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Summary
Existing methods for integrating functional annotations in genome-wide association studies (GWASs) to fine-map and prioritize poten-

tial causal variants are limited to using non-overlapped categorical annotations or limited by the computation burden of modeling

genome-wide variants. To overcome these limitations, we propose a scalable Bayesian functional GWAS method to account for multi-

variate quantitative functional annotations (BFGWAS_QUANT), accompanied by a scalable computation algorithm enabling joint

modeling of genome-wide variants. Simulation studies validated the performance of BFGWAS_QUANT for accurately quantifying anno-

tation enrichment and improving GWAS power. Applying BFGWAS_QUANT to study five Alzheimer disease (AD)-related phenotypes

using individual-level GWAS data (n ¼ �1,000), we found that histone modification annotations have higher enrichment than expres-

sion quantitative trait locus (eQTL) annotations for all considered phenotypes, with the highest enrichment in H3K27me3 (polycomb

regression). We also found that cis-eQTLs in microglia had higher enrichment than eQTLs of bulk brain frontal cortex tissue for all

considered phenotypes. A similar enrichment pattern was also identified using the International Genomics of Alzheimer’s Project

(IGAP) summary-level GWAS data of AD (n ¼ �54,000). The strongest known APOE E4 risk allele was identified for all five phenotypes,

and the APOE locus was validated using the IGAP data. BFGWAS_QUANT fine-mapped 32 significant variants from 1,073 genome-wide

significant variants in the IGAP data. We also demonstrated that the polygenic risk scores (PRSs) using effect size estimates by

BFGWAS_QUANT had a similar prediction accuracy as other methods assuming a sparse causal model. Overall, BFGWAS_QUANT is a

useful GWAS tool for quantifying annotation enrichment and prioritizing potential causal variants.
Introduction

Although thousands of significant associations have been

identified by single-variant genome-wide association

studies (GWASs) for complex traits and diseases, the major-

ity of GWAS signals reside in the noncoding genome re-

gions and have unknown biological meaning.1–3 Existing

GWAS results based on single-variant tests are still difficult

to interpret with respect to the underlying biological

mechanisms.4,5 Promising advancements in sequencing

technology have made plenteous multi-omics data avail-

able that provide functional annotations of genetic vari-

ants available to the scientific community: Combined

Annotation-Dependent Depletion (CADD) score;6 the

Roadmap Epigenomics Mapping Consortium,7 providing

DNA methylation, histone modification, and chromatin

accessibility information for various human tissues; the

Encyclopedia of DNA Elements (ENCODE),8 providing

functional information of human and mouse genomes;

and the Genotype-Tissue Expression (GTEx) project,9

providing expression quantitative trait locus (eQTL) infor-

mation of 54 human tissues. In particular, molecular QTLs
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mapped from profiles of molecular phenotypes (e.g., gene

expression from GTEx,9 chromatin marks from Road-

map,7,10,11 and protein abundances12) and corresponding

genomes (genotype data) have been shown to be enriched

with GWAS signals and help interpretate the underlying

biology for studying complex traits and diseases.13–15

These molecular QTL have been leveraged especially to

prioritize GWAS associations of complex traits and

diseases.16–20

An intuitive but widely used ad hoc approach is to fine-

map and prioritize potential causal GWAS signals that are

also molecular QTLs21 or located in a region with histone

modifications. Recently, advanced statistical methods

have been proposed to integrate non-overlapped categori-

cal functional annotation (assigning one function label per

variant) with GWAS data to fine-map GWAS results.22–26

PAINTOR has been proposed to integrate multivariate

quantitative functional annotations with GWAS summary

statistics to fine-map GWAS loci with thousands of vari-

ants27,28; FunSPU29 and STAAR30 have been proposed to

incorporate multiple biological annotations for rare

variant association tests. These existing methods have
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shown the feasibility and promising results of integrating

multivariate quantitative functional annotations with

GWAS data to fine-map GWAS results and prioritize poten-

tial causal variants. However, these methods were not

developed for jointmodelingmillions of genome-wide var-

iants with multivariate quantitative annotations, which

would lead to less accurate quantification of annotation

enrichment and reduced power of fine-mapping.

Here, we propose a scalable Bayesian functional GWAS

method for integrating multivariate quantitative func-

tional annotations with GWAS data by a Bayesian hierar-

chical variable selection regression model, referred to as

BFGWAS_QUANT. BFGWAS_QUANT assumes a hierarchi-

cal logistic prior for the causal probabilities of genetic var-

iants in the standard Bayesian variable selection regression

(BVSR)-based GWASmethod31 to jointly model millions of

genome-wide genetic variants. BFGWAS_QUANT adapts

the scalable expectation maximization Markov chain

Monte Carlo (EM-MCMC) algorithm developed by the pre-

vious Bayesian functional GWAS (BFGWAS) method,

which only models non-overlapped categorical annota-

tions (referred to as BFGWAS_CAT in this paper).22

BFGWAS_QUANT further improves the computation effi-

ciency by pre-calculating the linkage disequilibrium (LD)

correlation matrix and single variant test Z score statistics

that are used in the MCMC algorithm or using reference

LD correlation matrix and summary-level GWAS data.

