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Rho-kinase 1 (ROCK1) has been implicated in diverse metabolic functions throughout the
body, with promising evidence identifying ROCK1 as a therapeutic target in diabetes and
obesity. Considering these metabolic roles, several pharmacological inhibitors have been
developed to elucidate the mechanisms underlying ROCK1 function. Y27632 and fasudil
are two common ROCK1 inhibitors; however, they have varying non-specific selectivity to
inhibit other AGC kinase subfamily members and whole-body pharmacological
approaches lack tissue-specific insight. As a result, interpretation of studies with these
inhibitors is difficult, and alternative approaches are needed to elucidate ROCK1’s tissue
specific metabolic functions. Fortunately, recent technological advances utilizing
molecular carriers or genetic manipulation have facilitated discovery of ROCK1’s tissue-
specific mechanisms of action. In this article, we review the tissue-specific roles of ROCK1
in the regulation of energy balance and substrate utilization. We highlight prominent
metabolic roles in liver, adipose, and skeletal muscle, in which ROCK1 regulates energy
expenditure, glucose uptake, and lipid metabolism via inhibition of AMPK2a and
paradoxical modulation of insulin signaling. Compared to ROCK1’s roles in peripheral
tissues, we also describe contradictory functions of ROCK1 in the hypothalamus to
increase energy expenditure and decrease food intake via leptin signaling. Furthermore,
dysregulated ROCK1 activity in either of these tissues results in metabolic disease
phenotypes. Overall, tissue-specific approaches have made great strides in deciphering
the many critical metabolic functions of ROCK1 and, ultimately, may facilitate the
development of novel treatments for metabolic disorders.
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INTRODUCTION

Rho-kinase (ROCK) belongs to the protein kinase A/G/C (AGC) subfamily of serine/threonine
protein kinases and is a major downstream effector of small GTPase RhoA (1). The two
ROCK isoforms, ROCK1 and ROCK2, each contain a kinase domain at its N-terminus, a central
coiled-coil domain, and a pleckstrin-homology domain split by a cysteine-rich region at its
n.org February 2021 | Volume 11 | Article 6225811
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C-terminus (2–4). ROCK1 and ROCK2 share 65% amino acid
homology and have been implicated in a variety of cellular
functions, including smooth-muscle contraction and actin
cytoskeleton arrangement; however, these isoforms also
perform independent functions due to differences in their
structure, subcellular localization, and gene distribution (5, 6).
For example, ROCK1 has uniquely been identified as an
important regulator of energy balance and substrate
metabolism. Pharmacological ROCK1 inhibitors, like Y-27632
and fasudil (HA1077), have been valuable to elucidating
ROCK1’s diverse metabolic roles (7–12); however, both these
compounds have varying selectivity to also inhibit ROCK2 and
other AGC kinase subfamily members. The nonspecific and
systemic effects of these inhibitors make interpretation of
studies in which they are used challenging (13); therefore,
alternative approaches to investigating ROCK1 function are
required to understand its tissue-specific metabolic functions.

In this article, we review the physiological roles of ROCK1 in
the regulation of energy balance and substrate utilization. We
describe novel insights into ROCK1’s tissue-specific functions
facilitated by recent technological advances and highlight
prominent roles in liver, adipose, skeletal muscle, and
hypothalamus. Furthermore, emerging evidence suggests
ROCK1 is a molecular mediator underlying the pathogenesis
of diabetes and obesity.
ROCK1 IN LIVER

