/v,
1.0 mL/min, 25 ◦C, UV 254 nm), Retention times: tr = 43.5 min for (R)-isomer (minor), tr = 54.4 min
for (S)-isomer (major). 1H-NMR (500 MHz, CDCl3) δ 8.21–8.12 (m, 5H), 7.50 (d, J = 7.2 Hz, 4H), 7.42
(s, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.24–7.14 (m, 2H), 6.85 (dd, J = 15.8, 7.2 Hz, 1H), 6.51 (d, J = 15.8 Hz,
1H), 5.21 (d, J = 7.2 Hz, 1H), 1.68 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ 148.7, 147.1, 142.9, 134.3,
130.7, 129.3, 129.0, 127.0, 124.9, 124.1, 122.8, 120.6, 119.5, 115.6, 84.3, 45.8, 28.2. HRMS (ESI): calcd for
C28H25N3NaO6 [M + Na]+: 522.1636, found 522.1632.

3.4. General Procedure for the Pd-Catalyzed Asymmetric Allylic Etherification

Ligand L1 (5.0 mg, 4 mol%) and [Pd(C3H5)Cl]2 (2.2 mg, 2 mol%) were dissolved in DCM (1.0 mL)
in a Schlenk tube under Ar. After 0.5 h of stirring at room temperature, allylic acetate 2a (0.3 mmol)
dissolved in DCM (0.5 mL) was added, followed by alcohol 4 (0.9 mmol) dissolved in DCM (0.5 mL) and
Cs2CO3 (195 mg, 0.9 mmol). The mixture was stirred at 0 ◦C for 5 h and then was diluted with CH2Cl2
and washed with saturated NH4Cl (aq). The organic layers were dried over MgSO4 and filtered, and
the solvents were evaporated in vacuo. The residue was purified by flash column chromatography,
eluting with petroleum ether and ethyl acetate to afford the corresponding product 5.

(S,E)-(3-(benzyloxy)prop-1-ene-1,3-diyl)dibenzene (5a) [44]: Colorless oil. 99% yield and 98% ee, determined
by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.5 mL/min, 25 ◦C, UV 254 nm),
Retention times: tr = 12.2 min for (S)-isomer (major), tr = 13.4 min for (R)-isomer (minor). 1H-NMR
(500 MHz, CDCl3) δ 7.46–7.30 (m, 14H), 7.27–7.23 (m, 1H), 6.66 (d, J = 15.9 Hz, 1H), 6.38 (dd, J = 15.9,
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7.0 Hz, 1H), 5.04 (d, J = 7.0 Hz, 1H), 4.62–4.57 (m, 2H); 13C-NMR (125 MHz, CDCl3) δ 141.0, 138.2, 136.5,
131.4, 130.2, 129.6, 128.4, 128.3, 127.6, 127.4, 126.9, 126.5, 81.5, 70.0.

(S,E)-(3-((4-methoxybenzyl)oxy)prop-1-ene-1,3-diyl)dibenzene (5b) [44]: Colorless oil. 97% yield and 97%
ee, determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.5 mL/min,
25 ◦C, UV 254 nm), Retention times: tr = 18.0 min for (S)-isomer (major), tr = 23.8 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 7.44 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.6 Hz, 4H), 7.32–7.29 (m, 5H),
7.23 (t, J = 7.2 Hz, 1H), 6.91 (d, J = 8.5 Hz, 2H), 6.63 (d, J = 15.9 Hz, 1H), 6.36 (dd, J = 15.9, 7.0 Hz, 1H),
5.01 (d, J = 7.0 Hz, 1H), 4.51 (s, 2H), 3.82 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 159.1, 141.2, 136.6, 131.4,
130.4, 130.3, 129.3, 128.5, 127.6, 126.9, 126.5, 113.7, 81.2, 69.7, 55.2.

(S,E)-(3-((4-bromobenzyl)oxy)prop-1-ene-1,3-diyl)dibenzene (5c) [44]: Colorless oil. 93% yield and 91% ee,
determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 95:5 v/v, 0.5 mL/min, 25 ◦C,
UV 254 nm), Retention times: tr = 10.2 min for (S)-isomer (major), tr = 11.2 min for (R)-isomer (minor).
1H-NMR (500 MHz, CDCl3) δ 7.47 (d, J = 8.3 Hz, 2H), 7.42-7.36 (m, 6H), 7.31–7.27 (m, 3H), 7.25–7.23
(m, 3H), 6.61 (d, J = 15.9 Hz, 1H), 6.32 (dd, J = 15.9, 7.1 Hz, 1H), 4.97 (d, J = 7.1 Hz, 1H), 4.55–4.48
(m, 2H); 13C-NMR (125 MHz, CDCl3) δ 140.9, 137.5, 136.5, 131.8, 131.5, 130.1, 129.4, 128.7, 128.6, 127.9,
127.0, 126.7, 121.4, 81.9, 69.4.