Bayesian causal posterior probability (CPP) and genetic ef-

fect size estimates will be generated by BFGWAS_QUANT,

along with enrichment quantification of considered multi-

variate quantitative functional annotations. Bayesian esti-

mates of genetic effect sizes can be used to derive polygenic

risk scores (PRSs) that account for functional annotations.

By simulation studies, we showed that our Bayesian esti-

mates of functional enrichment converged and GWAS po-

wer was improved over the standard BVSRmethodwithout

accounting for functional annotations.31 We then applied

BFGWAS_QUANT to real GWAS data for studying Alz-

heimer disease (AD) related phenotypes,32,33 accounting

for multivariate quantitative annotations with respect to

Roadmap histone modifications7 of brain mid-frontal gy-

rus, eQTLs of brain frontal cortex tissue32,34 and eQTLs of

microglia cell type.35,36 We showed that BFGWAS_

QUANT identified interesting enrichment patterns and

generated fine-mapped GWAS results using individual-

level and summary-level GWAS data. We also showed

that PRSs derived from BFGWAS_QUANT effect size esti-

mates led to similar accurate AD risk prediction as other

PRS methods assuming a sparse causal model.

Under Material and methods, we provide an overview

of the BFGWAS_QUANT method, Roadmap histone

modification and eQTL-based quantitative functional an-

notations, simulation study design, and application

studies of AD. Under Results, we describe the results

of simulation and application studies. We then end

with a Discussion of the advantages and limitations of

BFGWAS_QUANT.
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Material and methods

Hierarchical BVSR model
BFGWAS_QUANT assumes a hierarchical BVSR31 model for

genome-wide variants,

yn31 ¼ Xn3pbp3 1 þ en31; en31 � Nð0; IÞ

bi � piN

�
0;

1

n
t�1
b

�
þ ð1 � piÞd0ðbiÞ; i ¼ 1;.; p;

(Equation 1)

where yn31 is a vector of standardized phenotype with n subjects,

Xn3p is the standardized genotype matrix with p genome-wide ge-

netic variants, and bp31 is the vector of the genetic effect sizes.

Spike-and-slab variable selection prior is assumed per effect size

bi. That is, bi has probability pi to be non-zero and follows a

normal distribution centered at zero and probability ð1 �piÞ to

be zero with a point-mass density function at 0, where pi denotes

the ‘‘casual’’ probability of the i th variant.

We assume a hierarchical logistic model for the causal probabil-

ities of genetic variants to account for multivariate quantitative

functional annotations,

logitðpiÞ ¼ A0
ia; i ¼ 1;.; p; (Equation 2)

where pi denotes the casual probability of the i th variant as in

Equation 1, Ai ¼ ð1; Ai1;.;AiJ Þ0 denotes the augmented annota-

tion vector for the i th variant with an intercept term as the first

element, and coefficient vector a ¼ ða0; a1;.;aJÞ0 denotes the

intercept term a0 and enrichment quantification with respect to

functional annotation j ¼ 1;.; J.

Further, we assume a fixed value in the domain of (0, 1] for tb; a

fixed value for a0 in the domain of (�13.8, �9), and a standard

normal prior for enrichment parameters ðaj � Nð0;1Þ; j ¼ 0;1;

.JÞ. In particular, tb ¼ 1 would assume that the prior variance

of effect sizes is the same as the marginal effect size estimates in

a single-variant regression model, and smaller tb values would

inflate the magnitude of Bayesian effect size estimates. The lower

bound value of a0 ¼ �13:8 would assume that the prior causal

probability is 10�6 when aj ¼ 0; j ¼ 1;.; J (see supplemental in-

formation for model details).
Adapted EM-MCMC algorithm
To overcome the heavy computational burden and poor mixing

rate of posterior samplings by the standard MCMC algorithm,31

we adapt the scalable EM-MCMC algorithm developed for the

original BFGWAS method.22 Specifically, we first segment

genome-wide variants into approximately independent genome

blocks with about 5,000–10,000 variants based on LD struc-

ture.22,37 Second, conditioning on given hyperparameters ðaj;

j ¼ 1; .; JÞ, we conduct a standard MCMC algorithm within

each genome block to obtain Bayesian posterior estimates for ge-

netic effect size (bi) and causal probability (pi) per variant (expec-

tation (E) step). Third, conditioning on the Bayesian estimates of

ðbi; pi; i ¼ 1; .; pÞ, we update the values of hyperparameters

ðaj; i ¼ 1;.; JÞ by maximizing their conditional posterior likeli-

hood (maximization [M] step). The computational optimization

algorithm Broyden-Fletcher-Goldfarb-Shanno (BFGS)38 is used to

obtain the maximum a posteriori (MAP) estimates for aj; j ¼ 1;.;

J. The EM steps will be iterated (�5 iterations) until the estimates

of hyperparameters converge.

