
genes
G C A T

T A C G

G C A T

Review

Terpenoid Metabolic Engineering in
Photosynthetic Microorganisms

Konstantinos Vavitsas 1,3,* , Michele Fabris 2,3 and Claudia E. Vickers 1,3,*
1 Australian Institute of Bioengineering and Nanotechnology, The University of Queensland,

Brisbane, QLD 4072, Australia
2 Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia;

michele.fabris@uts.edu.au
3 CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
* Correspondence: k.vavitsas@uq.edu.au (K.V.); c.vickers@uq.edu.au (C.E.V.)

Received: 20 September 2018; Accepted: 17 October 2018; Published: 23 October 2018
����������
�������

Abstract: Terpenoids are a group of natural products that have a variety of roles, both essential
and non-essential, in metabolism and in biotic and abiotic interactions, as well as commercial
applications such as pharmaceuticals, food additives, and chemical feedstocks. Economic viability
for commercial applications is commonly not achievable by using natural source organisms or
chemical synthesis. Engineered bio-production in suitable heterologous hosts is often required to
achieve commercial viability. However, our poor understanding of regulatory mechanisms and
other biochemical processes makes obtaining efficient conversion yields from feedstocks challenging.
Moreover, production from carbon dioxide via photosynthesis would significantly increase the
environmental and potentially the economic credentials of these processes by disintermediating
biomass feedstocks. In this paper, we briefly review terpenoid metabolism, outline some
recent advances in terpenoid metabolic engineering, and discuss why photosynthetic unicellular
organisms—such as algae and cyanobacteria—might be preferred production platforms for the
expression of some of the more challenging terpenoid pathways.
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1. Introduction

Terpenoids are a chemically diverse class of natural products that are present in all domains of
life and number in the tens of thousands of compounds isolated to date (more than 70,000 according to
the Dictionary of Natural Products database). The wealth of terpenoid structures provides a variety
of roles in central cellular processes (such as electron transport, photosynthesis, membrane fluidity,
signaling, and cell wall formation). The greatest terpenoid diversity can be found in plants where
they have a myriad of roles including mediating in complex interactions with the biotic and abiotic
environment [1,2].

Terpenoid biosynthesis starts with two non-homologous metabolic routes including the
mevalonate (MVA) and the methyl-D-erythritol (MEP) pathways. These pathways produce the
universal 5-carbon prenyl phosphate precursor molecules isopentenyl pyrophosphate (IPP) and
dimethylallyl pyrophosphate (DMAPP) (Figure 1). IPP and DMAPP are condensed to form the
C10 prenyl phosphate geranyl pyrophosphate (GPP)—the precursor of monoterpenes. Consecutive
addition of IPP units forms farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate
(GGPP)—the precursors of sesquiterpenes and diterpenes, respectively (Figure 1). Longer carbon-chain
prenyl pyrophosphates are also produced.
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Figure 1. Biosynthesis of terpenoids. The pathways have been conceptually separated into four
modules, which is representative of the modularized method many metabolic engineers use to
approach isoprenoid pathway engineering. Mevalonate (MVA) and methyl-D-erythritol phosphate
(MEP) pathways lead to IPP (isopentenyl pyrophosphate) and DMAPP (dimethylallyl pyrophosphate)
(module I). Additions of IPP produce higher-order prenyl phosphates (module II), dephosphorylation
(often coincident with or followed by bond rearrangement and/or cyclisation) to form specialized
terpenoid backbones (module III), chemical decorations, and other modifications to yield end products.
Note that not all end products undergo decorations of the carbon skeleton.

The MEP pathway is present in most bacteria, in plastids of photosynthetic organisms, and in some
eukaryotic organisms, including pathogens such as the malaria parasite. The MVA pathway appears
in archaea and the cytosol of most eukaryotic organisms. Consequently, plants and other eukaryotic
organisms—including some algae species—have both pathways present but in different compartments
and with distinct roles (e.g. FPP is predominantly supplied by the cytosolic MVA pathway while
GPP and GGPP by the chloroplast MEP pathway in plants) [2–4]. The prenyl pyrophosphates serve
as substrates for specialized terpene synthases that dephosphorylate and rearrange and/or cyclize
them by using the energy derived from the pyrophosphate hydrolysis to form the terpenoid skeletons.
The last part of the biosynthesis, which delivers the vast terpenoid diversity, is the decoration and
modification of the previously mentioned skeleton by enzymes such as cytochrome P450s, acetyl- and
methyl- transferases, and cleaving enzymes (Figure 1).

Plant-derived specialized terpenoids are often produced in low quantities or in mixtures of
similar compounds (e.g. resins), which makes extraction from natural sources commercially unviable
and chemical synthesis very challenging, due to the complexity of the structures of interest [5–7].
Consequently, metabolic engineers have turned to heterologous hosts for more efficient production.
This, however, presents two fundamental challenges: ensuring a sufficiently high pool of isoprenoid
precursors; and the efficient expression and tuning of the heterologous terpenoid pathway to achieve
economically viable production.