(S,E)-(3-((3-bromobenzyl)oxy)prop-1-ene-1,3-diyl)dibenzene (5d) [45]: Colorless oil. 95% yield and 94% ee,
determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.5 mL/min, 25 ◦C,
UV 254 nm), Retention times: tr = 14.3 min for (S)-isomer (major), tr = 15.9 min for (R)-isomer (minor).
1H-NMR (500 MHz, CDCl3) δ 7.54 (s, 1H), 7.44–7.39 (m, 7H), 7.33–7.29 (m, 4H), 7.26–7.21 (m, 2H), 6.65
(d, J = 15.9 Hz, 1H), 6.36 (dd, J = 15.9, 7.1 Hz, 1H), 5.02 (d, J = 7.0 Hz, 1H), 4.58 (q, J = 12.2 Hz, 2H);
13C-NMR (125 MHz, CDCl3) δ 140.9, 136.5, 131.8, 130.6, 130.0, 128.6, 127.9, 127.0, 126.7, 126.1, 122.6,
82.1, 69.4.

(S,E)-(3-((2-bromobenzyl)oxy)prop-1-ene-1,3-diyl)dibenzene (5e) [46]: Colorless oil. 93% yield and 93%
ee, determined by chiral HPLC analysis (Chiralcel OJ-H hexane/isopropanol, 99:1 v/v, 0.3 mL/min,
25 ◦C, UV 254 nm), Retention times: tr = 73.1 min for (S)-isomer (major), tr = 81.9 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 7.69 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.57–7.47
(m, 6H), 7.45–7.39 (m, 4H), 7.35–7.24 (m, 2H), 6.80 (d, J = 15.9 Hz, 1H), 6.47 (dd, J = 15.9, 7.0 Hz, 1H),
5.17 (d, J = 7.1 Hz, 1H), 4.76 (q, J = 13.1 Hz, 2H); 13C-NMR (125 MHz, CDCl3) δ 141.0, 137.9, 136.6,
132.9, 132.5, 131.8, 130.0, 129.2, 128.9, 128.6, 127.8, 127.4, 126.9, 126.7, 82.4, 69.8.

(S,E)-2-(((1,3-diphenylallyl)oxy)methyl)naphthalene (5f) [40]: Colorless oil. 97% yield and 94% ee,
determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 98:2 v/v, 1.0 mL/min,
25 ◦C, UV 254 nm), Retention times: tr = 7.3 min for (S)-isomer (major), tr = 10.2 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 7.84–7.79 (m, 4H), 7.51–7.45 (m, 5H), 7.40–7.37 (m, 4H), 7.32–7.28
(m, 3H), 7.23 (t, J = 7.3 Hz, 1H), 6.66 (d, J = 15.9 Hz, 1H), 6.39 (dd, J = 15.9, 7.0 Hz, 1H), 5.06 (d, J = 7.0 Hz,
1H), 4.74 (s, 2H); 13C-NMR (125 MHz, CDCl3) δ 141.2, 136.7, 136.0, 133.4, 133.1, 131.7, 130.3, 128.6,
128.2, 128.0, 127.8, 127.7, 127.1, 126.7, 126.5, 126.1, 125.9, 125.8, 81.7, 70.3.

(S,E)-2-(((1,3-diphenylallyl)oxy)methyl)pyridine (5g) [44]: Colorless oil. 86% yield and 94% ee, determined
by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.8 mL/min, 25 ◦C, UV 254 nm),
Retention times: tr = 25.0 min for (S)-isomer (major), tr = 36.8 min for (R)-isomer (minor). 1H-NMR
(500 MHz, CDCl3) δ 8.56 (d, J = 4.6 Hz, 1H), 7.74–7.71 (m, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 7.4 Hz,
2H), 7.40 (t, J = 7.4 Hz, 4H), 7.32 (t, J = 7.6 Hz, 3H), 7.25 (t, J = 7.3 Hz, 1H), 7.21–7.19 (m, 1H), 6.72
(d, J = 15.8 Hz, 1H), 6.40 (dd, J = 15.8, 7.1 Hz, 1H), 5.11 (d, J = 7.1 Hz, 1H), 4.78 (dd, J = 34.2, 13.5 Hz,
2H); 13C-NMR (125 MHz, CDCl3) δ 158.7, 148.9, 140.7, 136.4, 131.7, 129.8, 128.4, 127.7, 126.8, 126.5,
122.1, 121.2, 82.5, 71.1.