The Bayesian estimate for the causal probability (pi) per variant is

referred to as CPP, and the Bayesian estimates for annotation coeffi-

cients ðaj; j ¼ 1;.; JÞ are referred to as quantified enrichment of
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multivariate functional annotations. SNPs with CPP greater than

0.1068 will be considered significantly associated with the pheno-

type of interest, where the significance threshold has been shown

to be equivalent to p < 5 3 10�8 in a previously published

BFGWAS_CAT paper.22 Because a multivariate regression model is

fittedper genomeblock, theLDamongall variantsper genomeblock

is accounted for during the Bayesian inference of CPP and effect size

b. TheGWAS results obtainedbyBFGWAS_QUANTwill be fine-map-

ped, and variants with enriched annotations will be prioritized.

In particular, implementing the MCMC algorithm per genome

block can greatly reduce the search space (from genome-wide to

a genome block) and facilitate parallel computing (one core per

genome block), leading to an efficient convergence rate and

improved mixing rate. Computation efficiency is further

improved by implementing the MCMC algorithm using a pre-

calculated LD correlation matrix per genome block and single-

variant test Z score statistics or a reference LD correlation matrix

and GWAS Z score statistics, which will save up to 90% computa-

tion time compared with using individual-level GWAS data.37

With 32 computation cores in one node, BFGWAS_QUANT can

complete analyzing approximately 10 million SNPs in approxi-

mately 4 h for 5 EM iterations.
eQTL-based functional annotations
In this paper, we considered 5 real eQTL-based quantitative func-

tional annotations. Three of these annotations (Allcis-eQTL, 95%

CredibleSet, and MaxCPP) were constructed based on standard cis-

eQTLdataofbrainfrontal cortextissuefromGTExdata9,34: (1)binary

annotationAllcis-eQTLwas constructed by taking all SNPs thatwere

identified as a significant cis-eQTL (false discovery rate [FDR]< 5%; 1

Mb from the transcription start site [TSS]) for at least one expression

quantitative trait (onegene) as 1 andotherwise as 0. (2) For eachgene

expression trait that has at least one significant (FDR< 5%) cis-eQTL,

CAVIAR16wasused tocalculate theCPP (cis-CPP) of each cis-SNPand

identify a 95%credible set. SNPs that donot belong to any95%cred-

ible setwere takenas0orotherwise1 for theannotationof 95%Cred-

ibleSet. (3)Maximum cis-CPPs per SNP across all geneswere taken as

quantitative values ofMaxCPP.Wealso took themaximumBayesian

genome-wideCPPof being cis- or trans-eQTLacross all genes in brain

frontal cortex tissue from theReligiousOrders Study andRushMem-

ory and Aging Project (ROS/MAP)21,33 as the fourth annotation

BGW_MaxCPP, where cis- and trans-CPPs were estimated by

Bayesian genome-wide transcriptome-wide association study

(BGW-TWAS) method.32,37 Last, we derived a fifth Microglia-eQTL

annotation from two datasets of recent microglia cell-type specific

eQTL summary statistics,35,36 where 1 indicates being identified as

a cis-eQTL to any gene in either microglia dataset or otherwise 0.
Histone modification-based functional annotation
We constructed 5 histone modification-based functional annota-

tions using the epigenomics data of core histone modifications

in the brain mid-frontal gyrus region from the Roadmap Epige-

nomics database:7 H3K4me1 (primed enhancers), H3K4me3

(promoters), H3K36me3 (gene bodies), H3K27me3 (polycomb

regression), and H3K9me3 (heterochromatin). For each histone

modification, peak regions from replicates of the same sample

were first merged and then overlapped with peak regions of other

samples by Bedtools (v.2.27.0).39 If a genetic variant resides in the

overlapped peak regions of a histone modification, then 1 would

be assigned to the function annotation of such a modification

for this variant, or 0 would be assigned otherwise.
Human
Simulation study design
We conducted simulation studies to validate the performance

of BFGWAS_QUANT. Continuous phenotypes were simulated

using the real whole-genome sequence (WGS) data of chromo-

somes 19 (122,745 SNPs with minor allele frequency

[MAF] > 0.01) for 1,893 samples from the ROS/MAP cohort33,40

and Mount Sinai Brain Bank (MSBB) study.41 Phenotypes

were simulated based on the multivariate linear additive

model (Equation 1) with true genetic effect sizes bp31 generated

based on the hierarchical logistic model with multivariate quan-

titative functional annotations (Equation 2). Scenarios with

various numbers of true causals and heritability were

considered.

Besides the real cis-eQTL-based functional annotations of

Allcis-QTL, 95%CredibleSet, and MaxCPP, we also considered a

fourth artificial annotation randomly generated from N(0, 1) as

a negative control. With chosen annotation enrichment parame-

ters (a0 ¼ ð� 10:5; � 9:5Þ;a1 ¼ 4;a2 ¼ 1:5;a3 ¼ 0:5;a4 ¼ 0),

we first calculated casual probabilities ðpiÞ for all considered

122,745 SNPs by Equation 2, where a0 was chosen to ensure

the total number of true causal SNPs fall in (5, 10) with

a0 ¼ �10:5 or (15, 30) with a0 ¼ � 9:5. Second, a vector of bi-

nary indicator ðgiÞ of true causal SNPs was generated from the

corresponding Bernoulli distribution with probability (pi) for

i ¼ 1;.; p. Third, genetic effect sizes were taken as 0 for SNPs

with gi ¼ 0 or generated from a normal distribution for SNPs

with gi ¼ 1. Finally, phenotypes were generated from Equation

1 with simulated genetic effect sizes and random errors

e � Nð0; ð1 �h2ÞIÞ to ensure that a target total heritability

h2 ¼ ð0:25;0:5Þ was equally explained by all true causal SNPs.