Hepatic ROCK1 Overactivity Is Associated
With Metabolic Disease States-
To date, the most well-documented metabolic roles of ROCK1
are observed in liver, with clear connections demonstrated
between hepatic ROCK1 overactivity and humans or rodents
with metabolic disorders (14–21). For example, in humans, liver
ROCK1 protein content positively correlates with BMI, liver
triglycerides (TG’s), and markers of liver damage including
alanine transaminase and aspartate transaminase (14).
Moreover, elevated hepatic ROCK1 activity has consistently
been observed in a plethora of models of disordered
metabolism including: humans with fatty liver disease (14),
DIO mice (14), db/db mice (14), ob/ob mice (14), TNFa-
treated hepatocytes (15), endothelial nitric oxide synthase
(eNOS) deficient mice (16), palmitate-treated hepG2 cells (21),
palmitate metabolite lysophosphatidylcholine (LPS) -treated
Huh7 cells (20), LPS-treated mice (15), and DIO streptozotocin-
treated rats (18). Consequently, ROCK1’s role in homeostatic and
disordered liver metabolism has been an important subject
of investigation.

The causal relationship between hepatic ROCK1 and
metabolic disease has been investigated using a constitutively
active ROCK1-specific mutant in the liver (L-CA-ROCK1),
which increases ROCK1 activity 2-fold (14). In chow-fed L-
CA-ROCK1 mice, body weight is normal, however fasting
glucose levels and lipogenic gene expression including fatty
acid synthase (FAS) and stearoyl-CoA desaturase (SCD1) is
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elevated. DIO L-CA-ROCK1 mice experience a more striking
phenotype, characterized by accelerated obesity, insulin
resistance, hepatic steatosis, hyperglycemia, and dyslipidemia.
These mice also have decreased thermogenic gene expression
indicated by decreased peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC1a) and uncoupling
protein 1 (UCP1) mRNA in brown adipose tissue (BAT) and/or
white adipose tissue (WAT). Overall, the L-CA-ROCK1
phenotype demonstrates a possible causal role of hepatic
ROCK1 overactivity in metabolic disease pathologies,
identifying a potential therapeutic target in liver ROCK1 to
treat obesity and diabetes.

Inhibition of Liver ROCK1 Protects Against
Metabolic Disease Pathologies-
Several studies have investigated the therapeutic potential of
genetically or chemically inhibiting ROCK1 in various models
of disordered liver metabolism (14–17, 20). One mouse model of
liver ROCK1-deficiency (L-ROCK1-/-), in which hepatic ROCK1
activity was specifically knocked down 80%, resulted in
significant protection from DIO and related comorbidities
(14). In chow-fed L-ROCK1-/- mice, there are no differences in
body weight, body composition, or food intake; however, in DIO
L-ROCK1-/- mice, body weight and adiposity are reduced, at least
in part, due to elevated energy expenditure and locomotor
activity. Increases in energy expenditure may be due to
augmented thermogenic gene expression in BAT (PGC1a,
UCP1, COX7a1, COX8b, and ELOVL3) and WAT
(COX8b) (14).

ROCK1 inhibition also improves insulin sensitivity, glucose
clearance, fatty liver, and circulating lipid levels (14–17, 22).
Chow-fed, DIO, and db/db L-ROCK1-/- mice experience
improved glucose clearance and insulin sensitivity, as well as
decreased liver weight, TG’s, and cholesterol content (14).
Supporting these findings, Y-27632 treatment in primary
mouse hepatocytes abolishes TNFa-induced insulin resistance
(15). L-ROCK1-/- mice also have decreased lipogenic gene
expression (FAS, SCD1, SREBP1c, and ELOVL2), despite no
observed differences in gene expression involved glucose
metabolism (14). Overall, studies have observed encouraging
therapeutic potential of liver-specific ROCK1 inhibition in
metabolic disease models, demonstrated by increased energy
expenditure, improved insulin sensitivity, and attenuated lipid
accumulation. These results underscore the value of determining
the molecular mechanisms underlying ROCK1 function to
further understand the pathology of diabetes and obesity.

