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Abstract

The computer artificial intelligence system AlphaFold has recently predicted

previously unknown three-dimensional structures of thousands of proteins.

Focusing on the subset with high-confidence scores, we algorithmically ana-

lyze these predictions for cases where the protein backbone exhibits rare topo-

logical complexity, that is, knotting. Amongst others, we discovered a 71-knot,

the most topologically complex knot ever found in a protein, as well several

six-crossing composite knots comprised of two methyltransferase or carbonic

anhydrase domains, each containing a simple trefoil knot. These deeply

embedded composite knots occur evidently by gene duplication and intercon-

nection of knotted dimers. Finally, we report two new five-crossing knots

including the first 51-knot. Our list of analyzed structures forms the basis for

future experimental studies to confirm these novel-knotted topologies and to

explore their complex folding mechanisms.
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1 | INTRODUCTION

Recently, the artificial intelligence (AI) system Alpha-
Fold developed by Google’s DeepMind dominated the
Critical Assessment of Techniques for Protein Structure
Prediction (CASP) twice.1 AlphaFold 2, the version
under consideration here, is a deep learning system that
incorporates training procedures based on the evolution-
ary, physical, and geometric constraints of protein struc-
tures.2,3 It features iterative refinement of predictions and
allows for learning from unlabeled protein sequences
using self-distillation and self-estimates of accuracy to
directly predict the 3D coordinates of all heavy atoms for

a given protein using the primary structure and aligned
sequences of homologues.2,3 AlphaFold 2 has currently
predicted several hundred thousand protein structures,
most of which are not contained in the Protein Data
Bank (PDB),4,5 which mainly archives experimentally
determined structures.5 Thereby, AlphaFold‘s prediction
databank may be of tremendous value, especially for the
research of protein phenomena which are infrequent but
still of high relevance to understand the intricacies of the
underlying mechanisms of protein folding.

A particularly fascinating phenomenon arises for pro-
teins that contain a topological knot in their polypeptide
backbone,6–30 that is, proteins which would not fully dis-
entangle after being pulled from both ends.6 In the past
two decades, only about 20 different protein familiesMaarten A. Brems and Robert Runkel have contributed equally.
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containing knots have been identified.7 Nevertheless,
knotted proteins pose a challenge to protein folding and
evolution.8 Simulation algorithms often overestimate the
knotting probability of proteins as the latter is lower than
the knotting probability of random chains.8,12,14,31 More-
over, protein topology is usually similar among homo-
logues, meaning that knotted folds tend to be preserved
across proteins closely related in evolution. For these rea-
sons, and owing to the established rarity of knotting
among natural proteins, the potential presence of knotted
topologies in the vast new database of predicted protein
structures is of keen interest. Currently, the most com-
plex knot found in a protein is a single knot with six
essential crossings in any projection to a plane32; a com-
posite knot has not been observed yet.

We searched the entire AlphaFold 2 databank,
including the “Model organism proteomes”, “Swiss-Prot”
and “Global health proteomes” data sets,4 for topologi-
cally complex proteins containing previously unknown
deep knots (which still persist when at least five amino
acids [aa] are cut from both ends). We excluded from the
analysis those with lower confidence scores (<80) or
exceedingly long protein chains (>600 aa), where pre-
dicted accuracy and ability to experimentally validate the
structures could be limiting. The applied criteria for the
survey as well as our knot detection algorithm are dis-
cussed in detail in the methods section. Based on this
search and visual inspection, we have identified the first
71-knot (with at least seven crossings in any projection
onto a plane) as well as a likely evolutionary mechanism
for generation of 31#31 composite knots, accompanied by
several examples. Moreover, we report two new five-
crossing knots including the first 51-knot in a protein and
provide an overview of additional knotted proteins pre-
sent in the AlphaFold databank (Supporting Informa-
tion S1).