Four scenarios were considered, including one with relatively

sparse true causals in the range of (5, 10) and one with the num-

ber of true causals in the range of (15, 30) with respect to two

different heritability values (0.25, 0.5).

We considered a null enrichment scenario where none of the

annotations were enriched. In this scenario, we randomly selected

10 true causal SNPs and assigned them genetic effect sizes gener-

ated from a normal distribution. We simulated the phenotype as

described above with a targeted h2 ¼ 0.5.

We repeated 100 simulations per scenario to evaluate our

Bayesian estimates for annotation enrichment, total heritability,

and true causal SNPs with respect to sensitivity (power) and pos-

itive predictive values (PPVs).42 Sensitivity (power) is defined as

the proportion of true positive findings among all true casual

variants, and PPV is defined as the proportion of true positive

findings among all identified significant associations. We took

simulated true casual SNPs and those having R2 > 0:3 with

true casual SNPs with bpi >0.1 as true positive findings, following

the significance rule used by the BFGWAS_CAT method.22 The

sensitivity and PPV are given by

Sensitivity ðPowerÞ ¼ #True Positive Findings

#True Causal SNPs
;

PPV ¼ #True Positive Findings

# Positive Findings
:

We compared this with the standard BVSR method,31 which

does not account for functional annotations. We estimated the to-

tal heritability by the squared correlation between the simulated

phenotypes and the PRSs based on Bayesian estimates of genetic

effect sizes ( bbi ) of SNPs with bpi > 0.01,
Genetics and Genomics Advances 4, 100143, October 13, 2022 3



Figure 1. Bayesian enrichment estimates, heritability estimates, and sensitivities of simulation studies.
(A–F) Simulations with a0 ¼ �10:5 (A–C) and simulations with a0 ¼ �9:5 (D–F). Bayesian estimates of annotation enrichment (a1; a2;
a3; a4) of 100 simulations with true heritability h2 ¼ 0:25 are shown in the respective boxplots (A and D), where red dots denote true
enrichment values. Comparable heritability estimates (B and E) and higher sensitivities (C and F) were obtained by BFGWAS_QUANT
(red) versus BVSR (blue).
PRS ¼
Xp

i¼1
Ibpi >0:01

bbiXi : (Equation 3)

Applications to ROS/MAP individual-level GWAS data
ROS/MAP are two prospective longitudinal community-based

cohort studies that recruit older adults without known dementia

at baseline and follow up with participants annually until the

time of death.33,40,43 Participants agree to annual clinical evalua-

tion and brain autopsy at the time of death, signing an

informed consent form and Anatomic Gift Act. All participants

in this study also sign a repository consent to allow their data to

be re-purposed.WGS data were profiled for 1,200 samples by using

the KAPA Hyper Library Preparation Kit and Illumina HiSeq X

sequencer.

We applied BFGWAS_QUANT to account for five eQTL-based

and five histone modification-based quantitative annotations as

described above to study five AD-related phenotypes,9,32–34

including the binary clinical diagnosis of late-onset Alzheimer de-

mentia (n ¼ 1,087), three quantified postmortem pathology

indices of AD (i.e., PHFtau tangle density with n ¼ 1,105, b-amy-

loid load with n ¼ 1,113, and a global measurement of AD pathol-
4 Human Genetics and Genomics Advances 4, 100143, October 13, 2
ogy burden with n ¼ 1,123), and a quantitative measurement of

cognition decline rate with n ¼ 1,049.33,40 The cognition decline

rate was constructed as the random slope per sample from a linear

mixed model of annual longitudinal measurements of cognition

function. Details about ROS/MAP and phenotypic traits measured

can be found in a previously published paper.44 We also adjusted

for the covariates of age, sex, smoking status, study index (ROS

or MAP), and first 3 genotype principal components by regressing

these covariates out from the phenotypes and taking the corre-

sponding regression residuals as the outcome in the BFGWAS_

QUANT method.
Application to IGAP summary-level GWAS data
We applied BFGWAS_QUANT to the stage 1 summary-level GWAS

data of the International Genomics of Alzheimer’s Project

(IGAP),45 along with the above 10 eQTL- and histone modifica-

tion-based functional annotations and reference LD generated

from ROS/MAP. The stage 1 IGAP summary-level GWAS data

were generated by meta-analyses consisting of 17,008 individuals

with AD and 37,154 control individuals of European ancestry (n¼
�54,000).
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Figure 2. Bayesian estimates of functional annotation enrich-
ment for Alzheimer dementia.
(A): Using ROS/MAP individual-level GWAS data and (B): Using
IGAP summary-level GWAS data. Histone modification
H3K27me3 (polycomb regression) and microglia cis-eQTL annota-
tions were found to bemost enriched for association signals of AD.
AD risk prediction by PRS
To show the usefulness of PRSs for risk prediction, we evaluated two