The industrial workhorses Escherichia coli and Saccharomyces cerevisiae (yeast) have been the
primary target hosts. They are well-characterized heterologous systems with a defined terpenoid
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background, which facilitates the analytics process and allows the expression of enzymes one by one,
or in combinations. This involves the biosynthetic steps of known terpenoids, and even allows
the production of new-to-nature compounds [8–13]. Key examples of pathways engineered in
heterologous hosts using synthetic biology approaches include the production of artemisinic acid [14]
and taxadiene [15]—precursors of the anti-malarial artemisinin and cancer chemotherapeutic taxol,
respectively. There have been many successful engineering studies that have increased the range of
produced compounds and our understanding on how to engineer terpenoid pathways [16–20].

In this review, we summarize key advances that used metabolic engineering to both rewire
the host’s primary metabolism to maximize the production of isoprenoid precursors and to enable
the production of the desired terpenoid product in tractable, well studied hosts E. coli and yeast.
We then explore advances in engineering photosynthetic microorganisms and discuss their potential
as alternative production platforms for heterologous terpenoids.

2. Pathway Modules in Terpenoid Biosynthesis

Metabolic engineering is the application of systems and synthetic biology approaches to
engineering cells for the production of industrially useful biochemicals. These factories can be designed
and engineered for optimal resource allocation towards the desired pathway. Terpenoid precursor and
biosynthetic pathways are well characterized in different organisms and have been manipulated in a
multitude of studies, which renders them model pathways for metabolic engineering. The biosynthesis
of terpenoids has a distinctive modular structure, which makes their pathways particularly
suited to synthetic biology-based engineering approaches: a natural grouping of biochemical
reaction types creates four distinct modules that can be independently manipulated (Figure 1).
Pathway modularization is useful in combinatorial engineering approaches [11,21,22] and is useful as
a concept guiding engineering studies.

2.1. Module I: Redirection of Resources towards isopentenyl pyrophosphate and dimethylallyl pyrophosphate

Production hosts commonly have insufficient availability of the C5 prenyl pyrophosphate
precursors IPP and DMAPP to provide an adequate flux to the heterologous pathways.
Successful examples of terpenoid production hosts include maximization of the metabolic flux
towards the formation of IPP and DMAPP through the overexpression or manipulation of genes
of the endogenous MVA and MEP pathways as well as the insertion of the MEP pathway in organisms
with only an MVA pathway to supplement flux [23–28]. The latter strategy has the additional objective
of overcoming endogenous flux-constraining mechanisms as well as introducing emergent synergistic
effects. One interesting study aimed at the production of isoprene pinpointed that, when both the
MVA and MEP pathways are co-expressed in E. coli, they work in synergy and both have a higher flux
when compared to having only one pathway present [27,29].

In the MEP pathway, the first two steps catalyzed by deoxy-xylulose 5-phosphate synthase
and deoxy-xylulose 5-phosphate reductoisomerase (DXS and DXR, respectively) as well as the
isomerization of C5 prenyl phosphates by the isopentenyl-diphosphate delta-isomerase (IDI) (Figure 1)
are rate limiting and must be overexpressed for a high terpenoid yield [15,30,31]. The MVA pathway
is limited by the first catalytic steps—from acetyl-coA to mevalonate—and in particular by the
3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) [32,33].

In the presence of the MVA/MEP pathway overexpression/augmentation, over-accumulation
of prenyl phosphates is problematic and causes cellular toxicity [34]. For this reason, a balance
between flux through the DMAPP/IPP synthetic pathways and consumption of prenyl phosphates
is required. A strong sink “pull” approach is commonly required to compensate for the upstream
pathway flux augmentation.
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2.2. Module II: Prenyl Phosphate Metabolism

Different classes of terpenoids are produced from prenyl phosphates with different chain-length
carbon skeletons (Figure 1). Hemiterpenes are produced from the C5 prenyl phosphates with the
best known example being isoprene, which is derived from the DMAPP. The sequential addition of
IPP units to DMAPP generates the longer prenyl phosphate skeletons—namely the precursors GPP
(C10 terpenoids), FPP (C15 and C30 terpenoids), and GGPP (C20 and C40 terpenoids) (Figure 1).

Both E. coli and S. cerevisiae preferentially produce FPP, which is a key precursor for the primary
isoprenoids produced by these organisms (e.g., sterols in yeast, dolichols in E. coli). As a consequence,
sesquiterpene (C15) production in these organisms has yielded relatively high titers especially in
yeast [14,35]. The competition for the FPP by sterol catabolism must be alleviated and squalene
synthase, which consumes FPP and is the first committed step of sterol biosynthesis, has been targeted
for down-regulation for this reason [16,36–38].