2 | GENERATION MECHANISM OF
COMPOSITE KNOTS

Our survey identified nine cases of composite knots, pre-
viously unknown. These are all instances where two
essentially independent trefoil knots are present in one
longer protein chain. We propose a novel mechanism for
generation of such composite knots based on gene dupli-
cation and the interconnection of a knotted homodimer.
Interestingly, this mechanism resembles a strategy
employed for the creation of the first artificial protein
knot in which an unknotted dimer was “connected” to
form a trefoil.17 We have observed multiple instances
including the methyltransferases and carbonic anhy-
drases, as discussed below, in which proteins containing

a composite trefoil knot (31#31) are homologous to a
known knotted homodimer with one trefoil knot in each
chain. Figure 1 depicts protein Q313J9, which has been
identified as tRNA (guanine-N1-)-methyltransferase, with
a length of 425 aa and a knotted core between residues
86 and 360. If not stated otherwise, the protein code
refers to the UniProt/AlphaFold identifier33 and struc-
tures are visualized using the Visual Molecular Dynamics
(VMD) software.34 To visualize knots in the protein struc-
tures, we employ reduced representations (bottom struc-
tures in Figures 1-4), in which the protein is divided into
segments such that topology is conserved when the seg-
ments are replaced by straight lines connecting their
respective start and end points. Methyltransferases are
known to usually contain a single trefoil knot7 per chain
and sometimes appear as homodimers. We have observed
two variations of this phenomenon: For protein Q313J9
in Figure 1 and a similar methyltransferase Q72DU3, the
two main segments containing the trefoil knots appear
flexibly connected, whereas predictions for some proteins
of similar sequence preserve the presumed original dimer
structure more strictly. (See inset of Figure 1.) Examples
are the methylases A4I142, Q4DMW6, and Q4D5S2 as
well as proteins Q4CYG6, Q4D7N4, and Q381U1. The lat-
ter are labeled as uncharacterized but show about 15%
sequence identity and 30% matching secondary structure
with the methyltransferase pdb:2ha8:A for proteins
Q4CYG6 and Q4D7N4 or with the methyltransferase
pdb:1v2x:A for protein Q381U1 according to the PBDe-
Fold webserver.35 Structural alignment and sequence
identity discussions based on PDBeFold35,36 for each
group of methyltransferases containing composite knots
can be found in the Supporting Information (SI). A

FIGURE 1 3D structure (top) and reduced representation

(bottom) of a six-crossing composite knot in protein Q313J9

(methyltransferase). A composite trefoil knot (31#31) can be

identified. Topologically trivial segments are not displayed. Inset: A

similar structure is predicted for Methyltransferase A4I142, except

the two knotted domains form a more compact arrangement
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particularly interesting example of the second variant is
Carbonic anhydrase P54212 (Figure 2), with a length of
589 aa and a knotted core between residues 198 and 570.
Carbonic anhydrases were the first proteins identified as
being knotted.37 Both trefoil knots in methyltransferase
Q313J9 and as well as in carbonic anhydrase P54212 have
positive chirality. Therefore, the composite trefoil knots
can be identified as what is commonly known as a
granny knot.38 The chirality of the composite knots is in
agreement with previous results reporting positive chiral-
ity for the single trefoil knots in methyltransferases and
carbonic anhydrases.7 We have thereby observed the
same phenomenon, a potential mechanism for genera-
tion of composite knots, in two distinct protein families
and with two structural variations.

3 | FIRST 71-KNOT IN A PROTEIN

Figure 3 depicts proteins P73136 and Q9PR55 with
lengths of 112 and 89 amino acids, respectively. Both are
uncharacterized and no probable homologues could be
identified using PDBeFold. However, they have 48%
sequence identity and 71% matching secondary structure
with respect to each other, which indicates that they are
probably homologues. Protein Q9PR55 contains the most
complicated knot, a 71-knot, known to date with a knot-
ted core between residues 27 and 83. The similar struc-
ture of protein P73136 contains a 51-knot with a knotted

core between residues 45 and 94. Such a pair of homo-
logues where the two proteins possess a different non-
trivial topology has not been observed previously. A
closer look reveals that the more complex topology of
protein Q9PR55 arises from a protein segment that intro-
duces an additional winding (dark blue in Figure 3,
right); a 71-torus knot is essentially a 51-torus knot with
one additional winding around the torus. Both knots
have positive chirality.