sets of PRSs that were, respectively, derived from BFGWAS_QUANT

and BVSR summary statistics using ROS/MAP GWAS data. We used

the independent test samples fromMayoClinic Alzheimer’s Disease

Genetics Studies (MCADGS).46,47 MCADGS contain 2,099 Euro-

pean-descent samples (844 individuals with AD and 1,255 control

individuals) with microarray genotype data profiled that were

further imputed to the 1000 Genome Project Phase.48

We compared PRSs using Bayesian effect size estimates with three

commonly used PRSmethods: the standardmethod using informed

LD pruning and p value thresholding (P þ T),49,50 LDpred2,51 and

PRS-CS.52 p value thresholds of ð10�2;10�3;10�5;5310�8;10� 8Þ
and LD thresholds of ð0:1;0:3;0:5;0:7;0:9Þ were considered by

the P þ T method. Reference LD derived from 1000 Genome data

were used by the LDpred and PRS-CS methods. AD risk prediction

accuracy was evaluated using the area under the receiver operating

characteristic (ROC)53 curve (AUC) for MCADGC test samples.

Ethics statement
The ROS/MAP and MCADGS data analyzed in this study were

generated with approval of the institutional review board (IRB)
Human
of Rush University Medical Center, Chicago, IL, and Mayo Clinic,

respectively. All samples analyzed in this study were de-identified,

and all analyses were approved by the IRB of Emory University

School of Medicine.
Results

Simulation results

For all considered simulation scenarios, our Bayesian esti-

mates of functional annotation enrichment achieved

convergence with 4 EM iterations, as shown in boxplots

of 100 simulation replicates (Figures 1A, 1D, and S1).

Although BFGWAS_QUANT overestimated a1 and a2, the

Bayesian estimates still reflect the correct enrichment

pattern among all considered annotations. By taking the

2.5th and 97.5th quantiles of these 100 Bayesian estimates

to estimate the corresponding 2.5th and 97.5th quantiles

of the estimator distributions, the true enrichment values

ða1 ¼ 4; a2 ¼ 1:5;a3 ¼ 0:5;a4 ¼ 0Þ indeed fell within

this range. For example, in the scenario with a0 ¼ �10:5

and h2 ¼ 0:25 (Figure 1A), the estimated 2.5th and

97.5th quantiles are ð1:62;5:50Þ for a1, (0.98, 4.57) for a2,

(0.02, 1.20) for a3, and (0.00, 0.38) for a4. We observed pre-

cise estimates of 0 enrichment for the artificial annotation

(Figures 1 and S1) and all annotations in the scenario with

null enrichment (Figure S3A), which demonstrated the

ability of BFGWAS_QUANT to identify null enrichment.

By taking PRS as estimated phenotypes and taking the

squared correlation between RPS and simulated pheno-

types as the estimate of phenotype heritability, we ob-

tained similar heritability estimates by BFGWAS_QUANT

and BVSR, which are close to the true heritability

(Figures 1B, 1E, and S3B). For scenarios with true enrich-

ment, BFGWAS_QUANT obtained substantially higher

sensitivity (power) and similar PPVs compared with BVSR

for all scenarios (Figures 1C, 1F, S2, S4, and S5). For the sce-

nario with null enrichment, BFGWAS_QUANT and BVSR

performed comparably (Figures S3B–S3D).

These simulation studies validated the usefulness of

BFGWAS_QUANT for quantifying multivariate functional

annotations, estimating phenotype heritability, and identi-

fying true causal SNPs. By accounting formultivariate quan-

titative annotations, BFGWAS_QUANT showed improved

performance than the standard BVSR method, especially

with higher power for identifying true causal SNPs and accu-

rate enrichment estimation.

Application GWAS results for studying AD

Applying BFGWAS_QUANT to the individual-level ROS/

MAP and summary-level IGAP GWAS data, we obtained

consistent patterns for Bayesian enrichment estimates of

5 eQTL-based and 5 histone modification-based functional

annotations (Figures 2, S6, and S7). In particular, the

histone modification-based functional annotations had

higher enrichment than eQTL-based annotations when

studying the individual-level ROS/MAP GWAS data, with

the highest enrichment for H3K27me3 and second highest
Genetics and Genomics Advances 4, 100143, October 13, 2022 5



Table 1. Significant SNPs with Bayesian CPP >0.1068 by BFGWAS_QUANT for studying AD-related phenotypes using the ROS/MAP
individual-level GWAS data

CHR rsID Gene Function MAF CPP Beta p Value Phenotype

1 rs148348738a SPATA6 intron 0.011 0.149 �0.039 4.47E�07 cognition decline rate

2 rs147749419 CXCR1 regulatory 0.017 0.154 �0.043 2.94E�08 cognition decline rate