(S,E)-(3-ethoxyprop-1-ene-1,3-diyl)dibenzene (5h) [44]: Colorless oil. 98% yield and 99% ee, determined
by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.5 mL/min, 25 ◦C, UV 254 nm),
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Retention times: tr = 9.2 min for (S)-isomer (major), tr = 10.4 min for (R)-isomer (minor). 1H-NMR
(500 MHz, CDCl3) δ 7.42–7.35 (m, 6H), 7.31–7.27 (m, 3H), 7.22 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 15.9 Hz,
1H), 6.34 (dd, J = 15.9, 7.1 Hz, 1H), 4.93 (d, J = 7.1 Hz, 1H), 3.61–3.56 (m, 1H), 3.52–3.48 (m, 1H),
1.27 (t, J = 7.0 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ 141.6, 136.7, 131.2, 130.7, 128.5, 127.7, 127.6, 126.9,
126.6, 82.6, 64.0, 15.4.

(S,E)-(3-(but-3-en-1-yloxy)prop-1-ene-1,3-diyl)dibenzene (5i) [44]: Colorless oil. 97% yield and 95% ee,
determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99.2:0.8 v/v, 0.4 mL/min,
25 ◦C, UV 254 nm), Retention times: tr = 10.3 min for (S)-isomer (major), tr = 12.1 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 7.40–7.34 (m, 6H), 7.30–7.26 (m, 3H), 7.22 (t, J = 7.4 Hz, 1H), 6.62
(d, J = 15.9 Hz, 1H), 6.31 (dd, J = 15.9, 7.0 Hz, 1H), 5.90–5.81 (m, 1H), 5.11–5.02 (m, 2H), 4.92 (d, J = 7.0 Hz,
1H), 3.60–3.56 (m, 1H), 3.50–3.46 (m, 1H), 2.43 (q, J = 6.8 Hz, 2H); 13C-NMR (125 MHz, CDCl3) δ 141.4,
136.6, 135.3, 131.3, 130.5, 128.5, 127.7, 127.6, 126.8, 126.6, 116.3, 82.7, 68.0, 34.4.

(S,E)-2-((1,3-diphenylallyl)oxy)-2,3-dihydro-1H-indene (5j) [41]: Colorless oil. 96% yield and 93% ee,
determined by chiral HPLC analysis (Chiralcel OD-H hexane/isopropanol, 99:1 v/v, 0.5 mL/min, 25 ◦C,
UV 254 nm), Retention times: tr = 13.7 min for (S)-isomer (major), tr = 14.8 min for (R)-isomer
(minor). 1H-NMR (500 MHz, CDCl3) δ 7.45–7.36 (m, 6H), 7.32–7.30 (m, 3H), 7.26–7.15 (m, 5H),
6.65 (d, J = 15.9 Hz, 1H), 6.37 (dd, J = 15.9, 7.0 Hz, 1H), 5.12 (d, J = 6.9 Hz, 1H), 4.55–4.51 (m, 1H),
3.25–3.02 (m, 4H); 13C-NMR (125 MHz, CDCl3) δ 141.4, 140.8, 136.5, 131.1, 130.6, 128.4, 127.5, 126.8,
126.5, 126.3, 124.5, 80.9, 77.9, 39.5.

4. Conclusions

SMI-PHOX ligand exhibited good catalytic performance in Pd-catalyzed asymmetric allylic
alkylation reactions of indoles with 1,3-diaryl-2-propenyl acetate. The reactions afforded the
corresponding products with high yields (up to 98%) and enantioselectivities (up to 98% ee) for
a broad scope of indole derivatives. SMI-PHOX ligand was determined to be the most efficient
P,N-ligand for this reaction. Furthermore, SMI-PHOX ligand was also efficient for Pd-catalyzed
asymmetric allylic etherification with hard aliphatic alcohols as nucleophiles. Up to 99% yield and
99% ee were obtained. Further applications of these ligands in other asymmetric transformations are
currently under development in our laboratory.

Supplementary Materials: The supplementary materials including NMR spectra and HPLC traces of the
compounds are available online.
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