Hepatic ROCK1 Negatively Regulates
AMPK Activity-
The effects of ROCK1 inhibition on energy balance and lipid
metabolism are abolished in AMPKa2-/- mice, suggesting a
mechanistic relationship between liver ROCK1 and AMPK in
metabolic regulation (16, 17). Hepatic ROCK1 decreases
phosphorylation (thr172) and activity of AMPK, which is the
proposed mechanism through which ROCK1 increases gene
expression and decreases phosphorylation of ACCser79 and
February 2021 | Volume 11 | Article 622581
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SREBP1ser372 to increase lipogenesis (14, 16, 17). Interestingly,
therapeutic agents metformin and paeoniflorin target hepatic
ROCK1/AMPK signaling to improve steatosis and dyslipidemia
in DIO mice (14) and palmitate treated HepG2 cells, respectively
(21). In summary, hepatic ROCK1 appears to have a prominent
role in promoting lipogenesis via suppression of AMPK activity
and subsequent elevations in AMPK’s downstream targets
SREBP1c and ACC. At this time, the upstream molecular
mediators of ROCK1 pathologies are less clear, but a recent
study determining TNFa stimulates NF-kB to activate hepatic
ROCK1 in primary hepatocytes and LPS-treated mice may
suggest the involvement of inflammatory pathways.

Interestingly, the ability of hepatic ROCK1 inhibition to
improve glucose metabolism was found to be AMPKa2
independent, suggesting an alternative, not yet discovered
mechanism (14, 16, 17). The role of ROCK1 in the regulation
of insulin signaling is complex and tissue specific, with some
studies reporting ROCK1 directly reduces phosphorylation of
the tyrosine612 residue (23, 24) and induces phosphorylation of
the serine632/635 residues (25, 26) on insulin receptor substrate 1
(IRS1). Consequently, ROCK1 activity has been associated with
impaired insulin signaling in smooth muscle (23, 27), fibroblasts
(28), adipose tissue (24), heart (29, 30), and leukocytes (31).
Conversely, some studies observe ROCK1 to facilitate glucose
uptake in adipocytes (25, 32, 33) and skeletal muscle (25, 33–35).
These convoluted results are most likely due to differences in
experimental models and the tissue-specific differences in
ROCK1-mediated regulation of insulin signaling should be
considered when developing therapeutic agents.
ROCK1 AND ADIPOSE TISSUE

Adipocyte-Specific ROCK1 Inhibition Is
Therapeutic in Models of
Metabolic Disease-
ROCK1 activity is elevated in the adipose tissue of DIO and db/db
mice, and adipocyte-specific inhibition of ROCK1 rescues many
metabolic disease pathologies (24, 36). While adipose-specific
ROCK1 disruption by 50% has no obvious phenotype in healthy
mice (24), DIO mice experience improved insulin sensitivity and
glucose clearance, despite no changes in adipogenesis, energy
balance, or inflammation (24). The benefits are even greater
when adipocyte-specific ROCK1 activity is reduced by ~83%
(36), resulting in attenuated HFD-induced weight gain and
improved insulin sensitivity independent of body weight
changes. Furthermore, fasting insulin, fasting glucose, FFA’s,
adipocyte growth, and macrophage infiltration are all reduced.
Despite this encouraging therapeutic potential, the mechanisms
underlying ROCK1-mediated adipose pathologies remain
relatively unexplored.

ROCK1 Is Critical to Adipose
Insulin Signaling-
Despite the glucose-lowering effects of ROCK1 inhibition in
mouse models of metabolic disease (24, 36), ROCK1 inhibition
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in cultured adipocytes impairs insulin-stimulated glucose uptake
(25, 32, 33). ROCK1 activity is critical to insulin-stimulated
phosphorylation of IRS1ser632/635 and PI3kinase activity (25, 32).
Interestingly, insulin directly stimulates rho membrane
translocation via PI3kinase in adipocytes (37), and PI3kinase
inhibition abolishes ROCK1-mediated glucose transport (33).
This suggests a circuitous, poorly understood, regulatory
mechanism of insulin signaling, in which ROCK1 is both
downstream and upstream of PI3kinase. Overall, ROCK1’s role
in insulin signaling is complex, and the opposing effects of
adipocyte-specific ROCK1 inhibition in healthy vs.
pathological models, indicates an importance of basal ROCK1
activity to glucose homeostasis but also implicates its overactivity
in metabolic disease pathologies.