Directing productivity towards the C10 and C20 branches faces different challenges. In S. cerevisiae
and E. coli, the primary prenyl transferase converts GPP immediately to FPP by the addition of a
second IPP unit without releasing GPP from the active site under normal conditions [39]. This means
that there is a very low in vivo pool of GPP for the production of monoterpenes. In yeast, an FPP
synthase (FPPS) engineered to exclude FPP from the active site has been used to increase GPP and
monoterpene production [40,41]. An alternative approach is the use of a degradation tag on FPPS
to minimize competition and limit flux towards FPP, which enhances monoterpene production [41].
This approach had to be paired with the replacement of the FPPS promoter by the sterol-responsive
promoter of squalene epoxidase to ensure sufficient activity of this essential enzyme [41].

Accumulation of GGPP requires an uninhibited flux through GPP and FPP and usually a strong
“metabolic pull” strategy is used by overexpressing GGPP synthase [15,42,43]. A more elaborate
strategy was also used in S. cerevisiae whereby the GPP/FPP synthase was engineered to expand its
substrate binding site, which allows it to add an IPP unit to catalyze GGPP formation [44]. This allowed
for the enhanced heterologous diterpenoid production.

2.3. Modules III and IV: Terpene Synthases, Skeleton Decorations, and Further Modifications

The next two modules comprise the specific pathway for each target compound and are where
the true terpenoid diversity is unlocked. Terpene synthases (Module III) form a wide variety of carbon
skeletons. These skeletons are the substrates of the decorating enzymes of Module IV. This chemistry is
highly complex and results in massive diversity. In this case, we outline generic information to provide
(a) a more complete overview of terpenoid biosynthesis and (b) context for the following section on
terpenoid production by photosynthetic organisms.

Terpene synthases are often multimeric and slow enzymes [45]. These features make them
challenging to use in heterologous production. The solution commonly employed is massive
overexpression, which, while it can increase catalytic activity, also creates problems such as inclusion
of body formation and loss of activity [46–48]. In plants, terpene synthases range in number from
one (in the case of the moss Physcomitrella patens) to over a hundred per genome [49]. They are
thought to have evolved by descent from a single gene resembling the kaurene synthase found in
moss and they are notoriously promiscuous enzymes with a high level of substrates and product
flexibility [49,50]. While undesirable in many cases (where a specific product is sought), these properties
offer opportunities. Terpene synthases can be combined in heterologous systems to produce many
different compounds including compounds which are new to nature and have desirable industrial
properties [11,12,22,51].

Decorating enzymes—that alter the basic carbon skeleton—are usually the final step of
terpenoid biosynthesis. Various enzymes such as oxidative enzymes (especially cytochromes P450,
monooxygenases that add hydroxyl groups with a high degree of stereospecificity), methyltransferases,
acyltransferases, and prenyltransferases diversify the already numerous terpene skeletons [1].
The cytochromes P450 are one of the keys to unlocking the large terpenoid diversity [5,52]. Cytochrome
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P450s due to their unique catalytic mechanism are able to introduce hydroxyl groups in a very precise
manner even in substrates with a large amount of chiral carbons [53]. They require two electrons per
reaction, which is usually provided by NADPH and via a specific cytochrome P450 redox partner even
though several other electron carriers can drive the reactions forward [54,55]. Cytochrome P450s are
arguably challenging enzymes to engineer in heterologous hosts due to the need for redox power in
the form of NADPH, cofactor availability—P450s contain heme molecules—and poor expression of
eukaryotic P450s in bacteria [56,57].

2.4. General Considerations Spanning Across Nodes

As discussed above, precise control of the heterologous biosynthetic pathways is often crucial
to increase production. One way to help balance pathway flux across metabolic modules is to
apply metabolite biosensors linked to feedback control mechanisms. Such a strategy can tie enzyme
production (for example, terpene synthases) with internal metabolite pools (such as the enzyme’s
substrate or a key precursor molecule), which enables the production of the relevant enzyme exactly
when required. Moreover, biosensors can be used to implement directed evolution methodologies,
which connect compound concentration with growth or other responses. Two successful examples
are the use of an NADPH sensor for neurosporene production enhancement and an IPP sensor for
lycopene production enhancement [58,59]. Ng and co-workers explored the notion that terpenoid
production relies heavily on NADPH availability (and thus regeneration). They generated an NADPH
fluorescent sensor to screen many E. coli strain variants, selecting the ones with higher NADPH
regeneration rates [58]. This allowed them to improve 25-fold the production titers of the carotenoid
neurosporene. Chou and Keasling constructed an elaborate IPP-controlled genetic circuit: low IPP
causes high mutagenesis rate while, as the IPP concentration increases, the mutation rate drops [59].
Since this is tied to a fluorescent reporter, the researchers could select the strains with lower fluorescence
(which had higher IPP production rates) and confirm that these strains could accumulate significantly
more lycopene.

Flux reporters such as the carotenoids lycopene and beta-carotene are commonly used as
indicators of the terpenoid yield since they give a colored phenotype that can be assessed by absorption
or fluorescence. This has been exploited in studies to identify elements such as transcription factors
that have an effect on production, coupled with directed evolution or high throughput engineering
approaches [60–62]. There are, however, some problems with using lycopene as a flux reporter in that
changes in the cellular redox status result in oxidation of lycopene and loss of color—thereby interfering
with its effectiveness as a pathway flux reporter [62]. In addition, accumulation is affected by prenyl
phosphate metabolism influencers and may not relate directly to a core isoprenoid (MEP/MVA)
pathway flux. These considerations can render lycopene a poor reporter of pathway flux in some cases.
Alternative reporters such as isoprene may be more useful, but assays are not as high throughput or as
facile as the colored products.

