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Background. Breast conservation therapy (BCT) is the standard treatment for breast cancer; however, 32–63% of procedures have
a positive margin leading to secondary procedures. The standard of care to evaluate surgical margins is based on permanent
section. Imprint cytology (IC) has been used to evaluate surgical samples but is limited by excessive cauterization thus requiring
experienced cytopathologist for interpretation. An automated image screening process has been developed to detect cancerous cells
from IC on cauterized margins. Methods. IC was prospectively performed on margins during lumpectomy operations for breast
cancer in addition to permanent section on 127 patients. An 8-slide training subset and 8-slide testing subset were culled. H&E
IC automated analysis, based on linear discriminant analysis, was compared to manual pathologist interpretation. Results. The
most important descriptors, from highest to lowest performance, are nucleus color (23%), cytoplasm color (15%), shape (12%),
grey intensity (9%), and local area (5%). There was 100% agreement between automated and manual interpretation of IC slides.
Conclusion. Although limited by IC sampling variability, an automated system for accurate IC cancer cell identification system is
demonstrated, with high correlation to manual analysis, even in the face of cauterization effects which supplement permanent
section analysis.

1. Introduction

Approximately 32–63% of breast conservation therapy surg-
eries result in positive margins [1]. To control local recur-
rence of disease, a negative margin status is required [2–5].
Therefore, a positive margin diagnosis may result in multiple
reexcision surgeries, increased likelihood of complications,
physical discomfort, emotional distress, and decreased cos-
metic outcomes [1, 6]. Several techniques have been tested
for the manual intraoperative evaluation of margins includ-
ing gross examination [6–8], intraoperative ultrasound [8–
12], frozen section analysis (FSA) [13–17], and imprint
cytology (IC) [5, 18–21]. Herein we report on the feasibility
of using automated IC analysis as a margin evaluation tool.

IC is an alternative intraoperative technique to detect
cancer cells at the margin surface. Following tumor excision,

the sample surface is imprinted on glass slides while keeping
track of the margin location [21, 22]. Cells on the margin
surface are removed during imprinting by electrostatic
and hydrophobic interactions with the glass slide which
preferentially adsorbs epithelial and blood cells over adipose
tissue [23]. The advantage of this technique is the ability
to sample a large area directly from the margin surface.
Additionally, since cancer cells tend to lose their intercellular
adhesion properties, a further enrichment in the preferential
detachment of those cell types from the tumor microen-
vironment during the imprint process is possible [24–26].
Any cells that adhere to the slide surface are subsequently
stained and analyzed by a cytopathologist [3, 18]. IC is a
much simpler and less labor intensive technique than FSA
to assess margins intraoperatively. However, detecting tumor
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cells close to, but not at, margins is poor due to the inability
to consistently sample cells below the excision surface [23].

Furthermore, the imprinting process as well as the cau-
terization during tumor excision tends to introduce staining
and drying artifacts depending on environmental and sample
conditions thus rending interpretation difficult [22, 27]. For
these reasons, it is the least used method to assess intraoper-
ative margins in breast conservation surgery.

Intraoperative margin evaluation reduces reexcision rates
[7, 12, 28], but none are typically employed on a routine
basis because of difficulties in consistent sample preparation
and analysis with modestly skilled reader input. Of the
aforementioned techniques, imprint cytology is the only
technique that has the potential to accurately sample the
entire margin surface without affecting downstream final
margin analysis of permanent sections. Additionally, the
potential for automation makes IC an attractive intraoper-
ative assessment technique.

The challenge of the imprinting process is that it creates
a specimen that may be covered by epithelial cells (including
cancer cells if present), erythrocytes, leukocytes, cellular
debris (organelles and cellular substructures), scrape debris,
cauterized debris, and staining and drying artifacts such as
bubbles, stained noncellular tissue, and so forth. A standard
microscope slide (25 mm × 50 mm) is sufficient to imprint
a margin surface. A reasonably sized excision tissue with
6 separate margin surfaces (anterior, posterior, superior,
inferior, medial, and lateral) would therefore require the
manual search of 7500 mm2 (25 mm × 50 mm × 6) of slide
area per tissue excision which is immensely time consuming
and impractical for real time accurate interpretation in
intraoperative settings. Furthermore, because of the sparse
nature of the imprint without any of the original architec-
tural information, interpretation based purely on cytological
features is required at modest to high magnification level
(10x, 20x, or 40x) by a highly trained cytopathologist to
identify cancerous cells from other types of debris and
artifacts. For a standard field of view of 1.4 mm by 1.0 mm
(10x magnification), it is expected that 5357 fields of
view must be thoroughly inspected to accurately determine
margin status.