Adipose ROCK1 Is Involved in Adipocyte
Differentiation and Lipid Metabolism-
Studies utilizing primary human and rodent adipocytes have
revealed ROCK1 also regulates adipocyte differentiation and
storage. For example, silencing of the ROCK1 antagonist
“deleted in liver cancer 1” in both white and brown cultured
adipocytes, and subsequent overactivation of ROCK1, results in
decreased adipocyte differentiation, lipid accumulation, and
adipogenic gene expression (fatty acid binding protein 4;
FABP4 and adiponectin) (38, 39). Additional impairments in
thermogenic (UCP1 and ELOVL3) and mitochondrial (cox7a1
and cox5b) gene expression are observed in BAT, as well as
reduced mitochondrial respiration (38). Increased ROCK1
activity in cultured human adipocytes has also been shown to
impair lipolysis and reduce protein levels of phosphorylated
hormone sensitive lipaseser660 and adipose TG lipase (40).
Overall, while these studies lack in-depth mechanistic insight,
their findings suggest adipose ROCK1 is a physiological negative
regulator of adipogenesis, lipolysis, and thermogenesis.
ROCK1 AND SKELETAL MUSCLE
METABOLISM

Skeletal Muscle ROCK1 Overactivity
Is Associated With Metabolic
Disease States-
Similar to adipose and liver, skeletal muscle ROCK1 expression
and activity are elevated in rodent models of metabolic disease
(26, 41–43). Conversely, one study observed no differences in
basal vastus lateralis (VL) ROCK1 protein expression or activity
between obese and lean humans (35), highlighting the
importance of considering potential differences between rodent
and human ROCK1 function. Further supporting the hypothesis
that overactive ROCK1 is involved in metabolic disease
pathologies, at least in mice, constitutively active skeletal
muscle-specific ROCK1 (SM-CA-ROCK1) results in early-
onset obesity, even when eating a normal diet (44). These mice
exhibit reduced physical activity, decreased energy expenditure,
impaired glucose clearance and insulin sensitivity, elevated
fasting TG’s and cholesterol, and increased respiratory
February 2021 | Volume 11 | Article 622581
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exchange ratio suggesting decreased fat utilization. They also
experience decreased thermogenic gene expression in BAT and
WAT, as well as reduced mitochondrial size and content
specifically in Type I muscle fibers. Lastly, myogenic gene
expression is altered in these mice including reduced irisin and
IL13 mRNA by 60% and 25%, respectively.

Skeletal Muscle ROCK1 Paradoxically
Regulates Insulin Signaling-
The metabolic dysfunctions of SM-CA-ROCK1 mice may be due
to impaired insulin signaling (41, 42). Lipid-induced
geranylgeranyl diphosphate synthase 1 (GGPPS), a
branchpoint enzyme in the mevalonate pathway involved in
cholesterol synthesis, activates RhoA/ROCK1 signaling in
muscle, which then increases inhibitory phosphorylation of
IRS1ser307 to inhibit downstream signaling (41). This
phenomenon is rescued in muscle-specific GGPPS knockout
mice, as is insulin sensitivity and glucose homeostasis (41).
ROCK1 also activates phosphatase and tensin homolog to
inhibit phosphorylation of AKT in cultured myotubes,
providing another mechanism for ROCK1-mediated negative
regulation of insulin signaling (43). Interestingly, in L6
myotubes, insulin inhibits ROCK1 to promote AMPK2a
activity and subsequently inhibit the lipogenic transcription
factor SREBP-1c (42). This suggests a mechanism in which
insulin may inhibit ROCK1 activity to prevent inhibitory IRS1
phosphorylation and ultimately facilitate downstream
insulin signaling.