It should be noted that MEP and MVA pathways both consume reducing power by using
NADPH and NADH, respectively. The availability of these redox partners as well as haem molecules
(serving as enzyme cofactors) and the precursors acetyl-coA (for the MVA pathway) and pyruvate and
glyceraldehyde 3-phosphate (of the MEP pathway) are limiting steps. Therefore, the introduction of
pathways that enable the recycling of cofactors or increase their availability have been used successfully
to increase terpenoid production [63–67].

Often, it is not easy to optimize all four nodes and produce a terpenoid of interest in a single
organism. The use of dual-organism production systems is an interesting alternative. An example has
been implemented in the production of oxygenated products of taxadiene. E. coli was optimized
to produce taxadiene, which was oxygenated by a yeast expressing taxadiene 5α-hydroxylase
(a cytochrome P450) and the P450 reductase [68]. This microbial consortium approach shows that
different organisms are needed to optimally catalyze different reactions where the enzymes require
bespoken environments provided by different hosts.
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3. Photosynthetic Microorganisms as Terpenoid Production Hosts

The heterologous production of terpenes requires the expression of foreign enzymes and often
entire metabolic pathways. E. coli and S. cerevisiae are currently the main hosts for terpenoid production
chosen for their high growth rates, relative ease of engineering, scalability, bioprocess technology,
and—in particular—for the advanced knowledge available on their metabolism and genetic
resources. However, these two organisms have not evolved to produce a wide variety of complex
terpenoid metabolites.

Photosynthetic organisms produce a much greater diversity of isoprenoids and use them for
many more metabolic processes than yeast and E. coli. These isoprenoids are also required in
higher amounts to satisfy metabolic demands for the production of photosynthetic pigments, sterols,
isoprene, and secondary metabolites. Extensive engineering is required to get reasonable flux to
isoprenoids in both yeast and E. coli, which suggests that isoprenoid metabolism is relatively inefficient
in these organisms [16,69]. Conversely, photosynthetic organisms dedicate a significant—albeit
small when compared to the reactions of the central carbon metabolism—amount of metabolic
resources to terpenoids to provide the production requirements for chlorophyll, carotenoids, and
other photosynthetic pigments (Figure 2). While this means that the potential for interference
of native metabolism is higher, it also indicates a much greater flux potential for isoprenoid
pathways in photosynthetic organisms. The production of massive amounts of isoprene by
numerous photosynthetic land plants and microalgae also points to a higher native flux capacity [70].
Moreover, photosynthetic organisms have an increased NADPH content, use of CO2 as a feedstock
(rather than secrete it in the atmosphere), and offer the ability to directly link photosynthesis
with heterologous metabolite production via electron transfer proteins [54,71]. Cyanobacteria and
eukaryotic microalgae combine photosynthetic growth with simple cellular organization and, in model
species, straightforward genetic manipulation methodologies. In the following sections, we review
terpenoid engineering in these photosynthetic micro-organisms (Table 1).

Table 1. Summary of terpenoid metabolic engineering works in photosynthetic microbes.

Terpenoid Production Organism Titer Reference

isoprene Synechocystis sp. PCC 6803 12.30 mg g−1 [72]
isoprene Synechococcus elongatus PCC 7942 1.26 g L−1 [73]

beta-phellandrene Synechocystis sp. PCC 6803 3.20 mg g−1 [74]
limonene Synechococcus sp. PCC 7002 4 mg L−1 [75]
limonene Synechocystis sp. PCC 6803 6.70 mg L−1 [76]

bisabolene Synechococcus sp. PCC 7002 0.60 mg L−1 [75]
farnesene Anabaena sp. PCC 7120 0.08 mg g−1 [77]

amorphadiene Synechococcus elongatus PCC 7942 19.80 mg L−1 [78]
squalene Synechocystis sp. PCC 6803 1.20 mg g−1 [79]
farnesene Synechococcus elongatus PCC 7942 4.60 mg L−1 [80]

geranyllinalool Synechocystis sp. PCC 6803 0.36 mg g−1 [81]
manoyl oxide Synechocystis sp. PCC 6803 2 mg L−1 [82]

(E)-alpha-bisabolene Chlamydomonas reinhardtii 11 mg L−1 [48]
patchoulol Chlamydomonas reinhardtii 0.47 mg L−1 [83]

manoyl oxide Chlamydomonas reinhardtii 50 mg L−1 [84]
lupeol Phaeodactylum tricornutum 0.1 mg L−1 [85]
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Figure 2. Schematic representation of photosynthetic organisms as heterologous terpenoid biofactories.
(A) In cyanobacteria and in algal chloroplasts, photosynthesis provides ATP and NADPH, which are,
in turn, used to fix carbon dioxide. Glyceraldehyde 3-phosphate (G3P) links carbon fixation with the
rest of metabolism. Pyruvate (PYR) is produced from G3P via glycolysis and these two metabolites
are the precursors for the MEP pathway. (B) In eukaryotic algae, mitochondria produce acetyl-CoA
(Ac-CoA) from which the MVA pathway is initiated and IPP/DMAPP are produced. Chloroplasts
also contribute to the terpenoid precursor pool. Metabolite exchange between cellular compartments,
which is not yet fully elucidated, makes terpenoid metabolism more complex.