To overcome these limitations, an automated analysis
has been developed to detect and identify positive cancer
cells at the margin via IC. Current slide scanning technology
has progressed to being able to quickly scan through slides.
Additionally, the sparse nature of the IC surface implies that
parallel image processing would be exploitable to analyze the
entire slide. This enables the use of modern multiprocessor
computing architectures to process the slides with reduced
processing time in intraoperative margin assessment. Fur-
thermore, the same technology could be employed with
minor modification for core biopsy analysis or even perma-
nent section analysis where the issues of cellular debris are
much reduced.

This paper reports upon the development and evalua-
tion of an automated imprint cytology analysis tool using
retrospectively collected samples to provide directly compa-
rable performance characteristics of automated assist versus
manual techniques. Experimental methods were designed to

provide results which are easily transferable and applicable
to an intraoperative setting without disrupting accepted
surgical and pathologic protocols. This included (1) work-
ing with primary human breast tissue, (2) excision of
tumors using standard electrosurgical techniques, and (3)
measurement of system performance using true cauterized
margins. It is noted that the most successful study of manual
margin interpretation by IC employed uncauterized margins
[18]. However, accepted surgical protocols typically employ
electrosurgical tools which greatly increase the amount of
debris and artifacts on IC slides. This creates a more difficult
and time consuming manual inspection requirement and
thereby increases the need for an automated approach to IC
evaluation.

2. Methods

Imprint cytology specimen collection was approved by the
Institutional Review Board of the University of California,
San Diego and was performed in accordance with all
accepted standards for human clinical research. All patients
gave written informed consent. A retrospective analysis of
127 patients for whom IC slide was prepared on their excised
tumors was performed to identify specimens with positive or
close permanent section diagnosis. 16 positive/close margin
cases were selected and an 8 slide training subset was
culled which consisted of 4 slides with positive margin
determination and 4 slides with close margin determination
(Table 1). An additional testing set was created consisting of 8
cases (exclusive of the training set) from the 16 positive/close
margin selection (Table 1).

Multiple 1-inch × 3-inch glass microscope slides coated
with poly-L-lysine (PLL) (Newcomer Supply, Middleton,
WI) were used for imprint cytology. Six (6) margin faces
(superficial, deep, superior, inferior, lateral, medial) oriented
by suture placement during initial excision were used for
imprint cytology. A no.10 scalpel blade (VWR International,
LLC, West Chester, PA) was placed perpendicular to the
tumor surface and dragged across the tissue in a scraping
fashion to remove surface cautery artifact. Immediately fol-
lowing scraping, a PLL-coated slide was pressed onto the
scraped margin face for 10 seconds and immediately fixed in
pure ethanol for 24 hours, after which the slide was stained
with Hæmatoxylin and Eosin (H&E).

Whole imprint cytology slides were digitized on a
ScanScope XT slide scanner (Aperio Technologies, Inc.,
Vista, CA) at 40x (0.25 µm/pixel) and saved as SVS files with
JPEG 2000 compression. An IC image processing system was
developed based on ImageJ [29] and modified to function on
whole-slide images of H&E stained slides.

Image analysis was done in two phases: (1) an outlining
phase in which raw pixel data was converted to objects rep-
resenting nuclei, debris, and artifacts; (2) an object analysis
phase in which individual objects were identified and
quantified across the entire slide. The software was written
and designed to learn and identify cancer cells and cancer cell
clusters. Training was performed on a representative set
of labeled slides selected by the authors (M. E. Ruidı́az
and J. Wang-Rodriguez) which contained known tumor cell
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Table 1: Slides used for system evaluation consisted of a 16-slide training/testing set.

Subset Sample number Diagnosis Hospital margin status Location

Training subset

A1 IDC/DCIS Positive Deep

A2 ILC Positive Deep

A3 IDC/ILC/DCIS/LCIS Positive Lateral

A4 IDC Positive Deep

A5 DCIS Close (<0.1 cm) Deep

A6 DCIS Close (<0.1 cm) Lateral

A7 IDC/DCIS Close (<0.1 cm) Deep

A8 IDC/DCIS Close (<0.1 cm) Deep

Testing subset

T1 IDC Close (<0.1 cm) Deep

T2 IDC/DCIS/LCIS Clear (>1 cm) N/A

T3 IDC Clear (>1 cm) N/A

T4 IDC/DCIS Positive Deep

T5 IDC/DCIS Close (<0.1 cm) Lateral

T6 IDC/ILC/DCIS/LCIS Positive Deep

T7 IDC/DCIS Positive Deep

T8 ILC/LCIS Close (<0.1 cm) Lateral

Pathologic tumor diagnosis (IDC: invasive ductal carcinoma, ILC: invasive lobular carcinoma, DCIS: ductal carcinoma insitu, LCIS: lobular carcinoma insitu)
along with permanent section margin status (positive, close, clear) and location (superior, inferior, lateral, medial, anterior, deep) is listed.