4 | NEW 51- AND 52-KNOTS

We have found two previously unknown knots with five
essential crossings, including the first 51-knot. Figure 4
(left) depicts protein A0A0K0IQS9 (Bm1115) which con-
tains a 51-knot. Its length is 173 aa and its knotted core
extends from residue 39 to residue 157. Protein C1GYM9
(Figure 4 right) is uncharacterized, and no probable
homologue could be identified using PDBeFold. It con-
tains a 52-knot with a knotted core between residues
76 and 391 and its length is 420 aa. Both knots exhibit
positive chirality.

5 | TESTS OF ACCURACY

Owing to the novelty of the findings here, validation by
independent methods will be important. Ahead of experi-
mental studies, here we applied an orthogonal computa-
tional tool, ERRAT,39 to assess the predicted knotted

FIGURE 3 Structure and topology of proteins P73136 (left)

and Q9PR55 (right). Top: 3D structures predicted by AlphaFold.

Bottom: Reduced representations to visualize the 51- and 71-knots

in the left and right structure, respectively. On the right, the dark

blue segment introduces an additional winding

FIGURE 2 3D structure (top) and reduced representation

(bottom) of protein P54212 (carbonic anhydrase). A composite

trefoil knot (31#31) can be identified. Topologically trivial segments

are not displayed. The large green segments in the top structure are

made transparent for a better view of the knotted region
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structures. The ERRAT algorithm evaluates patterns of
non-bonded contacts between C, N, and O atoms, and
makes a statistical comparison to high resolution struc-
tures. By being distinct from metrics employed in Alpha-
Fold (and other prediction methods), it offers an
independent assessment. We ran ERRAT40 on the set of
knotted structures discussed above. Discounting occa-
sional extended termini found in some models, all the
models tested showed good scores; all cases have >90% of
their protein chain falling within (below) the 95% thresh-
old for rejecting unlikely conformations. Our overall
assessment was therefore that the predicted structures
are correct, at least to a large extent. However, in some
cases, local regions of structure appeared potentially
problematic. And it is critical to note that minor discrep-
ancies in the path of a protein chain—for example, those
that would change an over/under crossing—can change
the topology, potentially leading to an incorrect assign-
ment of a knot. With regard to the present study, we note
that, for the composite knot Q4D5S2 (and its relatives),
the ERRAT program flags a beta strand segment around
residues 100–110 as likely to be structurally incorrect (SI,
Figure S1). Notably, the passage of the chain in this
region is important for the knotted topology. While the
AlphaFold program assigns a high degree of confidence
to the predicted structure in this region, our independent
assessment emphasizes the need for confirmatory experi-
mental studies.

6 | DISCUSSION AND
CONCLUSIONS

In conclusion, we have analyzed all predictions for pro-
tein 3D structures by the AlphaFold AI system for new

topologically complex proteins. Our complete analysis of
the data provided by AlphaFold (see SI) reveals several
high-confidence proteins containing deep complex knots,
which are suitable for experimental verification of their
3D structure. In this data set, we found amongst others a
71-knot, the most complex ever discovered in a protein,
as well as a new 51-knot in a homologue structure and
the first instances of composite protein knots. For the lat-
ter, we propose an evolutionary mechanism for their cre-
ation by gene duplication. As protein topology is an
ongoing challenge for protein folding algorithms, it will
be important to verify or refute the discussed structure
predictions experimentally. One would not only obtain a
fine gauge for the capability of AlphaFold AI system to
correctly predict the topology of complex proteins, but
importantly confirm the multitude of novel protein knots
identified here.