3.1. Cyanobacteria

Cyanobacteria are receiving increased attention as potential photosynthetic production hosts
due to their simple cellular organization and their metabolic repertoire, which is characterized by
high plasticity [71,86–88]. The toolbox of synthetic and systems biology resources for metabolic
engineering is rapidly increasing and now includes genome-scale metabolic models [89,90],
transposon libraries [91], CRISPR tools [92–94], and several genetic synthetic biology parts [71,95,96].
Although generation of analysable transgenic lines takes longer than yeast and E. coli, they are attractive
production hosts due to their photosynthetic growth and relatively simple cellular organization.

The first study in cyanobacterial terpenoid engineering involved the production of the
hemiterpene isoprene in Synechocystis sp. PCC 6803 [97]. The relatively low initial yield increased
fivefold (from 0.05 mg g−1 to 0.25 mg g−1) with the heterologous expression of the MVA pathway [24].
It is interesting to note that the same strategy yielded a much greater, 400-fold increase in isoprene
production in E. coli [23]. This highlights differential regulation of isoprenoid metabolism between
the two types of organism. It is likely that the large increase in E. coli is due to a low innate pathway
flux in this organism relative to Synechocystis sp. PCC 6803, which provides a larger dynamic range
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for improvement. It may also reflect availability of central carbon intermediates to feed into the
pathways, differential enzyme behavior in the different organisms, or different availability of DMAPP
for isoprene synthase. Isoprene production is limited by the amount of the isoprene synthase expressed.
Fusion of the isoprene synthase with the c-phycocyanin beta subunit, which is a highly expressed
protein, provided a yield increase to 5.4 mg g−1 [98]. Overexpressing the IPP isomerase to help balance
availability of DMAPP conferred a further improvement to 12.3 mg g−1 [72].

A different approach was used in isoprene production in Synechococcus elongatus PCC 7942,
which resulted in the accumulation of 1.26 g L−1 (approximately 540 mg g−1) isoprene after three weeks
of growth [73]. This is an impressive outcome in engineered cyanobacteria and by far the highest titres
to date. In this work, Gao and co-workers focused on enhancing the flux of the MEP pathway by using
targeted metabolite analysis to identify bottlenecks and combining several terpenoid enhancement
strategies. A similar approach was implemented in Synechocystis sp. PCC 6803 by studying the effect
of overexpressing the MEP pathway enzymes in isoprene production [99]. Many (but not all) of the
MEP enzymes (DXS, DXR, ispD, ispE, ispF, ispH) as well as the IDI isomerase had a positive effect.
The most dramatic effect though was observed when more efficient isoprene synthases were used,
which highlights that the true bottleneck lies in the terpene synthase activity.

An early effort to engineer monoterpenoid production in Synechocystis sp. PCC 6803, which expresses
the codon-optimized beta-phellandrene synthase from Lavandula angustifolia and reports 50 µg
beta-phellandrene L−1 [100]. Fusion of the beta-phellandrene synthase with the c-phycocyanin beta
subunit resulted in beta-phellandrene accumulation at 3.2 mg g−1 [74]. Davies and co-workers explored
the production of the monoterpene limonene and the sesquiterpenes bisabolene in Synechococcus sp.
PCC 7002, which achieves yields of 4.0 mg L−1 and 0.6 mg L−1, respectively [75]. An increased
limonene yield (6.7 mg L−1) was achieved in Synechocystis sp. PCC 6803 when two enzymes of the
pentose phosphate cycle (the ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase)
together with a GPP synthase to increase precursor availability were overexpressed [76].

Sesquiterpenoid production was explored in Anabaena sp. PCC 7120 where farnesene titres
reached 0.08 mg g−1 after two weeks of growth [77]. The highest sesquiterpenoid production reported
so far was in Synechococcus elongatus 7942, which reached 19.8 mg L−1 amorphadiene [78]. The authors
achieved this by heterologously overexpressing the E. coli DXS, FPP synthase, and the IPP isomerase.
In Synechocystis sp. PCC 6803, squalene, a triterpenoid derived from FPP by the action of squalene
synthase, accumulated to approximately 1.2 mg g−1 when the downstream squalene hopene cyclase
was knocked out [79]. Again, the overexpression of DXS, FPP synthase, and the IPP isomerase
resulted in almost 10-fold productivity improvement [78]. The overexpression of the MEP enzymes
was implemented in a recent alpha-phellandrine production work in Synechococcus elongatus 7942,
which reached 4.6 mg L−1 alpha-farnesene after seven days of cultivation [80].