clusters, debris, adipose tissue, and white blood cells. After
optimizing for cancer cells, the software algorithm was tested
on unlabeled samples as a measure of system performance.

An outlining algorithm was developed and optimized for
the detection of nucleated objects from cauterized and
scraped imprint cytology specimens. Briefly: Each scanned
whole-slide IC slide image was processed in 2000 × 2000
pixel subtitle increments with 100 pixel overlap. Each subtitle
was processed in 6 serial steps: (1) Red channel filtering:
mainly to remove red blood cells from the image. (2) Lapla-
cian of Gaussian thresholding: identify object boundaries
on the image. (3) Binary shape corrections: reduce noise,
smooth out and improve object boundaries. (4) Watershed
filtering: separate falsely concatenated nuclei. (5) Object
selection: discard objects ≤10 µm2 and ≥360 µm2 to remove
noncell like objects. (6) Object outlining: store object
location and outline for measurement phase.

Individual objects were measured for 179 characteristics
in the following categories. (1) Grey descriptors: grey scale
intensity and texture features of the imaged object. (2) Shape
descriptors: size and dimensional characteristics of outline
shape. (3) Intensity and texture features within (nuclear)
each object in two color models (RGB and YUV). (4)
Intensity and texture features in the area immediately outside
(cytoplasm) each object in RGB and YUV.

Statistical analysis was performed using the R statis-
tical computing environment version 2.13.0. Raw values
were examined to elicit sources of maximal variance for
data classification studies. Multivariate linear discriminant
analysis (MASS package), was used to create the training
set for IC object classification. Recursive feature elimina-
tion was performed with the caret package. For error
estimation, the errorest function was used in the ipred
package. Cross validation was used to provide estimates
of variable performance for classification and for the

determination of which variables provided the greatest
prognostic significance.

3. Results

3.1. Classifier Training. Classifier training was performed
on the 8-slide dataset as previously described (Table 1). A
manual search was performed on the digitized slides, and
selected objects were identified as belonging to one of three
possible classes: cancer, noncancer cells, and debris/artifact
(Figure 1). 184 cancer (from slides A1, A3, A5, A8), 416
noncancer (A1-A8), and 893 debris/artifact objects (A1-A8)
were found manually (Table 1). It is noted that the presence
of cancer cells from both positive and close margins is
consistent with IC of cauterized margins sometimes being
able to detect even close margins and illustrates the problem
of permanent section analysis in detecting positive and close
margins most likely due to sectioning limitations. This set
of manually identified objects was used as the training set
for a Linear Discriminant Analysis (LDA) classifier which
yielded two linear discriminants, LD1 and LD2 each having a
proportion of trace, a measure of how much of the between-
class variance is explained, of 78% and 22%, respectively.
The LDA-transformed representation of the training set is
plotted in Figure 2. LDA classifier performance was analyzed
with a leave-one-out cross validation yielding an overall
accuracy of 91%. Individual class performance was 84%,
87% and 94% for cancer, noncancer, and debris/artifact
objects, respectively.

3.2. Performance by Class of Descriptors and Individual
Descriptor Used. To evaluate the respective contributions of
each set of descriptors to overall classifier performance, clas-
sification accuracy was surveyed by independently including
sets of descriptors (grey, shape, local area, nuclear color,
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Figure 1: Representative imprint cytology specimens. (a) Clustered
cancer cells with associated red blood cells. (b) Noncancerous
individual white blood cells. (c) Debris/artifacts. Cancer cells are
distinguished from other objects by their round shape, large size,
staining color of the nucleus and cytoplasm, and their grouping in
clusters.

and cytoplasm color) to train an LDA classifier based
on the previously described classes. Additionally, worse
case (randomized data) classification and full (combined
descriptors) classification performance was evaluated. Accu-
racy was estimated by a 10-fold cross validation and
relative accuracy performance improvements are displayed
in Figure 2. Because these slides were derived from true
cauterized margins (in contrast to many previous studies),
a disproportionate selection of debris/artifact objects over
other class types occurs. Therefore, LDA performance (10-
fold cross validation) resulted in a minimum accuracy
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Figure 2: Class separation in LDA-transformed space showing
cancer (red), Noncancer cells (Green), and debris/artifact objects
(Blue) clustered separately. 80% normal probability ellipses for
each class are overlaid. Relative contributions by class of descriptor
to class separation are listed. Nuclear color provides the best
discrimination.