8 rs11787066a LOC
107,986,930

intron 0.148 0.276 0.015 6.93E�08 b-amyloid

19 rs34134669a ADAMTS10 regulatory 0.234 0.119 �0.005 8.57E�07 cognition decline rate

19 rs769449 APOE
TOMM40

0.111 0.121 0.076 3.45E�11 Alzheimer dementia

regulatory 0.112 0.116 0.022 1.51E�16 tangle density

0.109 0.475 �0.025 2.09E�15 cognition decline rate

19 rs429358 APOE 0.138 0.144 0.037 7.72E�13 Alzheimer dementia

0.138 0.631 0.037 1.17E�20 tangle density

missense 0.138 0.999 0.083 6.60E�27 b-amyloid

0.139 0.999 0.089 1.19E�33 global AD pathology

0.136 0.17 �0.036 1.29E�17 cognition decline rate

19 rs7412 APOE missense 0.077 0.108 �0.027 6.67E�13 global AD pathology

19 rs1065853 APOC1 intergenic 0.076 0.381 �0.026 8.31E�13 global AD pathology

19 rs10414043 APOC1 intergenic 0.113 0.111 0.028 2.71E�12 Alzheimer dementia

19 rs7256200 APOC1 regulatory 0.113 0.315 0.028 2.71E�12 Alzheimer dementia

0.113 0.228 0.03 3.86E�17 tangle density

0.111 0.270 �0.024 3.66E�15 cognition decline rate

20 rs1131695a APOC1 stop gained 0.435 0.119 0.039 1.06E�06 tangle density

aSNPs with a single variant test p value >5 3 10�8 that did not reach genome-wide significance by standard GWAS.
for H3K4me1. BFGWAS_QUANT estimated the second

highest enrichment for the Microglia_eQTL annotation

when studying the summary-level IGAP GWAS data with

a larger sample size (n ¼ �54,000). Even with a small sam-

ple size in the individual-level ROS/MAP GWAS data, the

Microglia_eQTL annotation was still identified with higher

enrichment than other annotations based on eQTL of the

bulk brain frontal cortex tissue. There is mounting evi-

dence showing that microglia (composing <10% cells in

the bulk brain frontal cortex tissue) play important roles

in development and progression of AD pathology,54 and

cell-type-specific differential expression of GWAS risk

genes of AD is only present in microglia.55

Using the ROS/MAP individual-level GWAS data, four sig-

nificant SNPs with Bayesian CPP greater than 0.1068 were

identified for AD (rs429358, rs10414043, rs769449, and

rs7256200) by BFGWAS_QUANT (Table 1; Figures 3A, S8,

and S9). In particular, SNP rs429358 (CPP ¼ 0.144, p ¼
7.723 10�13, missense variant) is the famous known APOE

E4 risk allele of AD56 and has a significant Bayesian CPP

greater than 0.1068 for all 5 AD related phenotypes. SNPs

rs10414043 (CPP ¼ 0.111, p ¼ 2.71 3 10�12) and

rs7256200 (CPP ¼ 0.315, p ¼ 2.71 3 10�12, regulatory

variant) are upstream of the known risk gene APOC1 of AD

and blood protein traits.37,57,58 Besides the missense APOE

E4 risk alleles rs429358 and rs7412, one additional signifi-
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cant SNP, rs1065853, is identified upstream of APOC1

for global AD pathology, which is a known GWAS signal

for blood protein traits such as low-density lipoprotein.58,59

Of 11 significant SNPs identified for at least one AD-

related phenotype (Table 1), 2 are intergenic, and the other

9 SNPs are intron, regulatory, missense, and stop-gained

variants.

Using the IGAP summary-level GWAS data, BFGWAS_

QUANT fine-mapped 32 significant SNPs with Bayesian

CPP greater than 0.1068 associated with AD (Table 2;

Figure 3B). Multiple SNPs located in genes PVRL2, APOE/

TOMM40, and APOC1 in chromosome 19 were found to be

associated with ADwith CPP¼ 1. Interestingly, 10 of 32 sig-

nificant SNPs are cis-eQTL of microglia, and all significant

SNPs except one intergenic SNP (rs7110631) are intron,

regulatory, downstream, upstream, 30 UTR, and missense

variants (Table 2). All significant SNPs except rs78959900

are located in the peak regions of histone modification

H3K27me3 (polycomb regression), which has the

highest enrichment. Several SNPs that did not pass the

genome-wide significance threshold (p < 5 3 10�8) were

identified by integrating 10 functional annotations in

BFGWAS_QUANT. These SNPs are located in genes

that have been found previously to be genetically linked

to AD, such as HLA-DRB1, NUP160, SLC24A4, and

CD33.45,56,60–63
022



Figure 3. Manhattan plots of BFGWAS_QUANT results for studying Alzheimer dementia.
(A): Using ROS/MAP individual-level GWAS data; (B): Using IGAP summary-level GWAS data. Single-variant test p values were plotted in
�log10 scale on the y axis. The dashed horizontal line denotes the genome-wide significant threshold 53 10�8. SNPs with Bayesian CPP
greater than 0.1068 were colored according to the color scale of their Bayesian CPP values by BFGWAS_QUANT. SNPs with Bayesian CPP
greater than 0.5 were plotted as solid triangles.
The summation of genome-wide Bayesian CPP of SNPs

withCPP greater than 0.01 can be used to estimate the num-

ber of total causal SNPs for the phenotype of interest. The

threshold of CPP >0.01 is used to exclude adding CPP from

random MCMC selections. Although the power is limited

for analyzing the ROS/MAP individual-level GWAS data

with a small sample size, BFGWAS_QUANTestimated a total

of 54 potential causal SNPs for ADusing the IGAP summary-

level GWAS data (Table 3).