Diterpenoid expression in cyanobacteria is less studied. Geranyllinalool, which is a diterpene
alcohol present in tobacco, was produced in Synechocystis sp. PCC 6803 with reported titres of
0.36 mg g−1 [81]. Englund and co-workers produced 13R-manoyl oxide and reached titres of
0.75 mg L−1 [101]. Manoyl oxide yield improved to 2 mg L−1 by codon-optimizing the terpene
synthases and expressing them in a self-replicating vector under a strong promoter [82].

As summarized above, production of terpenoids in cyanobacteria has not yielded very high
titers so far—high µg L−1 (or µg g−1) to low mg L−1 (or mg g−1)—with the notable exception of
isoprene production in Synechococcus elongatus (>1 g/L [73]). In an interesting comparison of the
isoprene, monoterpene, and sesquiterpenoid yields reported in E. coli and cyanobacteria (normalized
to total carbon), Ko et al. note that, in most cases, the cyanobacterial titres are disappointingly low
in comparison [102]. The effects of terpenoid engineering on native metabolism are also important
to study. In the isoprene production strain developed by Gao et al. [73], the carbon fixation rate of
S. elongatus almost doubled. An increased biomass productivity caused by a sink effect has been
observed in other metabolic engineering studies (e.g., [103]). Cyanobacteria seem to tolerate the
redirection of carbon towards heterologous terpenoid production and increase the flux towards the
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MEP pathway to compensate for the extra resources consumed [82]. The MEP pathway provides
precursors for carotenoids and chlorophyll, which potentially render any significant imbalance due
to heterologous terpenoid production unfavorable for growth. Nevertheless, negative effects such
as growth retardation and reduction in oxygen evolution have been observed routinely [78,82,104].
An interesting observation is that knocking out competing pathways does not seem to improve
terpenoid production, which is observed when glycogen synthase and squalene hopene cyclase were
knocked out in an attempt to enhance limonene and manoyl oxide production, respectively [75,101].

Many enzymes involved in terpenoid biosynthesis both in Module I (MEP/MVA pathway) and
in Module IV (decorations) require electron donors as redox partners. Therefore, the redox availability
increases flexibility and makes redox enzyme expression more straightforward. One example is the
expression of cytochrome P450s in cyanobacteria by using ferredoxin as a direct link to a photosynthetic
redox power. This strategy not only results in active enzymes but also may increase overall
photosynthetic capacity [105–107]. Cyanobacteria seems to have efficient regulation mechanisms
that buffer the effects of metabolic perturbations to maintain homeostasis in primary metabolism.
This can be both advantageous (as important native branching pathways are not affected by the
heterologous ones) but may also hinder metabolic engineering [82]. Another noteworthy observation
is that different cyanobacterial strains behave very differently. It is important to keep in mind that,
despite their similar morphology, cyanobacterial species are genetically divergent and this may result
in a varied behavior in terpenoid production. The cyanobacterial species diversified around 2.5–2.1
billion years ago [108], which means that, in practice, Synechococcus elongatus and Nostoc sp. PCC
7129 are more distant phylogenetically to each other than humans are to plants. This may explain
significantly different production profiles in the presence of engineering between different species.

These studies highlight that, while native MEP pathway flux in cyanobacteria may be relatively
high, engineering heterologous terpenoid production still faces challenges in these organisms.
Competition with native terpenoid production as well as a relatively poor understanding of regulatory
mechanisms are two key challenges that require further attention. Despite this, the ability of these
organisms to tolerate and compensate for heterologous terpenoid production is extremely promising.

3.2. Eukaryotic Algae

Microalgae are unicellular, (mostly) photosynthetic eukaryotes and form an enormously diverse
group that spans across several branches of the eukaryotic tree of life. Because of their huge diversity,
this group of organisms is largely unexplored. However, their terpenoid repertoire is estimated to be
vast and diverse [109]. Microalgae are promising candidates as production platforms for high-value
product manufacturing in light of several intrinsic advantages. They are eukaryotic. Therefore, they
are capable of carrying out complex biological and biochemical functions. They are photosynthetic
and, thus, have inexpensive growth requirements. In most cases, algae are resistant to stresses usually
associated with industrial cultivation and they are often suitable for industrial production scale-up.

Recent advances in sequencing technologies, metabolomics, and proteomics have paved the
way to the metabolic characterization at the genetic level of representative microalgal species.
The development of increasingly efficient genetic toolboxes for model algal species [110–112] allows
targeted genetic manipulations for metabolic characterization and gene discovery as well as metabolic
engineering. In addition, the recent development of metabolic networks [113–115] and genome-scale
metabolic models of the main model species [116–121] have placed those species under the spotlight
as promising next generation, solar-powered, cell-sized biofactories. Among many applications, some
microalgae species are currently emerging as attractive alternative platforms for the heterologous
production of industrially relevant terpenoids.