The association between skeletal muscle ROCK1 and
metabolic dysfunction has been well-documented in animal
models; however, much like ROCK1 in adipose tissue, basal
ROCK1 activity may be essential to skeletal muscle glucose
uptake. In humans, VL ROCK1 activity positively correlates
with glucose disposal in lean subjects, while insulin-stimulated
ROCK1 activity is impaired in those with diabetes or obesity,
possibly due to elevated levels of the ROCK1 antagonist RhoE
(35). Furthermore, systemic ROCK1 knockout impairs skeletal
muscle insulin signaling, and ROCK1 suppression in myoblasts
blunts glucose uptake in a PI3kinase-dependent manner (25, 33,
34). Overall, ROCK1-modulated glucose uptake in skeletal
muscle is similarly paradoxical to its role in adipose tissue,
both regarding mechanisms and complexity (Section 3.2)
(25, 33).
SUMMARY OF ROCK1 IN
PERIPHERAL TISSUES

To date, similar metabolic roles of ROCK1 have been identified
in liver, skeletal muscle, and adipose tissue. ROCK1 in peripheral
tissues inhibits AMPK2a, which results in changes in gene
expression and downstream phosphorylation events to
ultimately decrease energy expenditure and increase
lipogenesis. ROCK1 also interferes with insulin signaling to
increase blood glucose levels and ROCK1 overactivity is
associated with metabolic disease states and related
Frontiers in Endocrinology | www.frontiersin.org 4
comorbidities including obesity, insulin resistance, and
dyslipidemia. Despite this, increasing evidence suggests basal
ROCK1 activity is also paradoxically essential to glucose disposal
and insulin/PI3kinase signaling (Figure 1). Overall homeostatic
ROCK1 function in peripheral tissues appears to be critical to
metabolic health and future studies should focus on the
differences between healthy and pathological ROCK1 activity.
ROCK1 IN THE CENTRAL NERVOUS
SYSTEM (CNS)

Hypothalamic ROCK1 Regulates
Metabolism-
Unlike liver, adipose, and skeletal muscle, ROCK1 activity in the
hypothalamus is reduced in db/db and DIO mice (45).
Furthermore, hypothalamic ROCK1 knockout in healthy mice
results in excessive food intake, dyslipidemia, and obesity, while
ROCK1 overexpression has opposite effects (45, 46). One study
observed fasudil treatment to increase food intake and gene
expression of the orexigenic neuropeptide, neuropeptide Y,
which is predominantly expressed in the arcuate nucleus of the
hypothalamus (ARC) (47). Considering this, studies have
identified novel roles for hypothalamic ROCK1 to regulate
energy balance via ARC neuron populations.

ROCK1 Regulates ARC Neurons-
The ARC, located in the medio-basal hypothalamus,
contains both the orexigenic neuropeptide Y/agouti-related
peptide (NPY/AgRP) -expressing and the anorexic
proopiomelanocortin-expressing neuron populations (48–50).
Disruption of ROCK1 in either of these neuron populations
results in disordered neuronal activity and metabolism (45, 46).
For example, deletion of ROCK1 in NPY/AgRP neurons results
in increased NPY/AgRP activity and accelerated weight gain in
chow-fed and DIO mice. These mice exhibit decreased resting
energy expenditure and locomotor activity with increased serum
TG’s (45, 46). Similarly, ROCK1 deletion in POMC neurons
leads to POMC hypoactivity and obesity due to reduced
locomotor activity, while whole-ARC ROCK1 deletion has
even greater effects (46).