AD risk prediction by PRS in MCADGS

To show the usefulness of BFGWAS_QUANT for studying

complex traits and diseases, we derived a PRS using the
Human
Bayesian effect size estimates by BFGWAS_QUANT for an

independent GWAS cohort, MCADGS (n ¼ 2,099), and

compared the risk prediction accuracy with the PRS using

effect size estimates by BVSR, P þ T, LDpred2, and PRS-CS.

When the ROS/MAP individual-level GWAS data were

used as training data, a comparable AUC was obtained by

using Bayesian effect size estimates by BFGWAS_QUANT

(0.69) and BVSR (0.68), which was similar to the one ob-

tained by LDpred2-auto (0.68) but significantly higher

than the ones obtained by P þ T (0.55), LDpred2-inf

(0.53), and PRS-CS (0.54) (Figure 4A). This showed the

advantage of deriving PRSs using Bayesian effect size esti-

mates by BFGWAS_QUANT when individual-level GWAS
Genetics and Genomics Advances 4, 100143, October 13, 2022 7



Table 2. Significant SNPs with Bayesian CPP > 0.1068 by BFGWAS_QUANT for studying AD using the IGAP summary-level GWAS data

CHR rsID Gene Function CPP Beta p Value

1 rs6656401 CR1 intron 0.119 �0.017 8.67E�15

1 rs7515905 CR1 intron 0.206 �0.019 3.75E�15

1 rs1752684 CR1 regulatory 0.125 �0.017 3.77E�15

1 rs679515 CR1 intron 0.220 �0.018 3.60E�15

2 rs4663105 BIN1 regulatory 0.631 0.050 1.26E�26

2 rs6733839 BIN1 regulatory 0.796 0.053 1.24E�26

6 rs9270999a HLA-DRB1 intron 0.181 0.001 8.04E�08

6 rs9273472a HLA-DRB1 intron 0.110 0.074 1.63E�04

7 rs10808026 EPHA1 intron 0.123 �0.020 1.36E�11

7 rs11762262 EPHA1 intron 0.117 �0.011 2.21E�10

7 rs11763230 EPHA1 intron 0.325 �0.020 1.86E�11

7 rs11771145 EPHA1 intron 0.173 �0.021 8.69E�10

8 rs28834970 PTK2B intron 0.137 0.066 3.22E�09

8 rs2279590 CLU intron 0.166 0.021 4.47E�17

8 rs4236673 CLU intron 0.123 0.020 3.25E�17

8 rs11787077 CLU intron 0.247 0.022 2.94E�17

8 rs9331896 CLU intron 0.154 0.022 8.38E�17

8 rs2070926 CLU intron 0.278 0.023 2.69E�17

11 rs11039390a NUP160 downstream 0.145 �0.004 2.31E�05

11 rs4939338 MS4A6E upstream 0.139 0.011 2.79E�12

11 rs7110631 PICALM intergenic 0.134 0.014 8.77E�15

11 rs10792832 RNU6-560P regulatory 0.633 0.027 7.89E�16

11 rs11218343 SORL1 regulatory 0.643 �0.046 4.77E�11

14 rs10498633a SLC24A4 intron 0.371 �0.059 1.55E�07

19 rs3752246 ABCA7 missense 0.361 �0.027 4.27E�09

19 rs4147929 ABCA7 regulatory 0.111 �0.030 1.77E�09

19 rs41289512 PVRL2 regulatory 1.000 0.132 1.81E�167

19 rs6857 PVRL2 30 UTR 1.000 0.359 0

19 rs769449 APOE/TOMM40 regulatory 1.000 0.292 0

19 rs56131196 APOC1 regulatory 1.000 0.251 0

19 rs78959900 APOC1 downstream 1.000 �0.096 8.22E�85

19 rs12459419a CD33 missense 0.245 �0.027 6.66E�08

a: SNPs with single-variant test p value >5 3 10�8 that did not reach genome-wide significance by standard GWAS.
data are available, especially when the sample size is small.

When the IGAP summary-level GWAS data were used as

training data, the AUC by BFGWAS_QUANT (0.75) was

the same as by LDpred2-auto (0.75) but much lower than

P þ T (0.88 with a p value threshold of 10�3), LDpred2-

inf (0.94), and PRS-CS (0.93) (Figure 4B). These results

show that an infinitesimal model64 as assumed by PRS-CS

and LDpred2-inf is more suitable for PRS development

than the sparse model assumed by BFGWAS_QUANT and

LDpred2-auto.
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Discussion

We developed a scalable BFGWAS method to account

for multivariate quantitative functional annotations

(BFGWAS_QUANT) for studying complex traits and dis-

eases based on a hierarchical BVSR model and accompa-

nied by a scalable EM-MCMC computation algorithm.