3.2.1. Chlamydomonas reinhardtii

The green alga C. reinhardtii is historically the longest and most widely used model organism for
algal genetics. Efforts in engineering this species have provided proof-of-concept for its suitability as a
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single-celled factory for the synthesis of many bio-products from recombinant therapeuticenzymes to
small molecules. The generation of the mutant C. reinhardtii strains that display to consistently
high levels of transgene expression such as UMV4 and UMV11 [122], which greatly facilitated
metabolic engineering in this algal species. Its isoprenoid metabolism is based on solely the MEP
pathway to provide precursors for photosynthetic pigments and sterols and no complex terpenes
or terpene-based secondary metabolites have been reported to date. Recent work has shown the
potential of using C. reinhardtii to produce the sesquiterpenoid patchoulol by expressing a plant
patchoulol synthase gene [83], which is followed by the evaluation of terpene yield in different
growth conditions. This reaches the maximum titer of 1.03 mg L−1 in photoautotrophic growth. By
comparing previously published sesquiterpenoid yield in cyanobacteria with those of C. reinhardtii,
Lauersen et al. hypothesized that C. reinhardtii might have a relatively larger availability of farnesyl
pyrophosphate [75,83]. However, this work highlighted the availability of prenylphosphate precursors
as bottleneck for the heterologous production of terpenoids in C. reinhardii. To address this, terpenoid
metabolism was engineered by RNAi-mediated silencing of genes involved in competing pathways
that used FPP as a substrate including a squalene synthase and geranyl-geranyl-pyrophosphate
synthase. Down-regulation of these competing enzymes resulted in bisabolene yields up to 4.8 mg
L−1. This was further improved to 11.0 mg L−1 by cultivating the engineered algae in mixotrophic
light/dark (16 h/8 h) regimes and providing both 3% CO2 and acetate in the growth medium [48].
Yields were, however, significantly lower than yields obtained in yeast (more than 900 mg L−1) [123].
Very recently, Laursen et al. showed that chloroplast localization of diterpenes synthases is essential
for the production of diterpenes casbene and manoyl oxide in C. reinhardtii. Further carbon flow
optimization by fusing the terpene synthases to a mutated GGPP synthase resulted in the production
increase to 25 mg L−1 manoyl oxide [84].

This work demonstrated the feasibility and efficacy of fine-tuning of isoprenoid metabolism
in C. reinhardii to improve terpenoid yields, but it also underscored that terpenoid production is
strongly influenced by cultivation conditions. Therefore, understanding the basis of the endogenous
regulation of the isoprenoid pathways will be key toward designing efficient metabolic engineering
and bioprocessing strategies. Nuclear transformation in C. reinhardtii occurs by random chromosomal
integration of the transgene. Therefore, transgene expression is highly variable across independent cell
lines (due to the position-of-integration effects) and may be subjected to currently poorly-understood
endogenous silencing mechanisms possibly both at the transcriptional and translational level.
Therefore, high-throughput screening platforms are required for identifing the best performing strains.
In addition, a targeted gene integration technique would improve reproducibility.

3.2.2. Diatoms

Diatoms are taxonomically distant from higher plants but, being eukaryotic like higher plants,
they have both MVA and MEP pathways for isoprenoid precursor production. Diatoms are known
to produce high amounts of carotenoids (some of which are high-value and exclusively produced by
this group [121]), and a large variety of sterols [121]. Some are also known to emit and contribute a
major proportion of marine isoprene [124]. Thalassiosira pseudonona and Phaeodactylum tricornutum
have emerged in recent years as models for the two main diatom morphological sub-groups (centric
and pennate).

Phaeodactylum tricornutum is a potentially promising candidate because of its peculiar organization
of central carbon metabolism, which comprises three different glycolytic pathways. Besides the
Emden Meyerof Parnas glycolysis, P. tricornutum possesses a putative phosphoketolase pathway and
a functional eukaryotic Entner-Doudoroff pathway [113]. Although the role of the phosphoketolase
pathway and Entner-Doudoroff glycolytic pathways in diatoms is not clear yet, they both produce
NADPH and molecules that could possibly enter and fuel the MVA and the MEP pathways. In fact,
the putative phosphoketolase pathway possibly produces acetyl-coA (and 1 ATP and NADPH) and
the Entner-Doudoroff pathway yields glyceraldehyde-3-phosphate and pyruvate (and 1 ATP and
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NADPH). These two pathways, which are naturally present in P. tricornutum, have been heterologously
expressed and employed by engineered yeasts—where they are absent—for increased availability of
isoprenoid precursors [69].

An investigation of the genetic basis of isoprenoid metabolism in P. tricornutum revealed
several unusual features including the absence of a conventional squalene epoxidase enzyme and
the combination of the enzymatic activities of IPP isomerase and squalene synthase in a fusion
enzyme [125]. These unusual characteristics likely indicate that a particular selective pressure has been
exerted on these parts of the metabolism.