7 | METHODS

Mathematically, knots are well-defined in closed three-
dimensional curves, and can be categorized according to
the minimal number of crossings the curve makes in a
projection onto a plane, allowing for any non-breaking
manipulations (e.g., smoothing) of the curve. The sim-
plest non-trivial knot is the so-called trefoil knot with
three crossings. The figure-eight knot has four crossings,
there are two knots with five, three knots with six, and
eight distinct knots with seven crossings. In addition,
simpler knots can be combined—i.e., formed on separa-
ble regions of the same curve—to form composite knots,
which are distinct from prime knots; the latter cannot be
decomposed into simpler knots. In the present study,
topologically non-trivial proteins (i.e., polypeptide back-
bones that are knotted) have been identified using a clas-
sification algorithm based on the Alexander polynomial
invariant.41,42 Note that for a knot to be well-defined, the
two ends of the protein must be virtually closed,41,42

which sometimes leads to ambiguous results and requires
additional visual inspection. Employing the algorithm
above, we find that the knotting probability (of around
2%) of the AlphaFold database is roughly in accordance
with the one from PDB as discussed in the SI.

We limit our detailed, non-algorithmic analysis to
proteins which fulfill the following three criteria: First,
the average computed confidence score for the predicted
structure must be 80 or above. The AlphaFold AI system
provides a per-residue estimate of its confidence on a
scale from 0 to 100, which is based on the lDDT-Cα met-
ric.43 Second, the topology of the protein must be more
complex than a trefoil (31) and figure-eight (41) knot, that
is, it must contain a knot with at least five essential

FIGURE 4 Structure and topology of proteins A0A0K0IQS9

(left) and C1GYM9 (right). Top: 3D structures predicted by

AlphaFold. Bottom: Reduced representations to visualize the

51- and 52-knots in the left and right structure, respectively
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crossings, which includes any potential composite knots.
We exclude combinations of knot types and protein fami-
lies which are already known, such as 52-knots in ubiqui-
tin hydrolases and 61-knots in haloacid dehalogenase.7

Moreover, the knot must be deep in the sense that the
topology of the system is invariant under removal of at
least 5 aa from both termini. A related measure for the
topological robustness of a structure, which we employ in
our discussions, is the extend of the knotted core, that is,
the smallest region of the protein which still contains the
knot. The extend of the knotted core is one of the mea-
sures included in the knot matrix representation for pro-
teins introduced by King et al. in Ref. 18 and popularized
in further work.44 Third, the protein must not exceed a
length of 600 aa. The final condition was set to mitigate
the potential errors in topology assignment that can arise
from relatively small structural discrepancies in large
structures, in addition to challenges typically associated
with experimental studies on very large and potentially
flexible protein chains. As established above, correct pre-
diction of protein topology is still an important challenge
for modern computer algorithms. Thus, ultimate experi-
mental verification or refutation will highlight the degree
to which the AlphaFold AI system can grasp the intrica-
cies of protein folding for highly complex cases. An
extensive table of all knotted proteins in AlphaFold’s
databank, as determined by our algorithm, including all
quantitative measures employed in our analysis and fil-
tering can be found in the SI. In the present work, the
most interesting proteins that fulfill the conditions above
are discussed in detail. In the SI, we also list proteins that
fulfilled the computational criteria, but which were
set aside as potentially unreliable after visual inspection.
The per-residue confidence scores of all proteins depicted
in the figures are given in the SI; we observe that no seg-
ments which are substantial for the knots possess particu-
larly low confidence. Moreover, we want to acknowledge
that we found the 63-knot in von Willebrand factor A
(identifiers O00534 and Q99KC8), which was also
reported in Ref. 45, where AlphaFold predictions for the
human proteome were studied, even though it does not
satisfy the above conditions stated above due to its
length. In the review stage of this manuscript, another
paper was published by the same group, which describes
a server to determine knots in predicted structures from
AlphaFold.46
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