BFGWAS_QUANT has the advantages of quantifying

enrichment of functional annotations as well as modeling

LD to generate fine-mapped GWAS results that are also
022



Table 3. Estimates of total causal SNPs

GWAS data Phenotype BFGWAS_QUANT BVSRa

ROS/MAP Alzheimer dementia 0.718 6.472

tangle density 3.179 6.127

b-amyloid 5.375 7.316

global AD pathology 5.375 6.174

cognition decline rate 6.219 7.136

IGAP Alzheimer dementia 54.282 –

The summations of the Bayesian CPP estimates of SNPs with CPP >0.01 estimate the total number of causal SNPs.
aBVSR was not developed for using summary-level GWAS data.
prioritized based on their functional annotations.

BFGWAS_QUANT can be applied to individual-level and

summary-level GWAS data. In particular, the Bayesian ef-

fect size estimates can be used to derive a PRS that accounts

for functional annotations.

Our simulation studies validated the performance of

BFGWAS_QUANT with respect to annotation enrich-

ment quantification, GWAS association identification,

and heritability estimation. Compared with BVSR, the

BFGWAS_QUANT method had higher sensitivity (i.e.,

power) and comparable PPV and accuracy of phenotype

heritability estimation.

In real studies of AD-related phenotypes using ROS/MAP

individual-level and IGAP summary-level GWAS data, we

showed that interesting enrichment patterns were identi-

fied, fine-mapped GWAS signals were identified, and pre-

dictive PRSs were derived. In particular, we found that

the histone modification H3K27me3 (polycomb regres-

sion) and microglia cis-eQTL annotations were most en-
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Figure 4. ROC plots comparing prediction accuracy of Alzheimer
(A): PRSs derived using the ROS/MAP individual-level GWAS data; (
derived using Bayesian effect size estimates by BFGWAS_QUANT h
and LDpred2 auto, for all assuming a sparse causal model. PRSs deriv
data as training data have the highest prediction accuracy for assum

Human
riched for association signals of AD. We also showed that

SNPs with single variant test p values < 53 10�8could be

identified for being prioritized because of their functional

annotations.

Despite these advantages, BFGWAS_QUANT does have

its limitations. First, the BFGWAS_QUANT model was

developed for quantitative traits. However, following pre-

vious studies,22,65 GWAS analysis can still be done for

dichotomous traits by quantifying cases as 1 and controls

as 0, which will have a similar performance as a probit

model when samples are independent and population

structure can be addressed by top genotype principal com-

ponents. Extending the BFGWAS_QUANT method for

studying dichotomous traits is also part of our ongoing

research. Second, BFGWAS_QUANT assumes the sum-

mary-level GWAS data, and reference LDs were derived

from populations of the same ancestry. BFGWAS_QUANT

per ancestry needs to be applied first, and then the results

have to be meta-analyzed for studying GWAS cohorts with
B IGAP Training Data
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B): PRSs derived using IGAP summary-level GWAS data . The PRS
as comparable prediction accuracy as the PRSs derived by BVSR
ed by PRS-CS and LDpred2-inf using IGAP summary-level GWAS
ing an infinitesimal causal model.
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multiple ancestries. Third, BFGWAS_QUANT assumes a

sparse causal genetic architecture that is suitable for gener-

ating fine-mapped GWAS results but might lack of power

for deriving PRS for complex traits and diseases.

Our work demonstrated the usefulness of integrating

multivariate quantitative functional annotations in

GWASs for quantifying the enrichment of multiple

functional annotations and generating fine-mapped

GWAS results with higher power. Specifically, accurate

quantification of annotation enrichment would help

prioritize GWAS signals (fine-mapping) and then help illus-

trate the underlying genomic etiology of complex traits and

diseases. Becausepublicly availablemolecularQTLdatasets,

epigenomic features, andGWAS summary data continue to

grow,BFGWAS_QUANTprovides a convenient tool for inte-

grative multi-omics analyses of these datasets.
Data and code availability

ROS/MAP data can be requested through Rush Alz-

heimer’s Disease Center (http://www.radc.rush.edu/) and

Synapse:syn3219045 (https://www.synapse.org/#!Synapse:

syn3219045). MCADGS data can be requested through

Synapse:syn2910256 (https://www.synapse.org/#!Synapse:

syn2910256). IGAP summary statistics are available from

IGAP:http://web.pasteur-lille.fr/en/recherche/u744/igap/

igap_download.php. Annotations derived from cis-eQTL

of brain frontal cortex tissue are available from LDSC_

QTL:https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_

QTL/. cis-eQTL data of microglia are available from Zen-

odo:6104982 (https://zenodo.org/record/6104982) and Zen-

odo:4118605 (https://zenodo.org/record/4118605). Source

code of BFGWAS_QUANT is available through Github

(https://github.com/yanglab-emory/BFGWAS_QUANT).
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2022.100143.
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