Diatoms benefit from the most advanced genetic toolbox among algae and the availability
and the efficiency of the molecular tools to genetically manipulate diatoms has recently progressed
enormously. High-efficiency genetic transformation can be achieved by several means ranging from
biolistic DNA-coated particle bombardment, electroporation, and bacteria-mediated conjugation
in which the latter is compatible with the transfer of large DNA constructs [111]. Methods and
resources for transgene expression, RNAi-mediated silencing [126], and CRISPR/Cas9-mediated
genome editing [127,128] have been established. Key to synthetic biology applications,
recent advancements have shown that specific centromeric sequences can be added to large episomes
to enable extrachromosomal stable maintenance [111], which theoretically allows the simultaneous
transformation of very large constructs or multiple genes. This overcomes issues related to the
random genomic insertion of the transgenes, which is one of the main bottlenecks in algal genetics
transformation. Moreover, recent efforts have succeeded in developing high efficiency targeted
genome editing techniques in diatoms [128]. Metabolic engineering efforts in diatoms have been
mostly targeted to their lipid metabolism with only a handful of examples of heterologous terpenoid
production. However, recent work has highlighted the potential of these organisms. For example,
overexpression of the DXS enzyme in the MEP pathway of P. tricornutum resulted in the 2.4 fold increase
in the yield (24.4 mg g−1 DW) of the native high-value carotenoid fucoxanthin [129], which highlights
the role of DXS in controlling the flux through the MEP pathway to the carotenoid end-products.
DXS is the entry point from central carbon metabolism for the MEP pathway and is the primary
rate-limiting step in other organisms used for isoprenoid production.

To date, there is only one example of heterologous terpenoid production in diatoms. This was
aimed at the production of plant triterpenoid saponigenin by installing a synthetic branch in the sterol
biosynthesis of P. tricornutum. The expression of a Lotus japonicus lupeol synthase in P. tricornutum
enabled the conversion of 2,3-epoxysqualene into lupeol to the maximum titre of 0.1 mg l−1 and the
conversion of this to trace amounts of betulin by expressing a Medicago truncatula CYP450 oxidase
(MtCYP716A12) and its reductase (Mt71CPR) [85]. The production of lupeol was accompanied by a
detectable decrease in sterol content, which suggests that the substrate is a limiting factor and that the
installed plant pathway competes with the endogenous biosynthesis of sterols [85].

These initial efforts in terpenoid engineering in algae clearly showed the potential and the
feasibility of the production of plant terpenoids in algae while underscoring that key bottlenecks
provide sufficient pools of substrates and metabolic pull from heterologous production with competing
essential pathways such as that from sterol biosynthesis. This points towards the need to characterize
and understand endogenous isoprenoid metabolism for efficient engineering. The feasibility of
transferring large extrachromosomal genetic constructs provides the opportunity for more complex
and multiplexed engineering approaches for heterologous production in diatoms, which makes this
group of organisms one of the most promising candidates among photosynthetic eukaryotic microbes.

4. Perspectives

Even though there has been considerable progress in their metabolic engineering, heterologous
production of terpenoids is far from straightforward in photosynthetic microorganisms. However, with
the expansion of available hosts, engineering tools, and understanding of terpenoid metabolism
regulation, increased product titre and diversity will become available. Synthetic and systems biology
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are expected to contribute greatly to this effort by providing more options and helping in more
holistic—taking into account not just the heterologous pathway and the connected metabolic branches,
but the whole metabolism—engineering.

Presently, cyanobacteria and algae are limited by small genetic engineering toolboxes compared
to model heterotrophs, have a lack of knowledge about regulatory mechanisms, and have
relatively slow growth. They also require non-standard equipment (light growth cabinets and
photobioreactors). Production under different growth conditions (hetero/mixo/autotrophic) and
light regimes (continuous light/photoperiod) has shown some promise but needs to be further
evaluated. As toolboxes for manipulation develop further and our knowledge of regulatory systems
expands, engineering will become easier in these organisms. Moreover, expanding our engineering
efforts to more algal and cyanobacterial species such as the cyanobacterium Synechococcus UTEX 2973,
algae members of the genus Nannochloropsis (Eustigmatophyceae), or more non-model species may
reveal strains more suitable for high terpenoid productivities. Ultimately, photosynthetic terpenoid
“chassis cells” that deliver reasonable base rates, titers, and yields [130] similar to those currently used
for industrial production in E. coli and yeast will become available.

A better understanding of flux regulatory mechanisms will improve our ability to successfully
redirect carbon to heterologous pathways without impinging unduly on essential metabolic processes.
These mechanisms are bound to be different than the ones in heterotrophic mechanisms, given the
different origin of metabolic precursors (photosynthetic) and the more complex redox regulation.
Historically, terpenoid engineering in photosynthetic microbes has only just begun. The first report
was just eight years ago [97] and relatively few groups work in these organisms when compared to
several decades and likely hundreds of labs worldwide working in terpenoid engineering in yeast and
E. coli. It is probable that increasing the numbers of groups will engage with these microorganisms as
tools and understanding improves. This is drawn by the benefits of CO2 fixation as a carbon feedstock
and the potential for improved production of specific target terpenoids especially decorated plant
terpenoids. Photosynthetic microorganisms may provide more production options including for the
expression of more complex plant pathways.
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