(obtained by classifying random data) of 60% and a maxi-
mum accuracy (all descriptors) of 91%. Leave-one-out cross
validation indicates a high degree of discrimination (>84%
accuracy) between each class which is further confirmed by
the discrimination plot separation (Figure 2). 10-fold cross
validation was employed to determine the characteristics
which lead to the highest degree of LDA classification.

To further elucidate which individual measurements pro-
vided the greatest discrimination, an analysis of the respec-
tive contribution to the overall accuracy of the classifier
was performed by evaluation of each class as a binary
classification by recursive feature elimination. The variable
importance in decreasing order for each class is as follows:
cancer (blue-channel integrated density, U-channel inte-
grated density, grey-channel integrated density, Y-channel
integrated density, area), noncancer cell (red-channel mean
intensity, red-channel median intensity, red-channel mini-
mum intensity, U-channel maximum intensity, red-channel
outer region mean intensity), debris/artifact (red-channel
median intensity, red-channel mean intensity, red-channel
minimum intensity, U-channel maximum intensity, U-
channel integrated density).

3.3. System Validation on Testing Set. Validation of the anal-
ysis system was performed using an 8-case testing subset,
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Figure 3: Top 15 (from 25) automatically identified suspicious cancer areas from sample T2. Cancer cells are present on areas 1, 2, 3, 4, 6, and
7. Additional misidentified noncancer objects were selected: imaging artifact at edge of slide (area 5), cautery debris (8, 9, 14), adipose (12,
14), and air bubble artifacts (8, 11, 12, 14, 15). Note: blue markings on area 7 are from manual evaluation and had no effect on automated
slide evaluation.

Table 2: Comparison of permanent section analysis (positive (red), close (orange), clear (green)) to manual and automated imprint cytology
analysis (positive, indeterminate, negative). 100% agreement is observed between manual and automated imprint cytology with respect to
sample and margin. Specific positive imprint cytology margins are indicated.

Sample number Permanent section margin status Manual IC margin status Automated IC margin status

(esolC1T < evitageNevitageN)mc1.0

(raelC2T > )laidem(evitisoP)laidem(evitisoP)mc1

(raelC3T > evitageNevitageN)mc1

evitageNevitageNevitisoP4T

(esolC5T < evitageNevitageN)mc1.0

)peed,roirepus,roirefni(evitisoP)peed,roirepus,roirefni(evitisoPevitisoP6T

evitageNevitageNevitisoP7T

(esolC8T < evitageNevitageN)mc1.0

listed in Table 1, consisting of approximately 6 margin faces
per case (46 IC specimens). The LDA classifier, created from
the training set, was used to identify individual cancer cells
followed by presentation of the top 25 candidate cancer
clusters (≥5 cancer cells in order of decreasing average
circularity) as described earlier. The performance of the
top 25 selection was quantified by comparison to manual
interpretation performed by JWR (Table 2). The presence
of cancer cells in the top 25 cancer areas (determined
automatically) was used as a measure of system performance
(Figure 3). Based on retrospective samples independent from
the original training data resulted in 100% agreement
between an automated approach and manual interpretation

illustrating the utility this approach for intraoperative analy-
sis (Table 2). For testing set positive margins as determined
by permanent section analysis (T4, T6, T7), cancer cells
were only detected in 1 specimen (T6). Conversely, one
sample judged clear by permanent section analysis (T2) the
sampling showed signs of cancer cells via both manual and
automated IC analysis (Figure 4). Additionally, two close
margin training set IC specimens (A5, A8) had cancer
cells, consistent with IC being able to detect true positive
margins that may be erroneously called close margins due
to inadequate permanent section analysis. The presence of
cancer cells at the margin interface as determined by IC
can only occur in the case of a positive margin status and
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Figure 4: Identification of cancerous clusters across representative
imprint cytology specimen T2. Cancer area 2 was determined by
both automated and manual imprint cytology. Two additional foci
of cancer (Cancer area 1 and 3) were additionally identified by
automated imprint cytology evaluation.

consequently indicates that permanent section analysis may
underreport true positive margins. This underreporting is
likely caused by the limited sectioning of the tumor sample
which we believe can be improved by increased sectioning
combined with an automated analysis approach.