Tyrosine hydroxylase is the rate-limiting enzyme in
dopamine synthesis (51), and activation of tyrosine
hydroxylase-expressing (TH) neurons in the ARC has recently
been shown to increase food intake and body weight (52). While
RhoA deletion in TH neurons (RhoA-TH-/-) has no effects on
energy balance in chow-fed mice, DIO RhoA-TH-/- mice
experience accelerated weight gain and adiposity due to
increased food intake, despite no differences in energy
expenditure or glucose regulation (53). Additionally,
hypothalamic NPY and AgRP mRNA is elevated in RhoA-
TH-/- mice, suggesting RhoA/ROCK1 in TH neurons likely
regulates other post-synaptic neuron populations as well (53).
Overall, studies in the hypothalamus highlight a prominent role
for ROCK1 to regulate ARC neurons involved in metabolic
regulation; however, nonspecific ROCK1 knockdown in the
February 2021 | Volume 11 | Article 622581
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hypothalamus results in a much more robust metabolic
phenotype (45, 46, 53). Thus, ROCK1 likely regulates other,
currently unidentified, neuron populations, in addition to NPY/
AgRP, POMC, and TH neurons.

ROCK1 Facilitates Hypothalamic
Leptin Signaling-
Leptin is a potent adipokine that regulates ARC neurons to increase
energy expenditure and suppress food intake (48, 53, 54).
Frontiers in Endocrinology | www.frontiersin.org 5
Deficiency in leptin, its receptor (LepR), or its downstream
signaling results in hyperphagia, hyperglycemia, and obesity
(48, 55). Interestingly, RhoA or ROCK1 deletion in NPY/
AgRP, POMC, or TH neurons impairs leptin-mediated
signaling and regulation of these respective neurons (45, 46,
53). Furthermore, hyper-leptinemia is observed in hypothalamic
ROCK1 knockout mice, suggesting the involvement of ROCK1
in the development of leptin resistance seen in metabolic disease
states (45, 46, 56).
A

B C

FIGURE 1 | ROCK1’s metabolic functions in peripheral tissues. (A) Hepatic ROCK1 overactivity is associated with disordered metabolic regulation; conversely,
downregulation of ROCK1 is therapeutic in metabolic disease models. ROCK1 primarily regulates lipid metabolism and thermogenesis via AMPK signaling, however
the mechanisms underlying ROCK1’s role in insulin signaling remain unclear. The pathophysiology of ROCK1 overactivity in metabolic disease is poorly understood,
however sustained inflammation and subsequent NF-kB signaling may be an upstream ROCK1 agonist. (B) Basal adipose ROCK1 activity is critical to homeostatic
glucose metabolism; however, overactivity of ROCK1 is associated with metabolic disease phenotypes. ROCK1 is a negative regulator of thermogenic, adipogenic,
and mitochondrial gene expression. Mechanistically, insulin and PI3kinase signaling are upstream activators of ROCK, while RhoE and DLC1 are antagonists.
Downstream of ROCK1 includes a paradoxical insulin signaling mechanism, where ROCK1 activates IRS1 and PI3kinase, but also attenuates activation of insulin
receptor and AKT. (C) Similar to in adipose, ROCK1 paradoxically regulates glucose metabolism in skeletal muscle. Basal ROCK1 function is critical to glucose
regulation, but overactivity is associated with metabolic disease. ROCK1 regulates metabolism in skeletal muscle by downregulating AMPK, ACC, and AKT signaling,
but also activates PI3kinase, FAS, and SREBP-1c. (Green arrows indicate activation; red arrows indicate inhibition; black arrows indicate regulation of gene
expression).
February 2021 | Volume 11 | Article 622581

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Landry et al. Diverse Metabolic Functions of ROCK1
Considering the strong association between ROCK1 and
leptin activity, ROCK1 has been identified as a cell signaling
molecule directly involved in LepR action. Following leptin
binding to LepR, ROCK1 phosphorylates JAK2, which
stimulates dimerization and phosphorylation of STAT3 (46).
Phosphorylated STAT3 stimulates nuclear translocation and
transcription of target genes, including POMC and signal of
cytokine signaling 3 (SOCS3), each of which act to maintain
energy homeostas i s (57 , 58) . In addi t ion to th i s
leptin➔ROCK1➔JAK2➔STAT3 signaling mechanism, ROCK1
likely functions via other signaling pathways as well. For
example, RhoA deletion in TH neurons also increases
sensitivity to the hunger-inducing hormone ghrelin through
unknown mechanisms (53). Insulin also modulates NPY/AgRP
Frontiers in Endocrinology | www.frontiersin.org 6
and POMC neurons and, like in peripheral tissues, may also
facilitate hypothalamic ROCK1 function (54, 59–61).

Summary of ROCK1 in the CNS-
In summary, hypothalamic ROCK1 regulates various neuron
populations, including NPY/AgRP, POMC, and TH neurons, to
decrease food intake and increase energy expenditure, with no
obvious effects on glucose metabolism. Mechanistically, ROCK1
directly mediates leptin signaling and impairs ghrelin signaling
through unknown mechanisms and the importance of these
functions is underscored by obesity manifesting when
hypothalamic ROCK1 function is impaired (Figure 2). The
seemingly conflicting functions of central and peripheral
ROCK1 are teleologically perplexing, and the reasons for these
A

B

FIGURE 2 | ROCK1 is critical to central nervous system (CNS)-mediated regulation of energy homeostasis. (A) Impaired ROCK1 activity in the hypothalamus is
associated with disordered energy homeostasis. ROCK1 inhibits NPY/AgRP and TH neurons, while stimulating POMC neurons. Mechanistically, ROCK1 facilitates
leptin signaling and attenuates ghrelin signaling. (Green arrows indicate activation; red arrows indicate inhibition). (B) Following leptin binding to LepR, ROCK1
phosphorylates JAK2, which stimulates dimerization and phosphorylation of STAT3. Subsequent STAT3 nuclear translocation elicits transcriptional changes including
increased POMC and SOCS3 mRNA. Other potential mediators of hypothalamic ROCK1 action may be ghrelin and insulin receptor signaling.
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differences are unclear. Despite this. the various tissue-specific
models described in this review cumulatively indicate both hypo-
and hyper-ROCK1 activity have drastic metabolic effects, clearly
demonstrating the critical nature of maintaining homeostatic
ROCK1 function.
CONCLUDING REMARKS

Many studies have used chemical inhibitors and whole-body
genetic manipulation to identify ROCK1 as a prominent
homeostatic regulator of diverse metabolic functions; however,
these studies are limited in their isoform and tissue-specific
insight. Recently, technological advances have facilitated
development of novel models utilizing tissue-specific
approaches, which have greatly enhanced our understanding of
ROCK1’s functions. These studies have observed critical
functions for ROCK1 in various metabolic tissues, including
tissue-specific action in liver, adipose tissue, skeletal muscle, and
hypothalamus to regulate food intake, thermogenesis, locomotor
activity, glucose metabolism, and/or lipid metabolism. The
molecular mechanisms underlying these functions are complex,
underscored by disease states manifesting in response to ROCK1
overactivity, despite basal ROCK1 activity being critical to
Frontiers in Endocrinology | www.frontiersin.org 7
homeostatic maintenance of many physiological functions.
Additionally, elevated ROCK1 activity consistently is associated
with various metabolic disease states, suggesting ROCK1 may be
useful as a preclinical marker of diabetes and obesity.
Nonspecific ROCK1 inhibitors fasudil and Y-27632
demonstrate inhibitor pharmacotherapy is beneficial for these
diseases; however, adverse effects such as hypotension, insulin
resistance, and obesity are observed when ROCK expression/
activity is non-specifically altered or systemically downregulated
(25, 32–35, 62, 63). This once again highlights the importance of
tissue-specific targeting of ROCK1, for example, via mannose-6-
phosphate carriers (62, 64, 65), vitamin-A-coupled lysosomes
(66), or genetic engineering. Overall, these tissue-specific
approaches will greatly facilitate deciphering the many
critical metabolic functions of ROCK1 and, ultimately,
may result in the development of novel treatments for
metabolic 2974disorders.
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