4. Discussion

As a proof of concept, an automated image analysis tool
has been developed which enables whole slide scanning
microscopes with automated computational analysis to pro-
vide a method for cancer cell detection in a background of
debris and noncancerous cells using a novel analysis software
to evaluate multiparameter cytologic features. Analysis was
performed on prelabeled training data with subsequent
validation on an independent testing set, to give a sense of
true system performance. The training set was based on an
8 IC slides obtained from resection margins and correlated
with confirmed positive or “close” margin on permanent
sections. M. E. Ruidı́az and J. Wang-Rodriguez manually
identified cells belonging to the class of cancer cells, normal
cells, or debris/artifact objects (Figure 1). In evaluation
of an LDA classifier of all the parameters, the greatest
improvement in classifier performance relative to a 60%
baseline (random data) classification accuracy were nuclear
color (+23%), cytoplasm color (+15%), shape (+12%), grey
(+9%), and local area (+5%) (Figure 2).

Colorimetric information (RGB and YUV color spaces)
from both the nuclear area and the cytoplasm area provides
the highest degree classification performance improvement.
This is reflected visually with cell-like objects, such as cancer
cells and normal cells generally having a dark nuclear area
with a lighter cytoplasmic surrounding, while debris/artifacts
are more variable and often are within much darker
stained surroundings. Furthermore, in normal cells, a well-
organized clusters and extremely dark nuclear appearance
corresponding to condensed chromatin are observed, while
a much larger, diffuse and lighter stained nucleus is present
for cancer cells.

Shape information is important primarily in the separa-
tion of the debris/artifact class from the biologically derived

classes due to cell-like objects having a round nuclear config-
uration, while generally debris/artifact objects having non-
circular configurations. Therefore, a high degree of separa-
tion is observed when looking at shape alone. Additionally,
it is noted that shape discrimination elucidates a degree of
separation between the cancer class and the noncancer cell
class. This can be explained due to cancer cells having larger
and/or irregularly shaped nuclei than normal cell types.

Identification of specific measurements which best sep-
arate each of the classes of objects on an IC specimen was
determined by binary classification based recursive feature
elimination. Analysis of the top 5 important features for class
discrimination revealed the following: (1) cancer cell dis-
crimination is primarily due to the integrated density along
with the area. (2) Noncancer cell discrimination is mainly
based on the degree of redness of the cell. (3) Debris/artifact
discrimination also lies in the red color of the object with less
emphasis on the peripheral staining color which is likely due
to the lack of cytoplasmic staining of a debris/artifact object.
The similar importance of the red color metrics on both (2)
noncancer cells and (3) debris/artifact implies a separation is
present with noncancer cells having a less red staining while
debris/artifact imparts a brighter red profile.

The detection of cancer cells on IC specimens which were
judged to be negative (close or clear designation) based on
permanent section (A5, A8, and T2) illustrates the utility
of this analysis as an intraoperative positive tumor margin
detection system and as a permanent section verification
tool. However, the failure of both manual and automated
analysis to identify cancer cells on margins judged positive
by permanent section shows the sampling variation which
limits the utility of IC specimens intraoperatively. Improved
system performance is expected, with minor software modi-
fications, when applied to various cytology specimens such as
fine needle aspiration or core tissue biopsy. It is additionally
expected that improvements in IC technology, such as
cell adherent coatings, would further increase the number
of detected positive specimens during cauterized margin
analysis.

5. Conclusions

The evolution of high speed slide scanning technology along
with the increased ubiquity of computing resources enables
a new class of automated analysis tools to discriminate
between cancer cells and nonepithelial cells and debris in
cytologic evaluation. The system presented in this report
to has a 100% agreement between manual and automated
analysis, as validated by a small sample set. The study
indicates that an automated analysis approach performs
well in identification of cancer cells on IC specimens
with performance primarily being limited by IC sampling
variability due to the heterogeneous nature of specimens
with cauterized margins.

This project demonstrated the proof of concept that
an automated system can be successfully utilized to match
human interpretation of IC especially when challenged with
the difficult situation of identifying rare tumor cells picked
up by IC on cauterized surgical margins. The technique
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is also able to identify some positive margins missed by
permanent section allowing for postoperative verification by
permanent section analysis. It is expected that other cell
based cytologies, such as fine needle aspiration, core biopsy
analysis, and even permanent section analysis could be
automated with a similar algorithm.
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